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Molecular switches of the κ opioid 
receptor triggered by 6′-GNTI and 
5′-GNTI
Jianxin Cheng1, Xianqiang Sun2, Weihua Li1, Guixia Liu1, Yaoquan Tu2 & Yun Tang1

The κ opioid receptor (κOR) is a member of G-protein-coupled receptors, and is considered as a 
promising drug target for treating neurological diseases. κOR selective 6′-GNTI was proved to be 
a G-protein biased agonist, whereas 5′-GNTI acts as an antagonist. To investigate the molecular 
mechanism of how these two ligands induce different behaviors of the receptor, we built two systems 
containing the 5′-GNTI-κOR complex and the 6′-GNTI-κOR complex, respectively, and performed 
molecular dynamics simulations of the two systems. We observe that transmembrane (TM) helix 
6 of the κOR rotates about 4.6o on average in the κOR-6′-GNTI complex. Detailed analyses of the 
simulation results indicate that E2976.58 and I2946.55 play crucial roles in the rotation of TM6. In the 
simulation of the κOR-5′-GNTI system, it is revealed that 5′-GNTI can stabilize TM6 in the inactive state 
form. In addition, the kink of TM7 is stabilized by a hydrogen bond between S3247.47 and the residue 
V691.42 on TM1.

Opioid receptors (ORs) are important members of G-protein-coupled receptors (GPCRs) and the main targets 
for analgesics1–3. There are three subtypes of ORs, namely - the μOR, δOR and κOR. Among the three subtypes, 
the κOR is a promising drug target for alleviating pain with a possible lower abuse potential4–6. As a result, the 
κOR subtype represents an excellent target to treat neurological disorders7–13. Selective agonists targeting the κOR 
have been developed to treat related disorders14, and antagonists selectively targeting the κOR have proved to be 
effective on curing depressant and anxiolytic diseases15–18.

Among all the known ligands targeting the κOR, 5′ -GNTI (5′ -Guanidinonaltrindole) and 6′ -GNTI 
(6′ -Guanidinonaltrindole) are an interesting pair (Fig. 1). These two compounds are derivatives of Naltrindole 
(NTI), a highly potent δOR-selective antagonist19–20. The difference between 5′ -GNTI and 6′ -GNTI is only in 
the substitution site of the guanidinium group. However, these two compounds lead to distinct behaviors of the 
κOR. 5′ -GNTI works as an antagonist to block or dampen the activation of the κOR21–22, whereas 6′ -GNTI has 
proved to be a G-protein biased agonist to trigger the activation of the receptor23–24. It has been verified that the 
guanidinium group in 5′ -GNTI can interact with the residue E2976.58 (Ballesteros/Weinstein numbering25) on 
transmembrane helix (TM) 620. It is interesting that the guanidinium group of 6′ -GNTI has also been suggested to 
be interacting with E2976.58. Upon the binding of 6′ -GNTI to the κOR, a rotation of TM6 of the receptor is likely 
triggered which leads to the subsequent activation behaviors of the receptor. Unfortunately, all these interaction 
patterns and the related activation mechanisms were surmised mostly based on homology models, which largely 
limit our understanding on the behaviors of the κOR.

Thanks to Stevens and his co-workers, the crystal structure of the human κOR in complex with its selective 
antagonist JDTic26 and the crystal structures of the δOR were reported recently27–28. These structures provide us 
atomic structural information on opioid receptors29–30. Unfortunately, all these crystal structures were obtained 
with the receptors in the inactive states. Furthermore, for new analgesics design, it is indispensable for us to exhaus-
tively grasp the opioid activation mechanisms31. Therefore, to further study the behaviors of the κOR induced by 
different kinds of ligands, large amount of work still needs to be done.

To explicate the activation mechanism of the κOR triggered by 6′ -GNTI, as well as the interactions between the 
antagonist 5′ -GNTI and the κOR, we carried out sub-microsecond unbiased molecular dynamics (MD) simulations 
of systems with the κOR in the apo state and with 5′ -GNTI-κOR and 6′ -GNTI-κOR complexes, respectively, to 
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provide active and inactive models of the GPCR based on the action of the so-called “molecular switches“32–33 
buried in the receptor. TM6 of the κOR was observed to rotate about 4.6o on average in the κOR-6′ -GNTI complex. 
Helices TM7 and TM2 highly responded to the activation signal in 6′ -GNTI systems too. In the simulation of the 
κOR-5′ -GNTI system, 5′ -GNTI could stabilize TM6 in the inactive state form.

