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Abstract

Mitochondrial diseases are the result of pathogenic variants in genes involved in the diverse functions of the mitochondrion. A comprehensive
list of mitochondrial genes is needed to improve gene prioritization in the diagnosis of mitochondrial diseases and development of therapeutics
that modulate mitochondrial function. MitoCarta is an experimentally derived catalog of proteins localized to mitochondria. WWe sought to expand
this list of mitochondrial proteins to identify proteins that may not be localized to the mitochondria yet perform important mitochondrial functions.
We used a computational approach to assign statistical significance to the overlap between STRING database gene network neighborhoods and
MitoCarta proteins. Using a data-driven stringent significance threshold, 2059 proteins that were not located in MitoCarta were identified, which
we termed mitochondrial proximal (MitoProximal) proteins. We identified all of the oxidative phosphorylation complex subunits and 90% of 149
genes that contain confirmed oxidative phosphorylation disease causal variants, lending validation to our methodology. Among the MitoProximal
proteins, 134 are annotated to be localized to mitochondria but are not in the MitoCarta 3.0 database. We extend MitoCarta nearly 3-fold,
generating a more comprehensive list of mitochondrial genes, a resource to facilitate the identification of pathogenic variants in mitochondrial

and metabolic diseases.

Introduction

As metabolic hubs, mitochondria house enzymes involved in
many metabolic pathways that are tightly regulated through
the availability of substrates and cofactors. The availability
of substrates and cofactors integrates many cellular activi-
ties with the energetic state of the cell. While the mitochon-
drial genome encodes 13 key catalytic subunits of oxidative
phosphorylation complexes I and III-V, along with 22 transfer
RNAs (tRNAs) and 2 ribosomal RNAs, the nuclear genome
encodes additional subunits and assembly factors of the ox-
idative phosphorylation complexes, the transcription factors
for the mitochondrial genes, replication machinery for the
mitochondrial genome, antioxidants and other metabolic en-
zymes. Communication between the two genomes is essential
for mitochondrial function and metabolism.

Pathogenic variants in mitochondrial genes, regulators or
metabolic enzymes in either genome, mitochondrial or nu-
clear, result in human disease, ranging from severe pedi-
atric syndromes to aging-related diseases (1-3). A key chal-
lenge in the diagnosis of mitochondrial disease is the hetero-
geneity in the clinical and biochemical presentation, severity
and age of onset, which varies even within families (1-3).
The heterogeneity of mitochondrial diseases makes identifi-
cation of the pathogenic variant difficult and suggests that
variants in one or both genomes can alter the penetrance
of disease. Although next-generation sequencing is rapidly

increasing the rate of identification of previously unknown
pathogenic variants in mitochondrial diseases, 40% of pa-
tients with complex I deficiencies continue to lack a clear di-
agnosis of the pathogenic variant (4). A comprehensive list
of nuclear-encoded mitochondrial genes that are essential for
mitochondrial function is needed to improve the interpreta-
tion of patient next-generation sequencing data and system-
atically evaluate whether variants in mitochondrial genes of
either genome alter the penetrance of mitochondrial disease.
A list of nuclear-encoded mitochondrial genes is also essen-
tial for functional enrichment analysis of transcriptomics and
proteomics data.

MitoCarta 3.0 is a catalog of mitochondrial components
created through mass spectrometry identification of proteins
within mitochondrial isolates and curation of the literature
(5). However, MitoCarta 3.0 only contains proteins that are
localized to the mitochondrion; hence, MitoCarta 3.0 does not
include important regulators of mitochondrial function, such
as the master regulator of mitochondrial biogenesis, PGC-1c,
that are not localized to the mitochondrion. Consequently,
proteins involved in the communication between the mito-
chondrion and nucleus, as well as other organelles, are missing
from the MitoCarta 3.0 catalog.

