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Introduction
There is a growing body of literature 
that recognizes the importance of heart 
rate variability (HRV) as a marker for 
autonomic nervous system integrity. HRV 
analysis involves the computation of the 
time domain, frequency domain, and 
nonlinear metrics using interbeat interval 
data. The duration of data acquisition 
usually varies from 5 min (short‑term HRV) 
to 24 h (long‑term HRV). Debate continues 
regarding the optimal duration of HRV 
analysis. While short‑term HRV is routinely 
used across laboratories worldwide, it does 
not provide optimum information about 
physiological influences acting on a slow 
time scale, such as hormonal influences 
and circadian rhythm. Long‑term HRV 
recording requires Holter‑based or similar 
technology and may not be feasible for 
large‑volume data acquisition regarding the 
time and equipment costs involved.[1‑3]
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Abstract
Objectives: Ultra‑short heart rate variability (HRV) metrics represent autonomic tone parameters 
derived using small epochs of interbeat interval data. These measures have risen in popularity with the 
advent of wearable devices that can capture interbeat interval data using electrocardiography (ECG) or 
photoplethysmography. Autonomic neuropathy in diabetes mellitus (DM) is well established, wherein 
5‑min HRV is conventionally used. Ultra‑short measures have the potential to serve as markers of 
reduced autonomic tone in this patient population. Methods: Data of patients with Type I and Type 
II DM who had presented to our laboratory for autonomic neuropathy assessment were chosen for 
analysis. One‑minute and 2‑min epochs were chosen from 5 min of ECG data using standard software. 
Time domain, frequency domain, and nonlinear measures were computed from 1 to 2 min epochs, and 
reliability was compared with measures derived from 5‑min HRV using intraclass correlation coefficients 
(ICCs). Results: Data of 131 subjects (79 males, 52 females; mean age = 53.3 ± 12.16 years) were 
analyzed. All ultra‑short HRV measures derived from 1 min to 2 min data showed good to excellent 
reliability (median ICC values ranging from 0.83 to 0.94) when compared with 5‑min metrics. The 
notable exception was very low frequency (VLF) power, which showed poor reliability (median 
ICC = 0.43). Conclusions: Ultra‑short HRV metrics derived from 1 to 2 min epochs of ECG data 
can be reliably used as predictors of autonomic tone in patients with DM. VLF power is poorly 
reproducible in these small epochs, probably due to variability in respiratory rates. Our findings have 
implications for ultra‑short HRV estimation using short epochs of ECG data.
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Ultra‑short HRV metrics are being 
explored which analyze small epochs of 
interbeat interval data ranging from 30 
s to a few minutes. These metrics are 
of considerable interest in recent times 
since the rise of wearable technology and 
consumer‑based heart rate monitoring 
products have revolutionized domains of 
heart rate acquisition and analysis. It is very 
convenient and practical to acquire interbeat 
interval data using electrocardiography 
(ECG) or photoplethysmography (PPG) 
based technology omnipresent in wearables. 
Therefore, the utility of ultra‑short HRV 
indices is being explored in different 
clinical disorders as a marker of morbidity 
and disease progression.[4‑7]

Diabetes mellitus (DM) continues to be 
a disorder of global magnitude, with its 
incidence and prevalence rising steadily 
over the years.[8,9] Autonomic neuropathy 
is the hallmark of DM and evaluation of 
HRV can provide valuable information 
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on this disease. However, there are few, if any, reports of 
autonomic tone assessment using ultra‑short time epochs 
in this disorder.[10] Since there is immense potential for 
ultra‑short HRV indices in screening for autonomic 
neuropathy in this disorder, we undertook the present work 
to look at the reliability of these indices with respect to 
standard short‑term HRV (5 min) indices.

Methods
The study was approved by the institute ethics committee 
of our institution. Data of clinically diagnosed patients of 
DM who were referred to our department were chosen for 
the study. These patients were referred to the autonomic 
function laboratory of our department for assessment 
of autonomic neuropathy from the department of 
endocrinology and metabolism of our hospital.