Results
Initial interaction modes obtained from molecular docking. The docking poses of 6′ -GNTI and 
5′ -GNTI are almost identical with each other as shown in Fig. 2. Strong electrostatic interaction is formed between 
the protonated nitrogen on the heterocyclic ring and D1383.32 in each complex. The phenolic hydroxyl group of 
both ligands interacts with H2916.52 bridged by two water molecules and the cyclopropyl group interacts with 
W2876.48. Meanwhile, Y1393.33 and Y3207.43 also contribute to the stabilization of the two ligands at the orthosteric 
site. Because of the difference in the substitution site of the guanidinium group in 6′ -GNTI and 5′ -GNTI, different 
interaction patens were observed when the two ligands bind to the κOR. The guanidinium group of 5′ -GNTI is 
located in the cavity formed by the residues on TM6 and TM7 and forms three hydrogen bonds with E2976.58, 
whereas the guanidinium group of 6′ -GNTI is positioned in a cavity formed by the residues on TM5 and TM6 
and forms only one hydrogen bond with the residue E2976.58. In addition, the docking poses of the two GNTIs are 
almost identical with the conformation of NTI adopted in the crystal structure of the NTI-δOR complex. With the 
structures of 5′ -GNTI or 6′ -GNTI in the orthosteric pocket of the κOR and the κOR in the apo state, we built three 
systems, 5′ -GNTI-κOR, 6′ -GNTI-κOR, and the κOR in the apo state, to be used for the following simulations.

Overview of the MD simulation results. In our simulations, the systems reached the equilibrium at about 
100 ns as indicated from the root mean square deviation (RMSD) values in the simulations (Fig. 3A). The RMSD 
values of the κOR with respect to its crystal structure range from 2.0 to 3.6 Å (Fig. 3A). The ligands undergo com-
parably small conformational changes as indicated by their RMSD values, which range from 0.2 to 1.2 Å (Fig. S1). 
In addition, we also calculated the root mean square fluctuations (RMSFs) of the systems to analyze the fluctuations 
of the receptor. The loop section of the receptor exhibits a much larger fluctuation as compared to the conserved 
TM section (Fig. 3B). IL (intracellular loop) 2, EL (extracellular loop) 2 and IL3, show significant fluctuations, 
which are related to the fact that there are many residues on these three loops. The large fluctuation of the loop 
section reflects the significant conformational changes of the residues adjacent to these loops.

Ligand cluster analysis was performed on the two 600 ns GNTIs-κOR systems, and two sub-state conforma-
tions were obtained under a 0.2 Å RMSD cut-off (Table 1). The main diversity between the two clusters was the 
tilt direction of indole ring of GNTIs (Fig. S2). One direction was outward if viewed from the extracellular side, 
whereas the other one was inward. Interestingly, the tilt direction of indole ring was inward among Cluster 1 of 
6′ -GNTI-κOR system, while that was outward in 600 ns 5′ -GNTI-κOR system. Meanwhile, the population of 
Cluster 1 ran up to a half in 6′ -GNTI-κOR system, whereas that was in the majority, amount to 81.4% in 600 ns 
5′ -GNTI-κOR complexes. Given the corresponding changes of guanidinium group (Fig. S2) and their important 
roles in GNTIs binding, we think the above-mentioned differences were mainly due to the diverse performances 
of guanidinium group between the two GNTIs-κOR systems.

Movements of the transmembrane helices. Comparisons of GPCR crystal structures in the inactive 
and active states have revealed several conserved switches to explain the inhibition or activation mechanisms of 
GPCRs34. One of the conserved switches is the large-scale rearrangements of the TM helices, including the rotation 

Figure 1. Two-dimensional structure formula of the agonist 6′-GNTI, antagonist 5′-GNTI, Naltrindole 
and JDTic. 
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Figure 2. Docking poses. Alignment of the docking poses (A) and key residues (B/C) in the GNTI-κOR 
complexes. The backbones of the ligands were in green (6′ -GNTI) and pink (5′ -GNTI). The hydrogen bond 
interactions were shown by yellow dot lines.

Figure 3. Overview of the MD simulations. (A) RMSD values of the protein in three 600 ns systems. (B) 
RMSF values for all the residues in the three systems calculated from 550 ns to 600 ns.