To facilitate studies on the interplay between mitochon-
dria and other cellular components and pathways, we sought
to identify proteins relevant to mitochondrial function that

Received: April 24, 2023. Revised: October 25, 2023. Editorial Decision: December 4, 2023. Accepted: December 6, 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com


https://doi.org/10.1093/nargab/lqad107
https://orcid.org/0000-0002-9286-7538

may not necessarily be localized to the mitochondria, which
we term mitochondrial proximal (MitoProximal) proteins,
thereby extending the MitoCarta catalog. To achieve this, a
network approach was used to rate the potential mitochon-
drial involvement of each target in the STRING gene network
database (N = 18 872 human proteins). A hypergeometric test
was applied to determine a P-value of the overlap between
each target network neighborhood and MitoCarta 3.0 pro-
teins. Using a data-driven stringent significance threshold, we
identified 2059 proteins that were not found in the MitoCarta
3.0 catalog, thereby appending the list of mitochondrial pro-
teins and regulators.

Materials and methods

Datasets

The Gene Ontology (GO) database consists of a catalog of
genes organized into biological classes, including mitochon-
drial genes (6,7). We used the prefix ‘mito’ to search the CS:
GO gene sets, which includes GO term categories BP, MF and
CC, in the Molecular Signatures Database (Broad Institute,
version 7.4 released on 2021-02-01). We identified 40 gene
sets in GO that contained the prefix mito and included the
terms mitochondria, mitochondrion or mitochondrial in the
GO title or description, excluding gene sets of mitosis genes.
After excluding redundant genes and mapping of Entrez IDs to
Ensembl protein IDs, a total of 1730 unique protein-encoding
genes from the 40 gene sets were identified.

We used the human MitoCarta 3.0 dataset as our list of
known mitochondrial proteins (5). The STRING database
consists of protein—protein interactions determined from ex-
perimental data, curation of the literature, and expression and
computational prediction methods, and is regularly updated
(8). The STRING database contains ~24.5 million proteins
and their known or predicted interactors (neighbors). We re-
trieved the protein nearest network neighbors from the entire
human STRING database v11.5 and calculated the number
of neighbors for each target protein, using the Ensembl pro-
tein ID (8). HUGO gene symbols were mapped to the Ensembl
protein, gene and transcript IDs, and mouse gene homolog IDs
using the db2db function in bioDBnet (9).

We obtained additional annotation information for the Mi-
toProximal proteins from National Center for Biotechnology
Information (NCBI) Gene, GeneCards 5.12 and the Human
Protein Atlas version 23.0 (Supplementary Data) (10,11). En-
richment analysis of the top 200 most significant genes in
the MitoProximal dataset was performed using the Molecular
Signatures Database 3.0 (12).

Hypergeometric test

We performed a hypergeometric test using the hypergeom
function imported from scipy.stats to determine the P-value of
the intersection of known mitochondrial proteins (MitoCarta
3.0 proteins) with the STRING neighbors for each target pro-
tein using the Ensembl protein IDs in Python 3.8.10 (Figure
1). The hypergeometric test utilizes the following equation:
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Figure 1. Hypergeometric test identifies protein networks that are
enriched in mitochondrial proteins. A hypergeometric test determines the
significance of the intersection of known MitoCarta mitochondrial
proteins with the network of each protein in the STRING database. A
P-value that reaches statistical significance indicates that known
mitochondrial proteins (from MitoCarta 3.0) are overrepresented in the
target network (STRING). The targets that were not present in the
MitoCarta 3.0 protein dataset, but having networks enriched in MitoCarta
3.0 proteins, were classified as MitoProximal proteins.

M was defined as the total number of human proteins in the
STRING database (N = 18 872). n was defined as the number
of proteins in the nearest neighbors for each individual pro-
tein from the STRING database. N was defined as the total
number of MitoCarta proteins (N = 11 36) and k was de-
fined as the number of MitoCarta proteins that were found in
the target neighbors.

Defining the P-value threshold of significance

We used the elbow method to determine the hypergeometric
P-value threshold of significance to define the MitoProximal
proteins (13). When the percent of rediscovered MitoCarta
mitochondrial proteins was plotted against a protein’s P-value
rank (Figure 2A), a clear separation was observed between the
region where the percentage of the rediscovered MitoCarta
proteins was rapidly increasing up to ~90% of the MitoCarta
protein list and a region of the ‘law of diminishing returns’
where a further decrease in P-value did not return the proteins
from the original dataset as rapidly (Figure 2B).