All the patients had Lead II ECG data acquired for 5 min 
using a digital data acquisition system at our laboratory 
(Biopac MP 150® system, Biopac Systems Inc. USA). The 
data were acquired in the supine position after a supine rest 
of 10 min. All the patients were requested to refrain from 
tea/coffee on the day of the test and report to the laboratory 
2 h after a light meal. Lead II ECG was recorded in the 
supine position in a noise‑free, temperature‑controlled 
environment for 5 min using Acqknowledge® software 
version 4.4 (Biopac Systems Inc. USA).

HRV was assessed using LabChart Pro® software version 8 
(AD Instruments, Australia). Data were analyzed for 
5 min using the built in HRV analysis toolbox of the 
software. Data were visually inspected carefully to exclude 
any dataset with ectopics or movement artifacts. Time 
domain indices (standard deviation of normal‑to‑normal 
intervals [SDNN], root mean square of the standard 
deviation of interbeat intervals [RMSSD], percentage of 
interbeat intervals varying by more than 50 ms [pNN50]), 
frequency domain indices (total power, very low frequency 
[VLF] power, low frequency [LF] power, and high 
frequency [HF] power), and nonlinear measures (standard 
deviation [SD1], SD2, and SD1/SD2) were computed and 
tabulated. These indices have been described in detail 
previously.[11‑14]

For ultra‑short HRV analysis, ECG data were divided into 
epochs of 1 min and 2 min. Five‑minute ECG was divided 
into five epochs of 0–1st min, 1st–2nd min, 2nd–3rd min, 
3rd–4th min, and 4th–5th min each for 1 min epoch HRV 
analysis. Similarly, 5‑min ECG data were divided into four 
2‑min epochs of 0–2nd min, 1st–3rd min, 2nd–4th min, and 
3rd–5th min each for 2‑min epoch HRV analysis. The epochs 
were labeled as a1, b1, c1, d1, and e1 for 1‑min epochs 
and a2, b2, c2, and d2 for 2‑min epochs, respectively. 
The epochs were randomly chosen for each subject using 
validated Random Allocation Software by Saghaei.[15] The 
epochs were fed into the software as a1, b1, c1, d1, and e1 
for 1‑min epochs and a2, b2, c2, and d2 for 2‑min epochs, 

and a random list was generated. This list was used for 
choosing the epoch according to participant number. The 
same is elaborated in Figure 1.

HRV indices were tabulated using a spreadsheet program 
(Microsoft Excel® 2021, Microsoft Corp., Redmond, USA). 
Statistical analysis was done using MedCalc® Statistical 
Software version 19.2.6 (MedCalc Software BV, Ostend, 
127 Belgium). Intraclass correlation coefficient (ICC) was 
used to calculate the reliability of the measures derived 
from 1 to 2 min epochs when compared with 5‑min epochs. 
A two‑way random effects model was used to compute 
the ICC. Grading of reliability using ICC was done using 
criteria described previously.[16]

Results
Data of 169 subjects were assessed for eligibility. Since 
HRV metrics derived from 1 min data can be drastically 
affected by even a few ectopics, datasets with ectopics/
artifacts were excluded from the analysis. Finally, data 
of 131 subjects (79 males, 52 females; mean age = 53.3 
± 12.16 years) were included in the present study. Other 
descriptive statistics of the patients are shown in Table 1.

SDNN, RMSSD, and pNN50 were computed for the 
time domain and total power, VLF power, LF power, HF 
power, and LF/HF ratio were computed for the frequency 
domain. Nonlinear measures computed were SD1 and SD2. 
The median values of the parameters are summarized in 
Table 2. The repeatability of HRV metrics was assessed 
using ICC, using a two‑way random effects model. All 
the metrics demonstrated good to excellent repeatability 
as assessed using ICC values (median values ranging from 
0.83 to 0.95), except for poor repeatability shown by VLF 
power, since it had a median ICC value of 0.43 only. The 
ICC values are summarized in Table 3.