5′-GNTI (600 ns) 6′-GNTI 5′-GNTI (additional)

Percentage RMSD Percentage RMSD Percentage RMSD

Cluster 1 81.4 0.74 50.4 1.03 73.2 0.59

Cluster 2 10.7 0.54 45.4 0.83 19.4 0.43

Total 92.1 95.8 92.6

Table 1.  Percentage and average RMSD in angstroms of 5′-GNTI and 6′-GNTI that compose the clusters.
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of TM6, the movement of TM5, the slight rotation and upward movement of TM3, and the inward movements of 
TM7 and TM135. TM6 and TM3 are at the heart of any common activation pathways, because they are coupled 
with critical conserved residues and are in direct contact with other helices except for TM136. We thus analyzed 
the conformational changes of TM6 and TM3.

A sharp kink of TM6 has been observed in the crystal structure of the κOR as well as in other family A GPCR 
structures with P6.50 as the pivot point36–37. Such a kink is preserved in our MD simulations (Fig. 4B). However, the 
kink angle of TM6 with P2896.50 as the pivot point varies with the simulation time. It changes from 160o to 140 o at 
the initial stage of the simulation and then increases to about 159o again (Fig. 4B and Table S1). Besides the kink 
of TM6, TM6 in the 6′ -GNTI-κOR complex counterclockwise rotates about 4.6o on average, even 11.4o at 600 ns 
conformation viewed from the extracellular side of the receptor (Fig. 4A). This observation is consistent with the 
published results35. In contrast, the TM6 kink in the 5′ -GNTI-κOR complex or the apo κOR form was found to 
be stabilized at about 160o and the counterclockwise rotation of TM6 was not observed from our simulations. We 
thus believe that the variation of the kink angle and the counterclockwise rotation of TM6 can be used to explain 
the different behaviors of the κOR triggered by 5′ -GNTI and 6′ -GNTI.

Normal mode analysis (NMA)38 is an efficient method for predicting inherent flexibilities in biological macro-
molecules. We performed NMA on the typical structures of the initial crystal structure, principal component and 
final 600 ns state in Fig. 4A, to detect the intrinsic motions of κOR. The low-frequency modes of κOR produced by 
the NMA reflected the global motions of the receptor and were often related to biological functions39. The first two 
lowest-frequency motion modes (modes 1 and 2) on the final 600 ns state and principal component were relevant 
to the transition from active-like to inactive (Fig. 5). Interestingly, NMA of the initial crystal structure revealed that 
the inactive state had an intrinsic potential to change back to the active-like conformation. However, the modes 
relevant to this transition were only among the fifth and third lowest-frequency motion modes. Therefore, unless 
an external force or ligand was present, κOR would favour the inactive state within the circuit. The consistency 
between the results of MD and NMA supports the efficiency of both methods in studying the large-scale motions 
of TM6 domains.

The conformational changes of TM3 and TM7 in the simulations can also be used to disclose the role of 5′ -GNTI 
and 6′ -GNTI in the activation of the κOR. The binding of GNTIs causes large conformational change of TM3 in 
the GNTIs− κOR complexes as shown in our simulations. In the simulation of the 5′ -GNTI-κOR complex, we 
observed a clockwise rotation of TM7 if viewed from the extracellular side (Fig. S4A). We attribute the clockwise 
rotation of TM7 to the fluctuation of ECL3 (Video S1A). ECL3 is mainly composed of hydrophilic residues, such 
as Ser or His. These residues form strong interactions with the guanidino group of 5′ -GNTI, which is responsible 
for the clockwise rotation of TM7.

Comparison of the binding interactions of GNTIs with the κOR. Hydrogen bonds between the res-
idues D1383.32, Y1393.33, H2916.52, and E2976.58 on the receptor and the ligands are formed for most of the time in 
the simulations of the 5′ -GNTI-κOR and 6′ -GNTI-κOR complexes (Table 2 and Fig. 2). E2976.58 forms two HBs 

Figure 4. The motions of TM6 and TM3. (A) The motion of TM6 at the extracellular side in the 6′ -GNTI-
κOR complex during the molecular dynamics simulations. (B) Evolution of the kink angle of TM6 in the 
simulations. (C) RMSDs of TM3 in the three 600 ns systems.