We identified the cutoff for the region enriched in known
mitochondrial proteins using the elbow method. The ‘elbow’
method is a heuristic often used in bioinformatics data analy-
sis to determine the optimal number of clusters in a k-means
algorithm or to choose a number of principal components
in dimensionality reduction algorithms to determine a point
where separating the dataset further results in overfitting (13).
Plotting the percentage of discovered proteins from the orig-
inal dataset versus the base 2 logarithm of the P-value ranks
revealed a sigmoidal curve with three regions: (i) the first from
rank 1 to rank ~64, where P-values fall very rapidly by almost
100 orders of magnitude, (ii) then a region where P-values fall
exponentially up to rank ~3000 and (iii) finally a plateau after
rank ~3000 (Figure 2C).
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Figure 2. Defining the P-value threshold of significance. The number of rediscovered MitoCarta 3.0 proteins was plotted against the logqg P-value rank
(A). A rapid superexponential decrease in the number of MitoCarta proteins rediscovered with a decreasing P-value rank (red box) was noted, after
which the P-values decreased exponentially (black box, B). To determine a data-driven P-value threshold, we used the elbow method and took the third
derivative (orange line) of the percentage of MitoCarta genes discovered (blue line) to determine the inflection point (vertical green line, C), where a
further decrease in P-value did not return the proteins from the original dataset as rapidly. X-axis is the log, P-value rank.

We used the inflection point between the second and the
third region as the cutoff for inclusion of the proteins in
the list of MitoProximal proteins. The inflection point was
identified by taking a third derivative of the sigmoid curve,
corresponding to the P-value rank 3096 and P-value of
4.49 x 1073. MitoProximal proteins were thus identified as
those proteins identified in the hypergeometric test with a P-
value <4.49 x 1073 and not present in the MitoCarta 3.0
dataset.

Results

GO (6,7), a catalog of genes organized into biological classes,
including mitochondrial genes, had limited intersections with
MitoCarta 3.0 (Supplementary Figure S1). Thus, experimen-
tally confirmed mitochondrial proteins from MitoCarta are
missing from GO, while genes identified as mitochondrial in
GO are not in MitoCarta.

To create a more comprehensive list of mitochondrial-
related proteins that extends beyond the mitochondrial lo-
calized proteins in MitoCarta 3.0, we performed a hyper-
geometric test to calculate the significance of overlap be-
tween target network neighbors and MitoCarta proteins, on
the background of all proteins in the STRING database.

The test returned 3094 proteins that reached a P-value
of significance after calculating a data-driven threshold (P-
value <4.49 x 1073), of which 1035 proteins were in the Mi-
toCarta 3.0 dataset (Figure 3A and Supplementary Table S1).
We identified 2059 MitoProximal proteins (Supplementary

Table S2) with a P-value <4.49 x 1073 that were not already
present in MitoCarta 3.0 (Figure 3A).

To validate our methodology, we systematically analyzed
the resulting output to confirm the inclusion of several ad-
ditional protein/gene sets relevant to mitochondrial function
and disease in the MitoProximal protein list. All of the 97
oxidative phosphorylation subunits were identified in the Mi-
toProximal gene list. A total of 149 protein-encoding genes
are considered to contain confirmed pathogenic variants that
cause oxidative phosphorylation diseases, or primary mito-
chondrial disease (14). Of the 149 confirmed oxidative phos-
phorylation genes involved in mitochondrial diseases, 134
genes (90%) were encompassed in our MitoProximal list (Fig-
ure 3B). Of the 15 OXPHOS disease-causing proteins not
found in the MitoProximal list, none were found in Mito-
Carta and only 2 were found in the GO dataset. Further, a
genome-wide CRISPR /Cas9 death screen identified 191 genes
as essential for oxidative phosphorylation (14). Of the 191
high-confidence (false discovery rate <0.1) genes identified
in the screen, 74% were found in our MitoProximal dataset
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Figure 3. Overlap of the MitoProximal dataset with existing mitochondrial protein and gene datasets. Most of the MitoCarta 3.0 catalog (91 %) was
rediscovered among the significant proteins identified in the hypergeometric test, along with an additional 2059 novel candidate mitochondrial-related
proteins identified (MitoProximal proteins, A). Of the protein-encoding genes containing confirmed pathogenic variants in oxidative phosphorylation
diseases (primary mitochondrial diseases), 90% were identified in the MitoProximal dataset (B). Among genes identified as required for oxidative
phosphorylation through a CRISPR/Cas9 genome-wide death screen (14), 88% were in the MitoProximal dataset (C). OXPHOS, oxidative

phosphorylation.

