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Simple Summary: The urinary tract microbiome has come under a lot of scrutiny, and this has
led to the rejection of the pre-established concept of sterility in the urinary bladder. Microbial
communities in the urinary tract have been implicated in the maintenance of health. Thus, alterations
in their composition have also been associated with different urinary pathologies, such as urinary
tract infections. For that reason, tackling the urinary microbiome of healthy individuals, as well
as its involvement in disease through the proliferation of opportunistic pathogens, could open
a potential field of study, leading to new insights into prevention, diagnosis, and treatment strategies
for different diseases.

Abstract: The human microbiota contains ten times more microbial cells than human cells contained
by the human body, constituting a larger genetic material than the human genome itself. Emerging
studies have shown that these microorganisms represent a critical determinant in human health
and disease, and the use of probiotic products as potential therapeutic interventions to modulate
homeostasis and treat disease is being explored. The gut is a niche for the largest proportion of
the human microbiota with myriad studies suggesting a strong link between the gut microbiota
composition and disease development throughout the body. More specifically, there is mounting
evidence on the relevance of gut microbiota dysbiosis in the development of urinary tract disease
including urinary tract infections (UTIs), chronic kidney disease, and kidney stones. Fewer emerging
reports, however, are suggesting that the urinary tract, which has long been considered ‘sterile’,
also houses its unique microbiota that might have an important role in urologic health and disease.
The implications of this new paradigm could potentially change the therapeutic perspective in
urological disease.
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1. Introduction

Renal cell carcinoma (RCC) has long been considered a rare entity; however, its
incidence, morbidity, and mortality continue to increase annually to the present day, with
an estimated 76,000 new cases in the United States in 2021 [1]. RCC is the most common
type of malignant kidney neoplasm and one of the most aggressive cancers worldwide [2].
The treatment of choice for localized RCC has been surgical resection because it has a poor
response to conventional chemotherapy and radiation therapy [3]. However, around 33% of
patients are initially diagnosed with metastatic RCC (mRCC) at presentation, and around
50% of those diagnosed with localized disease relapse post-surgery [4]. Metastatic RCC has
a very poor prognosis until today, and so its management and clinical outcome prediction
remain a medical challenge [5].
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The introduction of intrinsic therapies targeting specific signaling pathways has im-
proved patient progression-free survival (PFS) [2]. Over the years, the treatment paradigm
for metastatic RCC has evolved from cytokine-based therapies to vascular endothelial
growth factor-targeting agents, to mTOR-inhibitors, tyrosine kinase inhibitors, and most
recently, immune checkpoint inhibitors (ICIs) have become the mainstay treatment [6,7].
Targeting the programmed cell death-1 protein (PD-1), programmed cell death-ligand
1 (PD-L1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), ICIs have truly
revolutionized metastatic RCC management [8], and their use in different combination
strategies has become a novel standard of care in this patient population [9]. Nevertheless,
despite the remarkable success in slowing down tumorigenesis and metastasis owing to the
current era of targeted ICI therapy, clinical outcomes remain unsatisfactory, and survival
prognosis in mRCC remains low [9]. Legitimate concerns remain relating in part to the
inevitable resistance developed during ICI treatment [2] and also to the treatment-related
immune adverse events and toxicities [10]. Moreover, there exists a great unpredictable
variability in the efficacy and clinical response to ICI therapy across individual mRCC
patients [11]. Hence, there is a critical need for reliable biomarkers and predictors for drug
resistance, adverse events, and differential clinical response in mRCC patients treated with
ICIs. Moreover, the introduction of alternative or adjunctive interventions to improve
patient outcomes is another valid question to tackle.

2. Gut Microbiota’s Role in RCC Oncogenesis and Immunotherapy

The gut microbiota represents a vast collection of unique bacterial strains and microor-
ganisms residing in the gastrointestinal tract and shaping a key element of host immunity
that regulates oncogenesis, response to immunotherapy, and drug efficacy, resistance, and
toxicity [12]. First, it has been widely reported in multiple meta-analyses that antibiotics
(AB), by modifying the gut microbiota composition, cause gut dysbiosis and consequently
poorer response to ICIs [9,10]. Ueda et al. [8] demonstrated, in a retrospective study, re-
duced objective response rate and shorter PFS for patients on ICIs treated with AB within
30 days prior compared with those that did not receive AB, presenting a negative associa-
tion between AB and ICI treatment outcome. In their prospective study, Derosa et al. [10]
reported analogous conclusions on mRCC and non-small-cell lung cancer patients treated
with anti-PD-L1 targeted therapy, and they proved that AB induce gut dysbiosis such that
they increase bacteria associated with resistance to ICIs, namely Clostridium hathewayi and
Clostridium clostridioforme. Hence, they concluded that there are profile commonalities be-
tween the microbiota composition in AB-induced dysbiosis and that in ICI non-responders,
specifically Clostridium hathewayi and Clostridium clostridioforme, which were ultimately
proven to confer ICI treatment resistance. Moreover, ICI responders and non-responders
each demonstrate distinct microbiome profiles highlighting specific intestinal microbiota
commensals affecting clinical outcomes to ICIs. Routy et al. [13], through analysis of mi-
crobiome composition in RCC patients on ICIs, showed that the abundance of Akkermansia
muciniphilia at the time of diagnosis correlated with a favorable response to treatment. Sim-
ilarly, Salgia et al. [11] have reported increased Akkermansia muciniphilia relative abundance
in responders which decreased in non-responders. Matson et al. [14] demonstrated the
abundance of Bifidocacterium spp. in metastatic melanoma responders to anti-PD-1 tar-
geted therapy. Sivan et al. [15] also reported mirroring results in a melanoma mouse model
proving response to anti-PD-L1 with Bifidocacterium spp. abundance. Vetizou et al. [16]
reported that Bacteroides spp. presence correlated with response to anti-CTLA-4 treatment
in melanoma murine experimental models. Hence, the distinctive variation in microbiome
profiles among different patients validates the relationship between gut microbiota and
mRCC treatment outcomes and also the utility of using pre-immunotherapy microbiome
fingerprints as potential predictors of ICI resistance and patient response to treatment.
More importantly, it also raises novel insight into altering patients’ microbiome composi-
tion to increase ICI clinical efficacy through the use of alternative strategies such as fecal
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microbiota transplantation (NCT03772899), probiotics, or other nutritional supplements,
such as curcumin.