Discussion
HRV provides insight into the autonomic neuromodulation 
of the heart. It has been shown to be a predictor of 
morbidity and mortality in a wide spectrum of clinical 
conditions such as arrhythmias, atherosclerosis, heart 
failure, epilepsy, spinocerebellar ataxia, and DM.[17‑20] 
Indices derived using interbeat intervals are classified into 
the time domain, frequency domain, and nonlinear metrics. 
While time domain indices represent the variability of 
the interbeat interval series, frequency domain indices 
represent the energy/power distribution across different 

Table 1: Characteristics of the patient population
Parameter Males (n=79) Females (n=52)
Age (years) 53.94±12.14 52.33±12.22
Height (cm) 168.04±6.65 155.37±7.27
Weight (kg) 72.98±13.14 66.79±11.43
BMI (kg/m2) 25.80±4.17 27.67±4.44
BMI: Body mass index
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frequency bands such as VLF, LF, and HF.[12] Additional 
bands may be observed with long‑term (24 h) HRV data 
such as ultra‑LF. Long‑term HRV provides additional 
information regarding the influences of circadian rhythm, 
thermoregulatory influences, and the renin–angiotensin–
aldosterone system.[21]

Short‑term HRV requires a minimum duration of 5 min 
of noise‑ and artifact‑free data acquisition. ECG and 
PPG signals have been explored to compute the indices 
associated with short‑term HRV.[22] While short‑term 
HRV is widely used in autonomic function laboratories 
across the globe, the assessment requires the acquisition 
of 5 min of ECG data, which requires the subject to be 

reasonably still. The presence of artifacts makes it difficult 
to reliably detect interbeat intervals using R peaks. Even 
advanced software tools find it computationally challenging 
to correctly identify the fiducial points in the noisy ECG 
signal. Attempts are being made to circumvent this time 
cost of 5 min for signal acquisition and analysis.

The rise of wearable technology and smartphone‑based 
heart rate monitoring has opened up new dimensions for 
HRV analysis. Smartwatches have risen in popularity as 
consumer‑grade devices. Many smartwatches have ECG 
and PPG acquisition capabilities. In addition, multiple 
smartphone‑based applications are available to measure 
heart rate using inbuilt camera and flash.[23] Therefore, 

Table 2: Heart rate variability measures derived using 1‑min, 2‑min, and 5‑min epochs
Domain Metric 1 min 2 min 5 min
Time 
domain

SDNN 16.34 (9.87–24.20) 17.16 (11.72–28.09) 20.27 (13.29–29.86)
RMSSD 12.45 (6.90–20.41) 12.64 (6.51–22.71) 13.44 (7.02–22.38)
pNN50 0.00 (0.00–1.58) 0.00 (0.00–1.94) 0.00 (0.00–2.38)

Frequency 
domain

Total power 181.50 (55.14–466.33) 269.10 (93.73–665.93) 341.00 (140.600–743.90)
VLF power 38.37 (17.04–103.13) 108.9 (39.45–237.68) 150.60 (73.93–314.80)
LF power 47.78 (15.43–143.73) 66.04 (19.75–197.48) 69.17 (25.39–195.28)
HF power 49.50 (15.62–171.13) 61.94 (14.53–165.88) 60.69 (16.49–180.50)

Nonlinear SD1 8.86 (4.91–14.53) 8.96 (4.62–15.83) 9.51 (4.97–15.85)
SD2 19.87 (12.0–30.28) 22.42 (14.73–36.49) 26.65 (17.93–38.62)

Values expressed as median (IQR). SD1 and SD2 represent SD of Poincare plots along and perpendicular to the line of identity. SD: Standard 
deviation; SDNN: SD of normal‑to‑normal intervals; RMSSD: Root mean square of SD of interbeat intervals; pNN50: Percentage of interbeat 
intervals varying by more than 50 ms; LF: Low frequency; VLF: Very LF; HF: High frequency, IQR: Interquartile range