(Figure 3C). Of the 22 OXPHOS essential proteins not in the
MitoProximal list, all but one (SERCA1) was in MitoCarta.
In contrast, only 1 of the 22 OXPHOS essential proteins not
in MitoProximal list was found in the GO dataset.

We performed a gene enrichment analysis to determine the
pathways or biological processes that were enriched within
the MitoProximal dataset. Enrichment analysis of the top
200 most significant genes in the MitoProximal dataset re-
vealed that the top 10 cellular processes were those involved
in metabolism (Table 2), which is consistent with the role of
mitochondria as a metabolic hub of the cell (15). Reactome
Metabolism of Amino Acids and Derivatives and GOBP Cel-
lular Amino Acid Metabolism Process were among the top
biological processes identified. Branched chain amino acid
catabolism occurs within mitochondria to support ATP gen-
eration with several enzymes involved, including BCAT1 and
ILVBL among the top 200 most significant genes in the Mito-
Proximal dataset (16). Additional enzymes involved in amino
acid metabolism that were among the 200 most significant
genes identified as MitoProximal proteins include PYCR3,
PHGDH, ASS1 and GPT.

Further, MitoProximal proteins were enriched in the GOBP
Carbohydrate Derivative Metabolic Process, which encom-
passes proteins involved in glycolysis, one-carbon metabolism
and the pentose phosphate pathway. Although glycolysis oc-
curs within the cytosol, the NADH generated by glycolysis
is transported into mitochondria for use by complex I of the
respiratory chain in ATP generation. One-carbon metabolism
serves to generate the one-carbon units used to synthesize
purines, for methylation reactions and to sustain glutathione
levels (17). The folate cycle, a component of one-carbon
metabolism, takes place within mitochondria with the amino
acids glycine and serine used to ultimately generate purines
(17). Relatedly, the top 200 MitoProximal proteins were
enriched in GOBP Nucleobase-Containing Small Molecule
Metabolic Processes with key enzymes in de novo purine
synthesis ADSL, PPAT, GART, ADSL and GMPS among the
most significant proteins identified in the hypergeometric test
(Supplementary Table S2).

The MitoProximal dataset contains a number of proteins
involved in mitochondrial functions and regulation, as well as
enzymes involved in multiple metabolic pathways (Figure 4).
Proteins involved in the regulation of mitochondrial biogen-
esis, including PPARGC1A, PPARGC1B, PPRC1 and NRF1,
were identified in the MitoProximal dataset. These mitochon-
drial biogenesis proteins are not localized within the mito-
chondrion, and hence not in MitoCarta 3.0, but are nonethe-
less essential for mitochondrial function. Similarly, CLUH is

a cytosolic RNA-binding protein localized to RNA granules
where it preserves the translation of mRNAs encoding pro-
teins involved in oxidative phosphorylation, citric acid cycle,
fatty acid oxidation and amino acid catabolism under condi-
tions of stress (18-20). CLUH is not localized to mitochon-
dria, and hence not found in MitoCarta; however, CLUH was
identified using the hypergeometric test (P = 1.5 x 1072¢),

Within the MitoProximal dataset, many ion and metabo-
lite carriers and transporters were identified, which would be
expected to regulate metabolism within the cell and conse-
quently mitochondrial activities. Additionally, a number of
proteins (e.g. ATG proteins, BECN1, ULK1) involved in au-
tophagy were identified, which is consistent with the impor-
tance of autophagy for the clearance and turnover of dysfunc-
tional mitochondria (21).

Among the MitoProximal proteins, 134 are localized to mi-
tochondria based upon annotation in the Human Protein At-
las or NCBI Gene but are not found in MitoCarta 3.0 (Figure
4 and Table 1). Interestingly, NDUFA4L2 was identified as a
MitoProximal protein (P = 1.41 x 1071°1), NDUFA4L2 is lo-
calized to mitochondria and inhibits complex I of the electron
transport chain under conditions of hypoxia, limiting oxidant
generation (22-24). Hence, identification of such proteins that
play essential roles in response to cellular stress may be miss-
ing from the existing mitochondrial catalogs as such genes
are only expressed under specific conditions. Several Mito-
Proximal proteins (N = 16) are localized to mitochondria in
the Human Protein Atlas but have not yet been assigned a
function.