In line with significant preclinical data extracted from studies performed on mice,
evidence from human data shows that gut microbiota is an essential role player in influ-
encing the response to cancer immunotherapy [16]. Alteration of the gut microbiome,
either by antibiotics administration or by the usage of germ-free mice in experiments,
has been associated with worse immunotherapy treatment outcomes [17]. Oral gavage
with B. fragilis (Bf.), adoptive transfer of memory Bf-specific TH1 cells, and immunization
with Bf polysaccharides demonstrated a positive response to anti-CTLA-4 in antibiotics-
treated or germ-free mice [16]. This emphasizes the importance of the gut microbiome
composition and the significant effect of its dysbiosis. Figure 1 depicts how gut dysbiosis
leads to immunomodulation resulting in different treatment response.
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The mechanism by which gut microbiota affects cancer immunotherapy is still not
well established; however, studies have proposed three processes: stimulation of anti-
tumor T cells directly by bacterial components, molecular mimicry between bacterial and
tumoral epitopes, and anti-tumor immunity by bacterial metabolites [18]. Through the
first mechanism, Enterococcus hirae and Barnesiella intestinihominis were shown to improve
the efficacy of cyclophosphamide therapy. E. hirae translocates from the small intestine
to secondary lymphoid organs and raises the intratumoral CD8/Treg ratio. Addition-
ally, B. intestinihominis enhances the activity of IFN-γ–producing γδ T cells [19]. Further-
more, improvement in the efficacy of CTLA-4 treatment was influenced by the presence
of B. thetaiotaomicron and/or B. fragilis [16]. As for molecular mimicry, gut microbiota,
specifically Bifidobacterium breve and Enterococcus hirae, stimulate commensal-specific T
cells which cross-react with tumor-associated antigens [20]. For example, Fluckiger et al.
reported the presence of major histocompatibility (MHC) class I-binding antigens in the
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tape measure protein (TMP) of enterococcal bacteriophage. The existence of these ente-
rococcal bacteriophages in stools along with the tumor expression of TMP-cross-reactive
epitopes was associated with increased overall survival in NSCLC and RCC patients
subjected to anti-PD1 therapy [20]. Moreover, as for the last proposed mechanism, ex-
periments performed on mice revealed that metabolites such as inosine produced by gut
bacteria, specifically A. muciniphila and B. pseudolongum, improved response to targeted
immunotherapy, anti-CTLA-4 in particular [21]. The suggested mechanisms emphasize
the role of gut microbiome in immunotherapy and can serve as a basis for establishing
microbial-based therapies.

Several studies, including Routy et al., have established a relationship between
pretreatment gut microbiota and progression-free survival (PFS) and overall survival
(OS) in patients with myeloma, hepatocellular carcinoma, and non-small cell lung can-
cer. Different bacterial species have been identified in responders versus non-responders
(Table 1) [9,22,23]. In a review by Oh et al., it was identified that abundance of Firmicutes
and Actinobacteria, specifically Fecalibacterium prausnitzii and Bifidobacterium longum was
associated with favorable outcomes. It was postulated that the baseline gut microbiome
could predict outcomes of immunotherapy [22].

Table 1. Difference in gut microbiota between responders and non-responders.

Responders Non-Responders

Abundance

Fecalibacterium, Bacteroides, Holdemania, Gemmiger, and
Clostridium XIVa, Ruminococcaceae, Bifidobacterium longum,

Collinsella aerofaciens, Enterococcus faecium, Coprococcus eutactus,
Prevotella stercorea, Streptococcus sanguinis, Streptococcus

anginosus, Lachnospiraceae bac- terium, Akkermansia muciniphila

Ruminococcus obeum, Roseburia intestinalis,
Bacteroides ovatus, Bacteroides dorei,