Figure 5. NMA profiles of TM6 conformational changes of the initial crystal structure, principal 
component and final 600 ns state (Fig. 4A) in 6′-GNTI-κOR system. The arrows mean the directions of these 
conformational changes.
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with the ligands and contributes significantly to the stabilization of the ligands at the orthosteric site. In addition, 
the protonated nitrogen in either 6′ -GNTI or 5′ -GNTI is not able to form any HBs with D1383.32 (Table 2). This 
can be considered as a common binding mechanism of opioid towards ORs40.

Contribution of I2946.55 to the conformational change of TM6. Detailed analysis of the trajectory 
from the simulation of the 5′ -GNTI-κOR system showed that the minimum distance between Cα of I2946.55 and 
5′ -GNTI is mainly stabilized at about 5.5 Å (Fig. 6 and Table S1). The corresponding distance in the 6′ -GNTI-κOR 
complex fluctuates between 4 and 6 Å, with the average at about 5.2 Å. The average minimum distance between Cα 
of I2946.55 and 6′ -GNTI is about 0.3 Å shorter than that between Cα of I2946.55 and 5′ -GNTI (Fig. 6A and Video 
S1B). The shorter distance between Cα of I2946.55 and 6′ -GNTI can raise the steric clash between 6′ -GNTI and 
I2946.55. The existence of the steric clash between I2946.55 and 6′ -GNTI can be further indicated from the temporal 
evolutions of an angle between residue I2946.55 and TM6 (Fig. 6B). Because of the steric clash, this angle undergoes a 
significant fluctuation between 40o and 120o, with an average value at about 63o. On the contrary, the corresponding 
angle is stabilized at about 81o in the 5′ -GNTI-κOR complex. The RMSF values also reflect that the fluctuation of 
the angle in the 6′ -GNTI-κOR complex is larger than in the 5′ -GNTI-κOR complex (Fig. 3B). In the simulation 
of the κOR in the apo state, this angle fluctuated between 40o and 100o freely (Fig. S5A).

The strong steric clash between I2946.55 and 6′ -GNTI has a significant influence on the conformational 
states of E2976.58 (Fig. 6C). The angles between residue E2976.58 and TM6 is mainly stabilized at about 77o in the 
6′ -GNTI-κOR complex, whereas in the 5′ -GNTI-κOR complex it is at about 86o on average. The large influence 
could also be reflected from the diverse performances of ligand cluster among 6′ -GNTI-κOR interaction (Table 1 
and Fig. S2).

Conformational change of TM7. A sharp kink on TM7 was observed in the crystal structure of the κOR26 
with P3277.50 as the pivot point36,37. Although this kink was preserved in our simulations, the kink angles behave 
differently in the three systems. Temporal evolutions of the kink angle of TM7 indicate that the kink in the 
5′ -GNTI-κOR system is more stable than that in the other two systems. The kink angle is stabilized at about 150o 
in the 5′ -GNTI-κOR complex (Fig. 7 and Table S1). However, the kink angle in the 6′ -GNTI-κOR complex or 
in the apo form shows an obvious deviation. Specifically, this kink angle in the 6′ -GNTI complex changed from 
about 150o to 130o at the initial stage of the simulation. The temporal evolution of the kink angles could be used 
to explain the responses of TM7 caused by GNTIs.

A detailed analysis of the simulation results reveals that the kink is stabilized by a hydrogen bond formed 
between S3247.47 and V691.42 (Table 2). The occupancy rate of this hydrogen bond is 24% from the simulation of 
the 5′ -GNTI-κOR system, which is much higher than that in the 6′ -GNTI-κOR system (2.7%) and in the apo 
κOR (6.1%). A recent study on CRF1R also proved the significance of the kink in explaining the antagonistic 
mechanism41.

Allosteric action mediated by the sodium ion. The role of the sodium ion in the function of some GPCRs 
has become an attractive topic recently. The crystallographic structure of the adenosine A2A receptor (A2AR) 
at an ultra-high resolution provides us with the first evidence of the binding of the sodium ion to the GPCR, fol-
lowed by the crystallographic structures of the β1-adrenergic receptor and δOR28,42,43. In the δOR, the sodium ion 
is positioned around the negatively changed D2.50, and coordinated by two polar residues (N1313.35 and S1353.39) 
and two water molecules28. Many studies have been carried out to investigate the allosteric activation of GPCRs 
mediated by the sodium ion44. A recent molecular dynamics simulation of the μOR suggested that a sodium ion 
penetrates into the allosteric pocket from the extracellular side of the receptor to perform its allosteric effects on 
the receptor40. The dynamic properties of the sodium ion in the apo-κOR have also been described in the latest 
work of Filizola et al.45.