Discussion

To date, studies cataloging mitochondrial proteins were pri-
marily generated using proteomics approaches of isolated
mitochondria or green fluorescent protein (GFP) fusion mi-
croscopy to identify proteins localized to mitochondria (5,25-
31). Such methods capture proteins localized to mitochondria
but miss proteins essential for mitochondrial function that are
not localized to mitochondria, are lost through the mitochon-
drial isolation process or are only expressed under specific cel-
lular stress conditions. We used a hypergeometric test to iden-
tify the overlap between MitoCarta 3.0 proteins and network
interactions within the STRING database to identify proteins
important for mitochondrial function, which we termed Mito-
Proximal proteins. We identified a total of 2059 proteins that
were not located in MitoCarta and that met our data-driven
P-value threshold of significance.
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Figure 4. Candidate mitochondrial-related proteins identified by the hypergeometric test. The MitoProximal list consists of proteins spanning many

mitochondrial functions and metabolic pathways. Color of font indicates the cofactor(s) required for enzymatic activity (see legend). *Bold font indicates

proteins localized to mitochondria. Not all MitoProximal proteins are indicated.

Of the databases of mitochondrial localized proteins, only
MitoCarta is maintained and available, while other mitochon-
drial protein databases, including MitoProteome (32,33), Mi-
toP2 (34,35) and MitoMiner 4.0 (29,36), are no longer avail-
able. MitoCarta consists of a catalog of mitochondrial pro-
teins now in its third version (5,28,37). The MitoCarta dataset
was initially created by performing proteomics on isolated mi-
tochondria from 14 tissues of the mouse with homologous
human proteins identified. GFP tagging and microscopy, com-
putational approaches and curation of the literature were also
used to generate and expand the mitochondrial proteome cat-
alog, resulting in the current dataset of 1136 mitochondrial
localized proteins in humans (5,28,37). For the majority of the
101 proteins in MitoCarta that were not rediscovered in our
method, the proteins did not reach the required level of statis-
tical significance because there were too few or even no inter-
actors (e.g. IQCFS, IQ domain-containing protein FS) in the
STRING database. Our study extends the MitoCarta dataset

to encompass additional mitochondrial localized proteins and
proteins important for mitochondrial function that are not lo-
calized to mitochondria.

Our study has several limitations. Despite our stringent,
data-driven approach for accounting for multiple testing, it is
possible that some of the MitoProximal proteins are false pos-
itives. A number of proteins involved in translation and per-
oxisomes were identified as MitoProximal proteins. Several
proteins in the MitoCarta 3.0 list are found in peroxisomes or
other membranous, cellular structures, which could have con-
tributed to the identification of additional proteins involved
in other organellar processes in the hypergeometric test. Al-
though proteomics approaches have allowed for the identi-
fication of the mitochondrial proteome, the close proximity
of mitochondria and interactions with other membranous or-
ganelles create challenges in obtaining a pure mitochondrial
isolate (26). Hence, some of the proteins identified applying
proteomics to isolated mitochondria may be false positives, re-



Table 1. MitoProximal proteins localized to mitochondria

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 4

Database source

Gene symbol Protein name P-value HPA NCBI
ABHD4 Abhydrolase domain containing 4, N-acyl phospholipase B 1.2E-09 X
AC008982.1 3.5E-31 X

ACO011455.2 2.2E-S58 X

AC024592.3 3.4E-180 X

ACO1 Aconitase 1 3.1E-193 X

ACOT1 Acyl-CoA thioesterase 1 1.4E-25 X

ACOTS8 Acyl-CoA thioesterase 8 3.3E-78 X

ACSBG2 Acyl-CoA synthetase bubblegum family member 2 2.9E-34 X
ACSL4 Acyl-CoA synthetase long-chain family member 4 5.6E-95 X