Bacteroides massiliensis, Ruminococcus
gnavus, and Blautia producta

Non-Abundance Bacteroides, Lachnospiraceae, Clostridium IV, Blautia, Eubacterium

Other studies have shown a correlation between metagenomics and therapy response.
Differences of α diversity (high variation of microbes in a single sample) and β diversity
(difference in diversity of microbes between sites) in responders compared with non-
responders were highlighted. In patients with myeloma, prolonged PFS was seen with α

diversity compared with intermediate and low diversity [22]. Zheng et al. also highlighted
the role of α diversity in hepatocellular carcinoma (HCC) by observing the increase in
Proteobacteria from week 3 to 12 in non-responders. The same study showed differences
in β diversity across patients with HCC as early as week 6 of anti-PD1 therapy, further
confirming the correlation between gut microbiome and clinical outcome following im-
munotherapy. Jin et al. reported a greater frequency of unique memory CD8+ T cell and
natural killer cell subsets in the periphery in response to anti-PD-1 therapy, further docu-
menting the importance of high diversity of microbiota in prolonging the PFS in patient
with NSCLC on anti-PD1 immunotherapy [22,23]. Similar results were replicated by Gior-
dan et al. when studying the antitumor effect of gut microbiota such as Bifidobacterium and
Faecalibacterium species [22,23].

Similarly, relationships were reported between gut microbiota and incidence of gas-
trointestinal toxicity. It was noted that abundance of Bacteroidetes was associated with less
incidence of immune therapy-related colitis by enhancing differentiation of T cells into T
reg cells [22].

3. Proton Pump Inhibitors (PPIs) and Antibiotics’ Effect on the Immune Response

Gut bacteria are affected by medications. Since concomitant medication are often
antibiotics and PPIs, it is safe to say that exposure to these medications could also be a factor
in the equation. Routy et al. showed the effect of antibiotic use on PFS and OS in patients
with non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and urothelial
carcinoma, further underlining the relation between dysbiosis and ICI response [24]. It
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is no secret that antibiotics and PPIs alter gut microbiota, and thus could be correlated to
variation in the response to checkpoint inhibitors. In a study by Giordan et al. in 2021, it
was shown that antibiotics and PPIs administered prior to starting immunotherapy impact
prognosis negatively. Further, it was shown that the combination of antibiotics and PPIs
could possibly have a deleterious synergistic effect [24]. The mechanism involved is not
well understood. It was postulated that by causing dysbiosis, these medications alter the
immunostimulatory effect of the microbiome, leading to bad outcomes. PPIs may affect the
abundance and diversity of Bifidobacterium and Ruminococcaceae, both indispensable to
immunity. Additionally, as the pH in the tumor microenvironment increases, PPIs decrease
the intratumoral immunosuppressive activity and thus the activity of ICI [22] (Figure 2).

Cancers 2022, 14, x FOR PEER REVIEW 5 of 17 
 

 

with non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and urothelial car-
cinoma, further underlining the relation between dysbiosis and ICI response [24]. It is no 
secret that antibiotics and PPIs alter gut microbiota, and thus could be correlated to vari-
ation in the response to checkpoint inhibitors. In a study by Giordan et al. in 2021, it was 
shown that antibiotics and PPIs administered prior to starting immunotherapy impact 
prognosis negatively. Further, it was shown that the combination of antibiotics and PPIs 
could possibly have a deleterious synergistic effect [24]. The mechanism involved is not 
well understood. It was postulated that by causing dysbiosis, these medications alter the 
immunostimulatory effect of the microbiome, leading to bad outcomes. PPIs may affect 
the abundance and diversity of Bifidobacterium and Ruminococcaceae, both indispensa-
ble to immunity. Additionally, as the pH in the tumor microenvironment increases, PPIs 
decrease the intratumoral immunosuppressive activity and thus the activity of ICI [22]. 
(Figure 2) 

 
Figure 2. Effect of PPI on gut microbiota and oncogenesis. 

4. Dysbiosis and the Urothelial System 
4.1. Discovering the Urinary Tract Microbiota 

Conventional bacterial-dependent detection techniques established the long-held 
dogma of the proximal urinary tract as being ‘sterile’ [25]. It was speculated that the urine 
of a healthy subject is sterile, and in turn, identifying pathogens using standard bacterial 
culture techniques usually lead to the diagnosis of a UTI [26]. To date, the diagnosis of 
UTI remains ill-defined and ambiguous, creating room for unnecessary antibiotic overuse 
[27]. In the clinical setting, standard culture methods are mostly targeted to support the 
growth and propagation of specific organisms known to cause UTIs such as Escherichia 
coli, Staphylococcus saprophyticus, and Enterococcus faecalis, overlooking other slow-
growing organisms such as Lactobacillus and Corynebacterium [28]. We now know, how-
ever, that there are immensely more bacterial populations inhabiting the urinary tract 
than that we can culture in the laboratory setting. More advanced techniques such as ex-
panded quantitative urine culture (EQUC) and culture-independent detection techniques 
relying on molecular sequencing technologies such as 16S ribosomal RNA sequencing 
could detect bacterial genetic material [25,29]. These improved technologies, though still 
underestimating the microbial complexity, have identified more of the overlooked organ-
isms as being part of what is now known as the microbiota of the urinary tract [25]. 

Figure 2. Effect of PPI on gut microbiota and oncogenesis.