In the crystal structure of the κOR, the sodium ion is not co-crystallized with the κOR. We thus placed a 
sodium ion in the allosteric pocket of the κOR by referring to the position of the co-crystallized sodium ion in 
the crystal structure of the NTI-δOR complex28. In our simulations, the sodium ion is stablized in the allosteric 
pocket, reflecting that the position of the sodium ion is reasonable (Fig. 8A).

In our simulations, although the sodium ion is stablized in the allosteric pocket, the residues coordinating the 
sodium ion undergo conformational changes and result in the fluctuation of the distances between the sodium ion 
and the residues (Fig. 8A). For example, the distance between the sodium ion and D1052.50 increased significantly 
during 180–300 ns in the simulation of the 6′ -GNTI-κOR system due to the conformational change of D1052.50 
(Fig. 8B); D1052.50 deviated from the allosteric pocket and N3227.45 was involved in the direct interaction with the 
sodium ion during 180–280 ns.

HB NO.

5′ -GNTI system 6′ -GNTI system Apo system

1(%) 2(%) 3(%) 1(%) 2(%) 3(%) 1(%) 2(%)

E6.58-ligand 0.4 93.9 5.7 2.7 89.5 7.3 — a —

D3.32-ligand 71.4 2.3 — 19.1 6.6 1.1 — —

S7.47-V1.42 24.3 — — 2.7 — — 6.1 —

D3.32-Y7.43 69.4 0.2 — 44.1 0.3 — — —

Table 2. Occupancies of the hydrogen bonds in the two 600 ns GNTIs-κOR systems and the apo-κOR 
system. athe symbol “–” represents that there is no hydrogen bond interaction.
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The 3-7 lock. Formation of a hydrogen bond between D1383.32 and Y3207.43, which is named as the 3–7 lock in 
the following text, is suggested to play a key role in the activation of the κOR. To investigate the 3–7 lock in detail, 
we monitored the temporal evolution of the distance between D1383.32 and Y3207.43 (Fig. 8C). In the 5′ -GNTI-κOR 
system, a hydrogen bond between D1383.32 and Y3207.43 formed at about 80 ns and broke at about 500 ns of the 
simulation. The occupation rate of the hydrogen bond was 69.6%. In the simulation of the 6′ -GNTI-κOR system, 
a hydrogen bond between D1383.32 and Y3207.43 formed at about 340 ns and was preserved until the end of the 
simulation, resulting in an occupation rate of 44.4%. On the contrary, the 3–7 lock was not found in the whole 
simulation of the κOR in the apo form. We thus contribute the formation of the hydrogen bond between D1383.32 
and Y3207.43 to the binding of 5′ -GNTI or 6′ -GNTI to the orthosteric pocket of the κOR.

The antagonistic effects of 5′-GNTI. To investigate whether 5′ -GNTI can trigger a change of the confor-
mation of the κOR induced by 6′ -GNTI to the inactive conformation, we docked 5′ -GNTI to the last snapshot the 
κOR generated in the simulation of the 6′ -GNTI-κOR system (Fig. S6), and performed another MD simulation 
with a time scale of 100 ns. Interestingly, we found that TM6 gradually returned to the antagonistic state under the 
action of 5′ -GNTI (Fig. 9A) as indicated by the kink angle of TM6. This angle changed from about 160o to 145o 
at the beginning of the simulation, and then increased to 157 ±  4o (Fig. 9B and Table S1). Structural alignments 
of TM6 also indicated that 5′ -GNTI triggered the conformational change of the κOR induced by 6′ -GNTI to the 
inactive state gradually. In addition, the tilt direction of the indole ring was outward in Cluster 1 of the additional 
5′ -GNTI, which was identical with the 600 ns 5′ -GNTI-κOR system (Table 1 and Fig. S2).