ACSLS Acyl-CoA synthetase long-chain family member 5 1.8E—52 X

ACSM6 Acyl-CoA synthetase medium-chain family member 6 5.1E—47 X
ADPRS ADP-ribosylserine hydrolase 1.1E-09 X
AFMID Arylformamidase 1.1E-18 X

ALKBH3 alkB homolog 3, o-ketoglutarate-dependent dioxygenase 2.8E—-07 X

APEX2 Apurinic/apyrimidinic endodeoxyribonuclease 2 2.9E-35 X
ARMCI1 Armadillo repeat containing 1 2.0E-25 X X
AS3MT Arsenite methyltransferase 5.1E-14 X

ATAD3C ATPase family AAA domain containing 3C 3.5E-30 x X
ATPSMGL ATP synthase membrane subunit g like 1.1E-137 X

ATP6V1C2 ATPase H* transporting V1 subunit C2 7.5E-23 X

BRI3BP BRI3 binding protein 1.0E-03 X X
C170rf80 Chromosome 17 open reading frame 80 1.3E-73 X

CCDC90B Coiled-coil domain containing 90B 2.2E-05 X X
CDS1 CDP-diacylglycerol synthase 1 5.3E-29 X
CDS2 CDP-diacylglycerol synthase 2 1.8E-29 X
CEBPZOS CEBPZ opposite strand 7.6E—10 X
CFAP410 Cilia- and flagella-associated protein 410 4.0E—43 X

CIAPIN1 Cytokine-induced apoptosis inhibitor 1 2.6E—18 X

CMSS1 cms1 ribosomal small subunit homolog 3.0E-08 X
CORO7-PAM16 CORO7-PAM16 readthrough 4.4E—-47 X

CTDSP2 CTD small phosphatase 2 2.9E-03 X

CTPS2 CTP synthase 2 1.0E-50 X

CTU2 Cytosolic thiouridylase subunit 2 1.0E-05 X

CYBSR1 Cytochrome b3 reductase 1 6.4E—69 X X
CYP2E1 Cytochrome P450 family 2 subfamily E member 1 5.1E-09 X

DDAH2 Dimethylarginine dimethylaminohydrolase 2 4.5E-04 X X
DDHD1 DDHD domain containing 1 7.5E-06 X
DDT D-Dopachrome tautomerase 2.2E-14 X

DFENA64 Diablo IAP-binding mitochondrial protein 1.4E-16 X

DEPP1 DEPP1 autophagy regulator 6.6E—07 X

DGKA Diacylglycerol kinase alpha 5.6E-05 X

DHFR Dihydrofolate reductase 3.1E-54 X

DHEFR2 Dihydrofolate reductase 2 3.1E-54 X X
DHRS3 Dehydrogenase/reductase 3 3.6E-05 X

DHRS7 Dehydrogenase/reductase 7 1.7E—18 X

DMAC2 Distal membrane arm assembly component 2 2.1E-06 X X
DNAJA2 DnaJ heat shock protein family (Hsp40) member A2 7.2E-05 X
DPYSL4 Dihydropyrimidinase like 4 9.9E—04 X
EEF1AKNMT EEF1A lysine and N-terminal methyltransferase 9.0E—04 X
EIF2A Eukaryotic translation initiation factor 2A 2.4E-05 X

ENO4 Enolase 4 8.7E—89 X

ENOSF1 Enolase superfamily member 1 9.7E-30 X
ENY2 ENY?2 transcription and export complex 2 subunit 6.1E-18 X

ETNPPL Ethanolamine-phosphate phospho-lyase 2.9E-09 X
FAHD1 Fumarylacetoacetate hydrolase domain containing 1 4.6E—39 X

FBP1 Fructose-bisphosphatase 1 1.2E—49 X

FOCAD Focadhesin 9.1E-04 X

GO0S2 GO0/G1 switch 2 3.3E-06 X
GART Phosphoribosylglycinamide formyltransferase 4.9E-73 X