4. Dysbiosis and the Urothelial System
4.1. Discovering the Urinary Tract Microbiota

Conventional bacterial-dependent detection techniques established the long-held
dogma of the proximal urinary tract as being ‘sterile’ [25]. It was speculated that the urine
of a healthy subject is sterile, and in turn, identifying pathogens using standard bacterial
culture techniques usually lead to the diagnosis of a UTI [26]. To date, the diagnosis of UTI
remains ill-defined and ambiguous, creating room for unnecessary antibiotic overuse [27].
In the clinical setting, standard culture methods are mostly targeted to support the growth
and propagation of specific organisms known to cause UTIs such as Escherichia coli,
Staphylococcus saprophyticus, and Enterococcus faecalis, overlooking other slow-growing
organisms such as Lactobacillus and Corynebacterium [28]. We now know, however, that
there are immensely more bacterial populations inhabiting the urinary tract than that we can
culture in the laboratory setting. More advanced techniques such as expanded quantitative
urine culture (EQUC) and culture-independent detection techniques relying on molecular
sequencing technologies such as 16S ribosomal RNA sequencing could detect bacterial
genetic material [25,29]. These improved technologies, though still underestimating the
microbial complexity, have identified more of the overlooked organisms as being part of
what is now known as the microbiota of the urinary tract [25].

4.2. The Significance of the Urinary Microbiome in Disease

Ongoing studies of the microbial composition of the urinary microbiota have demon-
strated significant differences between healthy patients and those with urological disease.
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Important microbial alterations were reported in patients with urological diseases, such as
interstitial cystitis, urgency urinary incontinence, and kidney stones [30]. In patients with
interstitial cystitis, urine studies demonstrated decreased bacterial diversity and increased
Lactobacillus relative abundance compared with healthy controls [31]. Patients with ur-
gency urinary incontinence were found to have a decreased urinary microbiome diversity as
well with an increased abundance of Aerococcus and Gardnerella species [30,32]. Moreover,
urinary microbiota dysbiosis was found to have a significant impact on the pathophysi-
ology of prostate disease [33]. Yu et al. found differences in the microbial composition of
expressed-prostatic-secretions (EPS) in patients with benign prostate hyperplasia (BPH)
compared with those with prostate cancer, BPH patients having increased abundance of
Eubacterium and Defluviicoccus genera and reduced abundance of Bacteroides and Firmi-
cutes. These results suggested that chronic inflammation and proinflammatory cytokines
could be propagated by the presence of specific bacteria and that the urinary microbiota
has an important relevance in prostate disease [33]. Additionally, Bossa et al. concluded
that UTI development was preceded by alterations in the urinary microbiome which were
modulated after treatment [34]. Additionally, there exists a remarkable difference in the
urinary microbiota composition between males and females owing to their anatomical and
hormonal differences, which might explain differential disease susceptibility between the
two sexes [35]. For example, Ghani et al. demonstrated an increased incidence of kidney
stones in males compared with females [36].

4.3. The Urinary Microbiome and Bladder Cancer

Bladder cancer is one of the most common malignancies diagnosed, with an estimated
incidence of 400,000 cases and more than 160,000 reported deaths per year. Its morbidity
and mortality continue to increase due to external risk factors, such as tobacco smoke,
and environmental exposures [37]. Apart from the genetic component, the etiology of
bladder cancer remains multifaceted and unclear [38]. Current efforts on bladder cancer
research have recognized the urinary microbiome as an important factor in the development
of bladder cancer and its therapeutic response to treatement [39]. A study by Wu et al.
has characterized the urinary microbiome profile in bladder cancer patients showing
higher abundances of Acinetobacter and Anaerococcus genera compared with the non-cancer
group [38]. Roperto et al. have also shown Acinetobacter’s abundance in the urine of cattle
with bladder cancer [40]. It has also been reported that Stretococcus spp. and Fusobacterium
genus were both more abundant in the bladder cancer group compared with the non-cancer
group [38]. Xu et al. reported mirroring results with Streptococcus enrichment in the urine
of urothelial carcinoma patients compared with healthy patients in which Streptococcus
abundance was near zero [41]. Bucevic Popovic et al. also compared urine microbial profiles
and found an increased abundance of the genus Fusobacterium in the bladder cancer
group [42]. Immune checkpoint modulators, particularly PD-L1 inhibitors, are becoming
a cornerstone in the management of local and metastatic urothelial carcinoma [39]. As
mentioned in previous sections, more studies are emerging on the association between
gut microbial composition and response to anti-PD-1/PDL1 [38]. A better understanding
of the link between the urinary microbiota and bladder cancer could provide important
directions for future research into targeting the urinary microbiota to enhance bladder
cancer therapeutic response to immunotherapy [39].

4.4. Progression of Kidney Injury in Diabetic Nephropathy

Diabetic nephropathy (DN) is a common serious microvascular complication of di-
abetes mellitus (DM) and is associated with significantly increased morbidity and mor-
tality [43]. Around one third of DM patients develop DN, which is a leading cause of
end-stage renal disease (ESRD) [44]. Five stages (Stage I to V) of DN exist and are catego-
rized based on glomerular filtration rate (GFR) and albuminuria [44]. Most of the time, DN
is diagnosed once patients have already progressed to stage III or IV, which is considered
irreversible [45]. Therefore, it is crucial to identify significant risk factors involved in the
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pathogenesis and progression of DN to prevent renal fibrosis, the final severe complication
of DN [46].