Figure 1: Division of electrocardiography (ECG) signal into epochs for analysis. Representative record for 5‑min Lead II ECG signal used for epoch‑based 
heart rate variability (HRV) analysis. X axis represents time and Y axis represents signal amplitude. The ECG signal was divided into 5 epochs of 1 min 
each (a1–e1, ranging from 0 to 1 min, 1 to 2 min, 2 to 3 min, 3 to 4 min, and 4 to 5 min, respectively; shown in upper panel). For the analysis of 2‑min epochs, 
the ECG signal was divided into epochs a2–d2 (ranging from 0 to 2 min, 1 to 3 min, 2 to 4 min, and 3 to 5 min, respectively; shown in lower panel). The 
dotted rectangle depicts a representative segment of ECG signal whose magnified view is shown in the dialogue box. These segment notations (a1–e1 
and a2–d2) were put into validated software for randomization and a series was generated for HRV analysis of the study subjects
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there is renewed interest in the exploration of ultra‑short 
HRV indices using such devices. Before the application of 
ultra‑short metrics in clinical use, the metrics need to be 
validated across the patient population.

Ultra‑short HRV measures have been explored in depth in 
the context of sports physiology. This is relevant because 
almost all outdoor sports require the participant to be in 
motion and therefore it is practical to extract short‑term 
segments of beat‑to‑beat interval data. Furthermore, HRV 
has shown immense potential as a predictor of performance 
in different sports. Therefore ultra‑short metrics have 
been explored in different sports such as cycling, futsal, 
basketball, soccer, rugby, and recovery from exercise and 
training.[24] Ultra‑short metrics are also being explored in 
different diseased states such as epilepsy,[5] obstructive sleep 
apnea,[6] risk stratification for myocardial infarction,[25] and 
myocarditis.[26]

However, we found only a single study wherein ultra‑short 
measures were evaluated in patients with DM.[10] 
Nussinovitch et al.[10] evaluated ultra‑short HRV measures 
(10 s and 1 min) in 48 patients with DM. They reported 
10 s recordings to be insufficient for commenting upon 
the reliability of SDNN, pNN50, and total power and 
recommended 1 min or longer for this assessment. The 
limitations of the report were the small sample size and 
lack of comments on geometric measures of HRV.

In the present work, we had a reasonably larger sample size 
(n = 131) and evaluated HRV metrics derived from 1‑min 
as well as 2‑min epochs chosen randomly. All the HRV 
metrics showed good to excellent reliability for the subjects 
except for VLF power (ICC = 0.43). This is consistent 

with the previous literature. The poor repeatability of VLF 
power can be attributed to the differences in respiratory 
rates across different visits.

VLF power is primarily driven by the respiratory rhythm.[27] 
The respiratory rate of the patients in the present work was 
spontaneous and therefore may be the likely mechanism for 
the variation in VLF power across different small epochs 
of 1 and 2 min. In addition, since VLF frequency is on 
the lower side, small epochs may not capture an adequate 
number of cycles for spectral analysis.[28] Metronomic/paced 
breathing may have produced consistent responses in VLF 
power with an improvement in reliability. However, there 
are conflicting reports regarding the use of metronomic 
or paced breathing for HRV assessment. Different groups 
have used spontaneous breathing for HRV assessment and 
have concluded that spontaneous breathing protocol leads 
to better reliability of blood pressure values.[29] However, 
some reports differ in this context and recommend used of 
paced breathing for better results.[30] All data in the present 
study were recorded under spontaneous breathing protocol. 
Based on our data, we can conclude that VLF may not be a 
reliable index for ultra‑short HRV metrics.

Conclusions
Ultra‑short HRV indices derived using 1 min and 2 min 
epochs reveal good to excellent reliability in patients with 
DM, except for VLF power. These indices can be used as 
a screening tool for the presence of autonomic neuropathy 
in addition to standard indices derived from 5‑min ECG 
data. The poor reliability of VLF power is probably due 
to the variation in respiratory rate across different epochs. 
Furthermore, the number of cycles of respiration captured 
in small epochs may be too small for spectral analysis 
purposes. This is an avenue that can be explored in future 
work.
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