GDAP1 Ganglioside-induced differentiation-associated protein 1 1.9E-20 X

GKS Glycerol kinase 5 1.2E-03 X
GLUL Glutamate-ammonia ligase 5.8E—64 X

GSTP1 Glutathione S-transferase pi 1 8.1E-07 X

GTPBPS8 GTP binding protein 8 7.3E-77 X

HELB DNA helicase B 9.7E—09 X

HIGDI1C HIG1 hypoxia inducible domain family member 1C 4.8E-33 X
HIGD2B HIG1 hypoxia inducible domain family member 2B 9.9E—40 X X
HK1 Hexokinase 1 3.3E-63 X X
HK2 Hexokinase 2 3.6E—46 X X
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Table 1. Continued

Database source

Gene symbol Protein name P-value HPA NCBI
HKDC1 Hexokinase domain containing 1 1.8E-22 be

HSPB6 Heat shock protein family B (small) member 6 1.7E-05 X

HYKK Hydroxylysine kinase 6.2E—09 X
IDNK IDNK gluconokinase 7.3E-08 X

ILF3 Interleukin enhancer binding factor 3 9.8E—-07 X

IMPA2 Inositol monophosphatase 2 1.0E-13 X

JARID2 Jumonji and AT-rich interaction domain containing 2 4.0E—09 X

LRRC36 Leucine-rich repeat containing 36 8.3E—-04 X

LYSMD?2 LysM domain containing 2 1.4E-03 b

MBTPS2 Membrane-bound transcription factor peptidase, site 2 4.3E-29 X

MOCOS Molybdenum cofactor sulfurase 1.3E-36 X

MSTO1 Misato mitochondrial distribution and morphology regulator 1 5.4E-17 be
MTLN Mitoregulin 1.4E-20 X
MYBPH Myosin binding protein H 3.6E-07 X

NADK2 NAD kinase 2, mitochondrial 7.9E—13 X X
NDEFIP2 Nedd4 family interacting protein 2 2.6E—03 X
NDUFA4L2 NDUFA4 mitochondrial complex associated like 2 1.4E-101 X
NDUFC2-KCTD14 NDUFC2-KCTD14 readthrough 1.2E-117 X

NOL7 Nucleolar protein 7 7.9E-05 b'e

NUDT1 Nudix hydrolase 1 6.5E—18 X
PACS2 Phosphofurin acidic cluster sorting protein 2 1.2E-10 X

PAPSS2 3’-Phosphoadenosine 5’-phosphosulfate synthase 2 7.1E-05 X

PCMTD2 Protein-L-isoaspartate (D-aspartate) O-methyltransferase domain 6.8E—04 X

containing 2

PEMT Phosphatidylethanolamine N-methyltransferase 6.6E—19 X X
PFKL Phosphofructokinase, liver type 6.7E—60 X

PGM2L1 Phosphoglucomutase 2 like 1 4.1E-50 X

PHYKPL 5-Phosphohydroxy-1-lysine phospho-lyase 1.4E—-14 X X
PIN4 Peptidylprolyl cis/trans-isomerase, NIMA-interacting 4 6.3E—44 X
PPCS Phosphopantothenoylcysteine synthetase 9.9E-35 X

PRDX1 Peroxiredoxin 1 3.7E-93 X

PSMB4 Proteasome 20S subunit beta 4 1.4E-25 X

PYROXD2 Pyridine nucleotide-disulphide oxidoreductase domain 2 4.4E-19 b'e X
RADS1 RADS1 recombinase 3.5E-16 X

RADS1C RADS1 paralog C 4.9E-23 X

RPL7L1 Ribosomal protein L7 like 1.0E—41 X

RRP1S5 Ribosomal RNA processing 15 homolog 2.6E—-04 X

SDS Serine dehydratase 6.4E—38 X

SIRT1 Sirtuin 1 3.1E—-10 X

SLC11A1 Solute carrier family 11 member 1 1.0E-07 X

SLC11A2 Solute carrier family 11 member 2 1.3E-18 X

SLC22AS5 Solute carrier family 22 member 5 S5.4E-07 X

SLC25A2 Solute carrier family 25 member 2 3.3E-12 X
SLC27A1 Solute carrier family 27 member 1 4.2E-33 X