The pathogenesis of DN is multifactorial, including renal hemodynamic changes,
oxidative stress, hypoxia, inflammation, and overactivation of the renin–angiotensin–
aldosterone system (RAAS) [47]. Several clinical studies have revealed that intensive
glycemic control, inhibition of RAAS activation, and anti-inflammation have helped delay
but not completely suppress the progression of DN [48]. Hence, it is necessary to identify
other additional risk factors that play a fundamental role in DN progression.

Recent studies have revealed an association between gut microbiota and the kidney;
it was shown that the dysbiosis in gut microbiota participated in DN progression [49]. In
fact, the relation between gut microbiota and kidney constitutes a vicious cycle [49]. On
one hand, the dysbiosis of the gut microbiota aggravates chronic inflammation further
promoting kidney injury, and on the other hand, the resulting kidney injury contributes to
gut milieu modification and eventually dysbiosis [46].

Furthermore, the gut bacterial dysbiosis triggers the release of lipopolysaccharides
and the buildup of uremic toxins, further exacerbating kidney injury [46]. In addition to the
latter, the gut bacterial community plays an important role in carbohydrate fermentation
and the production of short chain fatty acids (SCFA), mainly acetate, propionate, and
butyrate [50]. Other than the essential role of SCFAs in signaling and energy metabolism,
SCFAs have been shown to promote immune response, regulate inflammatory reactions,
and enhance insulin sensitivity, thus further lowering blood glucose level [50,51]. In DN
patients, there is documented evidence of a notable decrease in the proportion of butyrate-
producing bacteria with an increase in some opportunistic pathogens [52]. Butyrate is
one of the most effective SCFAs implicated in DN [51]. Cai et al. reported a positive
correlation of serum butyrate level with estimated glomerular filtration rate (eGFR) and
a negative correlation with urine albumin-to-creatinine ratio (UACR) [52]. Additionally,
butyrate increases the level of glucose transporter-4 (GLUT-4), the insulin-regulated glucose
uptake transporter in skeletal muscle and adipose tissue, reducing serum glucose level [53].
Butyrate was also speculated to induce autophagy through AMP-activated protein kinase
(AMPK)/mammalian target of rapamycin (mTOR) pathway, thus halting the progression
of DN [52]. This suggests that butyrate with its diverse roles may serve as a potential
therapy for prevention of DN progression [54]. To study the therapeutic role of butyrate,
treatment modalities such as fecal microbial transplantation (FMT) were attempted; they
have been shown to increase the level of fecal butyrate and alleviate renal injury. However,
FMT was not cleared as safe enough to be used in clinical practice due to its imposed risk
of severe bacteremia [51]. Additionally, several therapies such as probiotics and prebiotics
intervene with intestinal flora composition and provide favorable effects in patients with
DM by attenuating insulin resistance; however, there are also no conclusive results for their
clinical application [48,50].

Moreover, multiple other factors can intervene in gut microbiota dysbiosis, eventu-
ally worsening DN progression. Diet is an essential contributor in which, for example,
a potassium-rich diet can further decrease SCFA level and drive toward uremia [46,51]. In
addition, medications such as anti-glycemic, anti-hypertensive, and anti-lipemic drugs
modify gut microbiome and contribute to the pathogenesis of renal injury [49]. All the
above findings, summarized in Figure 3, emphasize the relation between the gut and the
kidney in hopes of establishing a promising therapy to arrest DN progression.
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4.5. Effect of Dysbiosis on Kidney Stones That Leads up to Renal Cell Carcinoma (RCC)

Urolithiasis or kidney stone disease (KSD) is one of the most frequent urological
pathologies, with its incidence reaching up to 20% worldwide [55]. It is a highly recurrent
condition that affects all age groups and alters patients’ quality of life with a resulting
economic burden [55,56]. The main initiator of KSD is the super saturation of urine with
calcium and oxalate, causing the formation of stones [57]. The etiology of KSD is multi-
factorial, comprising genetic variations, dietary habits, socioeconomic status, antibiotics
supplementation, and metabolic factors [57]. Recent studies have reported an association
between microbiota in the gut and urinary tract and the development of kidney stones, and
it was presumed that the dysbiosis in the latter microbiota contributed to the pathogenesis
of KSD [58].

In KSD, dysbiosis in gut and urinary tract microbiome can be explained by the de-
crease in probiotic or favorable microbiota in addition to the abundance of pathogenic
microbiota [59]. There is an evident difference in the diversity of microbiota in KSD patients
compared with healthy controls [56]. In KSD patients, pro-inflammatory bacteria are the
dominant microbes, compromising the gut barrier and modifying its permeability [59]. In
fact, the reduction in the level of F. prausnitziis and Bifidobacterium in KSD patients results
in decreased production of butyrate, a short-chain fatty acid (SCFA), leading to a marked
inflammatory state, an environment favoring kidney stone formation [56]. In addition,
the increase in the level of Escherichia-Shigella leads to the depletion of citrate levels and
aggravates the development of kidney stones [56]. This dysbiosis and imbalance in the
different populations of bacteria is a main factor in the pathogenesis of urolithiasis as seen
in Figure 3 [60].

Moreover, several studies on KSD explored the role of Oxalobacter formigenes, a gram-
negative anaerobic bacterium with oxalate-degrading property [58]. This property is
due to the expression of two enzymes, Oxalyl coenzyme A decarboxylase and Formyl
coenzyme A decarboxylase [59]. The human body lacks the ability to degrade oxalate;
thus, bacteria are essential for oxalate metabolism and the prevention of oxalate stones
formation [61]. Oxalobacter can reduce the excretion of oxalate in urine and can prompt the
absorption of oxalate based on the oxalate gradient across the epithelium [56]. This was
presumed to help further suppress the development of KSD [56]. In fact, the depletion of
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Oxalobacter formigenes, in the feces of KSD patients or in patients of high lithogenic risk,
provided evidence to the potential contribution of this bacterium in preventing kidney
stone formation [62]. However, Ticinesi et al. reported the isolation of O. formigenes from
the feces of recurrent kidney stone formers; thus, the role of O. formigenes in lithogenesis
has not been elusive [62]. Additionally, the probiotic administration of Oxalobacter or
other oxalate-degrading species did not significantly decrease the excretion of oxalate in
urine even though the bacterium was isolated from feces of subjected patients as proof
of its presence in gut microbiota [56,58]. Results from studies on O. formigenes are still
controversial, and no clear consensus on the correlation between this bacterium and KSD
has been established [58].

As stated previously, dysbiosis and imbalance in the gut and urinary tract microbiome
is a key factor in KSD that leads to a higher incidence of kidney stones occurrence [56]. The
latter is concerning because there has been a strong association between kidney stones and
kidney cancers [56]. The prevalence of both renal cell carcinoma (RCC), the most common
type of renal parenchymal tumor and transitional cell carcinoma (TCC), the malignancy of
the upper urinary tract involving the renal pelvis and ureter, has been gradually increasing
over the years [56]. Of importance, several studies revealed that chronic inflammation
and infection resulting from KSD could alter the proliferation of urothelial cells, leading to
tumor development [63]. According to a study carried out by Chow et al., kidney stone
patients were at a higher risk of developing renal pelvis, bladder, or ureter malignancies
because of marked irritation and infection since kidney stones form in the same location
where tumors originate [63]. Similarly, the Netherlands Cohort Study (NLCS) demonstrated
that compared with patients with no history of kidney stones, those with kidney stones
were at an increased risk of developing TCC and papillary RCC but not clear-cell RCC [63].
Additionally, diagnosis of kidney stones before the age of 40 is associated with a higher
risk of RCC and TCC than diagnosis at a later age [63]. Nonetheless, the association
between kidney stones and malignancy can be ascribed to their common risk factors such as
hypertension, DM, smoking, obesity, and dietary factors [56]. Accordingly, it is important
to highlight significant factors in the pathogenesis of kidney stones in aim of preven-
ting malignancy.

To prevent kidney stones and hence kidney cancers, several promoting risk factors
can be controlled such as diet [58]. Nutritional imbalances associated with high lithogenic
risk include diets high in salt, animal protein, and oxalate, and low in calcium, fruit, and
vegetables, as well as poor hydration [58]. The high concentration of salt leads to gut
microbial dysbiosis. It leads to a depletion of Lactobacillus, Akkermansia, and Bifidobacterium,
resulting in increased urine calcium and decreased urine citrate, further elevating the risk
of nephrolithiasis [56,58]. Additionally, the high consumption of animal protein promotes
the increase in pathologic bacteria such as Escherichia-Shigella and the depletion of SCFA-
producing bacteria such as Faecalibacterium; this imbalance in microbiota raises the risk for
kidney stone formation [56,58]. On the other hand, low calcium, fruit, and vegetables and
poor hydration contribute to the depletion of SCFA-producing, lactic acid-producing, and
oxalate-degrading species, which causes a decrease in urinary volume and an increase in
urine calcium and oxalate levels [56,58]. In short, controlling dietary habits is considered
a possible nonpharmacologic management for dysbiosis intended to halt the development
of kidney stones and the consequent possible cancer [56,58].

4.6. The Vaginal Microbiota

Notwithstanding the myriad studies exploring the gut microbiota, the vagina is an-
other high-volume microbiota organ. The vaginal microbiota comprises around 9% of
the total human microbiota and is a central component of reproductive health and dis-
ease [64,65]. For decades, the normal vaginal flora has been thought to comprise predomi-
nantly lactobacilli; however, more advanced non-culture-based modern techniques have
exposed a more diverse composition of the healthy vaginal flora across females of different
origins, which contains more than 50 non-pathogenic organisms. This flora is a dynamic
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microenvironment that is affected by a female’s menstrual cycle, sexual activity, gestational
status, and contraceptive use [65]. Additionally, studies have shown that certain vaginal
microbiota profiles dictate genitourinary health and disease [66]. For example, the vagina
is a potential niche for pathogenic E. coli colonization, and studies have found E. coli
isolates in the vaginal introituses of women who suffer recurrent UTIs compared with
healthy controls [67]. Moreover, urinary E. coli were found to invade vaginal cells and
colonize the vagina after a UTI, seeding back into the urinary bladder to trigger ascend-
ing infections and recurrent UTIs [68]. Studies have highlighted the protective function
of vaginal lactobacilli with lactobacilli-dominant microbiota conferring less risk for UTI
development [69]. Emerging studies are using probiotics tackling vaginal lactobacilli to
decrease the incidence of post-op UTIs [70]. The gut, vaginal, and urinary microbiomes
have proved to be a joint trifecta implicated in both health and disease states and need to
be profiled and characterized to exploit novel findings.