SLC37A4 Solute carrier family 37 member 4 7.3E-04 X

SLC3A1 Solute carrier family 3 member 1 3.5E-03 X

SMIM4 Small integral membrane protein 4 1.1E-06 X

SPATA18 Spermatogenesis associated 18 3.5E-03 b b
§S18L2 SS18 like 2 7.9E—10 b'e

TAT Tyrosine aminotransferase 3.8E-25 X
TMBIM6 Transmembrane BAX inhibitor motif containing 6 1.5E—-12 X
TMEM13S5 Transmembrane protein 135 6.0E—12 X
TMEM14A Transmembrane protein 14A 3.9E-05 X
TMEM14B Transmembrane protein 14B 1.2E-33 X
TMEM223 Transmembrane protein 223 1.3E—-12 X

TMPPE Transmembrane protein with metallophosphoesterase domain 3.4E-25 X

TRABD TraB domain containing 1.0E-03 b

TRAK1 Trafficking kinesin protein 1 2.1E-05 X
TRMT12 tRNA methyltransferase 12 homolog 1.2E-12 X

TRMT61A tRNA methyltransferase 61A 3.2E-07 X

TRPT1 tRNA phosphotransferase 1 1.2E-13 X

T1C27 Tetratricopeptide repeat domain 27 1.1E-06 X

UGP2 UDP-glucose pyrophosphorylase 2 4.1E-19 X

UPP2 Uridine phosphorylase 2 1.1E-09 X

YJEEN3 YjeF N-terminal domain containing 3 2.6E—06 X X
ZNHIT3 Zinc finger HIT-type containing 3 2.8E—13 X

HPA, Human Protein Atlas; NCBI, National Center for Biotechnology Information.
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Total number of

Number of genes in

Gene set name genes overlap P-value g-value
GOBP Small Molecule Metabolic Process 1848 115 6.4 x 107108 1.7 x 107193
GOBP Organic Acid Metabolic Process 966 86 4.1 %1070 5.4 % 10786
GOBP Organonitrogen Compound Biosynthetic Process 1821 87 8.1 x 1078 7.0 x 10764
GOBP Nucleobase-Containing Small Molecule 678 60 7.8 x 10761 5.1 % 107%7
Metabolic Process

Reactome Metabolism of Amino Acids and Derivatives 373 45 2.6 x 10751 1.3 x 10747
GOBP Cellular Amino Acid Metabolic Process 290 41 1.2 x 107% 5.3 x 1074
Reactome Selenoamino Acid Metabolism 118 32 1.3 x 10748 47 x 10°%
GOBP Organophosphate Metabolic Process 1035 59 4.5 x 1074 48 x 10°%
GOBP Carbohydrate Derivative Metabolic Process 1113 58 1.7 x 107% 5.0 x 107+
Reactome Translation 295 37 9.6 x 1074 2.5 x 107

sulting from contamination of the mitochondrial isolates with
membranes (and hence proteins) from other organelles such as
peroxisomes, endoplasmic reticulum or Golgi. Whether such
peroxisomal, endoplasmic reticulum or other vesicular-related
proteins are truly important for mitochondrial function or by-
standers that contaminated the isolation of mitochondria used
for the proteomics studies is unclear. Some mitochondrial pro-
teins or regulators of mitochondrial function may not have
been identified by our criteria for classification as a MitoProx-
imal protein or may not have reached our P-value threshold of
significance. Unidentified or poorly understood proteins with
few known protein interactions may be missing as well. Ex-
perimental validation of the MitoProximal genes will be the
focus of future studies.

Using a data-driven approach, we extend the catalog of
proteins relevant to mitochondrial function to encompass an
additional 2059 MitoProximal proteins beyond those in the
MitoCarta 3.0 database. The MitoProximal proteins are in-
volved in multiple metabolic pathways, energy and oxygen
sensing, mitochondrial biogenesis and dynamics, cell death,
autophagy, metabolite transporters and channels, and trans-
port and binding of metals and heme. The MitoProximal
dataset extends the list of mitochondrial-related proteins to
facilitate the identification of pathogenic variants and genetic
modifiers of human disease.

Data availability

The scripts for performing the hypergeometric test and
defining the P-value level of significance are avail-
able in the GitHub repository (https://github.com/
jessicalfetterman/MitoProximal) and  Zenodo  (DOI:
10.5281/zen0do0.10260870). The entire output of the
hypergeometric test, annotated MitoProximal dataset and ad-
ditional datasets used herein are provided in Supplementary
Data.
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