5. Novel Therapeutic Approaches in Management of Urological Disease

Given the gut microbiota’s role in UTI development and prevention, different studies
were directed to modulate its composition as a novel strategy of management. In a ran-
domized, double-blinded pilot study, Koradia et al. concluded that supplementation with
lactobacilli probiotics and cranberry extract decreased UTI recurrence in a population of
premenopausal women compared with control [71]. Tariq et al. stated that fecal microbiota
transplantation performed for the management of C. difficile infection also decreased UTI
occurrence, which was also reported in a study by Wang et al. [72,73]. Newer studies are
emerging on the modulation of the urinary microbiota as an approach in management of
urological disease. Murphy et al. demonstrated a potential intervention in the treatment
of chronic prostatitis and chronic pelvic pain syndrome by performing intraurethral in-
stillation of the commensal Staphylococcus epidermidis isolated from prostate secretions in
healthy controls. It was reported that this intervention could decrease prostatitis-related
symptoms [74].

5.1. Curcumin
5.1.1. Curcumin’s Anti-Inflammatory Effects and the Gut Microbiota

Given the growing body of evidence that the human gut microbiota could represent
a determinant in disease development and progression, research has been instituted to
study its connections with different inflammatory and non-inflammatory conditions. In
fact, gut microbial imbalances have been observed in several inflammatory conditions
such as chronic kidney disease (CKD) and obesity [75,76]. One possible strategy to control
disease outcomes is to alter the gut microbial profile through the use of dietary supple-
ments, among which curcumin has been most studied [75]. Curcumin (CUR) is a natural
polyphenolic compound and the active ingredient in the Indian dietary spice turmeric
(Curcuma longa), which also holds the curcuminoids demethoxicurcumin and bisdemetoxi-
curcumin [77]. Curcumin has long been studied for its anti-inflammatory, anti-oxidative,
anti-microbial, and anti-proliferative potential, and its supplementation has been proven
to significantly alter the gut microbiota composition [75]. Through its ability to increase
the expression of intestinal alkaline phosphatase, decrease intestinal permeability, and
decrease the production of inflammatory cytokines, curcumin can potentially change the
gut’s microbial communities [78]. Several studies and clinical trials (NCT04413266) are on
the rise to classify curcumin as a promising adjunct in the treatment of CKD and its com-
plications [75,77]. Pivari et al., through gut microbiota genome sequencing and analysis,
found a significant shift to Lachnospiraceae, Prevotellaceae, and Ruminococcaceae family
abundance in CKD patients supplemented with curcumin for six months, concluding that
the latter’s gut composition shifted towards that of the healthy controls [75]. In addition,
curcumin’s anti-inflammatory properties have been reported in multiple in-vitro studies.
Pivari et al. proved that curcumin’s anti-inflammatory action is attributed to a decrease
in pro-inflammatory mediators (CCL-2, IFN-gamma, and IL-4) [75], and Alvarenga et al.
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also reported a decrease in inflammatory cytokines by direct inhibition of nuclear factor
kappa-B (NF-kB) [79].

5.1.2. Curcumin, an ‘Immunotherapy Supplement’

Similarly, recent studies have highlighted curcumin’s anti-proliferative and hence
anti-tumorigenic effects through its actions on different carcinogenic biochemical and
signaling pathways [7]. It has been reported to inhibit cell cycle proliferation, tumor
invasion, and angiogenesis and to promote apoptosis through induction of anti-apoptotic
proteins in different cancers, particularly prostate, breast, and colon cancer [80,81]. These
properties have also been demonstrated in multiple clinical trials in patients with prostate
cancer (NCT02724618), pancreatic cancer (NCT02724202), and other cancers [81]. Newer
studies are on the rise showing the effects of curcumin on signaling pathways implicated
in RCC progression. Gong et al. [7] reported that it suppresses the AKT/mTOR pathway,
leading to apoptosis and autophagy in RCC. In addition, Xu et al. demonstrated that
curcumin inhibited the viability of clear cell renal cell carcinoma cells through the NF-kB
and AKT signaling pathways. Thus, with the deeper understanding of the molecular
biology and biochemical pathways of RCC, curcumin proves to have a direct role in
modulating RCC oncogenesis, and hence its use has been reported [82]. Contrary to CKD,
meager data are available on the causality rather than just the association between the gut
microbiota and mRCC oncogenesis. However, and as discussed above, select commensals
have been implicated in ICI response and non-response [9,11], and translating this rather
equivocal knowledge into using microbiota modulators in mRCC management is not an
easy task. Given the notable effect curcumin has on the gut microbiome composition,
further endeavors must be directed to analyze a bigger mRCC patient population on ICIs
with adjuvant curcumin supplementation. This combination can change the therapeutic
landscape of mRCC, making curcumin an accessible, non-toxic, dietary ‘immunotherapy
supplement’ with immense potential in oncology.

5.2. Effect of Fecal Microbiome Transplant

Recent fecal microbiome transplant (FMT) studies highlighted the effects of FMT on
changing the composition and diversity of the gut microbiota in treatment non-responders.
In myeloma, Baruch et al. showed a response in treatment refractory patients after FMT
from responders and reintroduction of nivolumab (anti-PD1 immunotherapy) [83]. The
safety and feasibility of this practice were also highlighted. A similar study by Davar et al.
also showed the modulatory effect of FMT in melanoma patients on pembrolizumab [84].
Additionally, several clinical trials were conducted to investigate the role of FMT in cancer
therapy (Table 2).

The role and the mechanism of gut microbiota effect on immune therapy response and
outcome is not well understood. It is postulated that dysbiosis could be associated with
host genetic mutations leading to alteration in the immune system. Similarly, antibiotics
and PPIs might alter the patient immunity, leading to differences in response to therapy. It
is known that Treg cells suppress lymphocytes. This became relevant when some favorable
bacteria were found to be associated with decreased peripheral Treg levels, thereby halting
the suppression of the lymphocyte. These low levels of Treg seemed to correlate with
good response to immunotherapy, further drawing an association between bacteria and
response to treatment [85]. The communication between gut microbiota and immuno-
logical response could possibly be mediated by products of bacteria metabolism [85]. It
is no secret that gut organisms are associated with chronic inflammation and release of
cytokines and chemokines. Thus, an enhanced infiltration of dendritic cells, TH1 cells,
and CD8+ in the tumor microenvironment is, to date, the leading mechanism of bacterial
immunomodulation [23].
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Table 2. This table lists clinical trials investigating the role of FMT in cancer therapy. (dMMR: Deficient, Mismatch Repair, FMT: Fecal Microbial Transplant, PD-1:
Programmed Cell Death-1).

Clinical Trial
Identifier
/Sponsor

Source of FMT Intervention Type of Cancer Antibiotics Recruitment
Status

Objective Response
Rate

Long Term
Clinical Benefit

Adverse Events Related
to Treatment

Davar et al. [84] Melanoma PD-1
responder

200 mg IV Pembrolizumab
over 30 min on Day 1 of cycle
(same day as the FMT). Total
of 3 cycles done.

PD-1 secondary
refractory melanoma Not given Active, not

recruiting 20% 40% of patients with
advanced melanoma

Grade 3 treatment related
adverse events (2 cases of
fatigue and 1 peripheral
motor neuropathy), no grade
4/5 adverse events reported

Baruch et al. [83] Melanoma PD-1
responder

FMT via colonoscopy
(protocol day 0) then FMT
packed into capsules given
(Day 1 and 12), repeated
every 2 weeks along
withNivolumab 240 mg.

PD-1 primary and
secondary refractory
melanoma

Pre-FMT
vancomycin and
neomycin

Unknown 30% Not reported
No moderate to severe
treatment-related adverse
event (grade 2–4)

NCT04729322 dMMR PD-1
responder

FMT via colonoscopy (Day
5 of cycle 1) then FMT
capsules on days 1, 8 and 15.
FMT capsules given on day
1 every 3 weeks for cycles
2 and onward.

Metastatic colon
cancer

Pre-FMT
Metronidazole,
vancomycin,
neomycin

Active,
recruiting Not reported Not reported Not reported

NCT04130763

Donors with gut
microbiota profile
similar to PD-1
responders

FMT capsules for 1 week for
cycle 1 as induction.
FMT capsules for cycles 2 and
onward as maintenance.

GI cancer after
failure of
anti-PD-1 treatment

Not given Active,
recruiting Not reported Not reported Not reported

NCT03772899 Healthy donor
selected via protocol

FMT at least one week prior
to treatment with either
immunotherapy followed by
FMT along with Nivolumab
or Pembrolizumab
as maintenance

Unresectable or
metastatic cutaneous
melanoma (BRAF
wild type or mutant)

Not given Active, not
recruiting Not reported Not reported Not reported
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6. Conclusions

While there is emerging evidence on the microbiome’s relevance in urological health,
the extent of this association is still not compelling. There is still a need for considerable
research to characterize the microbiome in the urinary tract and establish specific causal
relationships among bacterial genera and associated conditions. The impact of this new
paradigm encompasses not only the pathophysiology of urological disease but also shifts
interest into a novel therapeutic armamentarium. The introduction of microbiome-targeting
interventions, such as probiotics, to restore urological eubiosis could reduce antibiotic
overuse and improve patient outcome.
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AB Antibiotics
AMPK/mTOR AMP-activated protein kinase/mammalian target of rapamycin
CKD chronic kidney disease
DN Diabetic Nephropathy
DM Diabetes Mellitus
CTLA-4 Cytotoxic T Lymphocyte-Associated Antigen 4
eGFR Estimated Glomerular Filtration Rate
ESRD End Stage Renal Disease
FMT Fecal Microbial Transplantation
GFR Glomerular Filtration Rate
GLUT-4 Glucose Transporter-4
ICI Immune Checkpoint Inhibitor
mRCC Metastatic Renal Cell Carcinoma
NLCS Netherlands Cohort Study
PFS Patient Progression-Free Survival
PD-1 Programmed Cell Death-1
PD-L1 Programmed Cell Death-Ligand 1
RCC Renal Cell Carcinoma
RAAS Renin-Angiotensin-Aldosterone System
RCC Renal Cell Carcinoma
SCFA Short Chain Fatty Acid
TCC Transitional Cell Carcinoma
UACR Urine Albumin to Creatinine Ratio
KSD Kidney Stone Disease
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