Discussion
In our simulations, we found that E2976.58 in the κOR is directly interacting with 6′ -GNTI. This interaction, 
together with the steric effect from I2946.55, contributes to the rotation of TM6 as well as the movements of other 
TMs. In contrast, this ligand shows no agonistic effect towards the μOR and δOR23. From sequence alignments 
of the κOR, μOR and δOR, we can easily find that E6.58 in the κOR corresponds to K6.58 in the μOR and to W6.58 
in the δOR46. On the other hand, it has been suggested that both K6.58 in the μOR and W6.58 in the δOR are not 
directly interacting with the guanidinium group of 6′ -GNTI, which leads to the absence of the agonistic effect of 
this ligand towards the μOR and δOR23. All these observations demonstrate that the direct interaction between 
the residue E2976.58 and 6′ -GNTI plays an indispensible role in the activation of the κOR and the residues E2976.58 
and I2946.55 function as a critical pair in the activation of the κOR.

Figure 6. Comparisons of the contribution of I2946.55. (A) Evolution of the minimum distances between Cα 
of the residue I2946.55 and GNTIs. (B,C) Evolution of the angle between the residue I2946.55 and TM6 (B) or 
between the residue E2976.58 and TM6 (C).

Figure 7. The motions of TM7. Evolutionary angles of the kink of TM7 with P3277.50 as the pivot point (A) and 
the distribution profile of these angles (B) among our three 600 ns systems.
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Besides the nontrivial function of E2976.58 and I2946.55 in the activation of the κOR, large conformation changes 
of TM7 and TM2 were also identified in our simulations as indicated by the kink angles of TM7 with P3277.50 as the 
pivot point (Fig. 7) and TM2 with D1052.50 as the pivot point (Fig. 8B). Such conformational changes can further 
help us understand the mechanism of κOR activation. In addition, D1052.50 is the key residue in positioning the 
sodium ion in the allosteric pocket. Therefore, we believe that the sodium ion also contributes to the activation 
of the κOR.

S3247.47 is located adjacent to the pivot point P3277.50 on TM7 and forms a hydrogen bond with a residue on 
TM1 in the simulation of the 5′ -GNTI-κOR system (Fig. 7 and Table 2). Because of the formation of the hydrogen 
bond, the conformational change of TM7 is hampered. As a result, TM7 is stabilized in its initial conformation 
and leads to that the κOR adopts the inactive conformation. We thus suggest S3247.47 plays an important role in 
stabilizing the κOR at the inactive state.

The 3-7 lock is found to be formed in our simulations of the 5′ -GNTI- κOR and 6′ -GNTI-κOR systems. In 
contrast, such a lock is breaking-down in the crystal structure of the JDTic-κOR complex. Both 5′ -GNTI and 
6′ -GNTI are derivatives of morphinan, while the ligand JDTic47 is a pure antagonist with (3R,4R)-3,4-dimethyl-
4-(3-hydroxyphenyl)piperidine as the scaffold. We can thus use the ligand in the orthosteric pocket to explain the 
formation and breaking-down of the 3-7 lock in the κOR - the derivatives of morphinan can induce the formation 
of the 3-7 lock, while a pure antagonist results in the breaking-down of such a lock in the κOR.

In addition, we observed a large rotation of TM6 around the pivot point P2896.50 in the simulation of the 
6′ -GNTI-κOR system, which is an indispensible step for the activation of the κOR. In our opinion, the receptor 
needs to visit a set of intermediate states for its activation from the inactive state to the fully active state48. The rota-
tion of TM6 allows the receptor to visit one of the key intermediate states for the activation of the κOR. However, 
we did not observe full activation of the receptor probably due to the limitation of the available computational 
resources.

Figure 8. The evolutions of D1052.50 and 3-7 lock. (A,B) Evolution of the distance between Na+  and the 
conserved residue D1052.50 (A) or the angle between D1052.50 and TM2 (B). (C) Variation of the distance 
between the residue D1383.32 and Y3207.53.

Figure 9. The conformational changes of TM6 in additional 5′-GNTI system. (A) Structural alignment of 
κORs with initial crystal structure (gray), principal component of additional 5′ -GNTI-κOR complex (yellow) 
and 600 ns state of 6′ -GNTI-κOR complex (blue). (B) Evolution of the kink angle of TM6 in additional 100 ns 
5′ -GNTI system.
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Conclusions
In this work, we studied the molecular switches of the κOR triggered by 5′ -GNTI and 6′ -GNTI using molecular 
dynamics simulations. We observed about 4.6o rotation of TM6 on average in the κOR-6′ -GNTI complex. Detailed 
analysis of the simulation results revealed that E2976.58 and I2946.55 play a crucial role for the rotation of TM6. On 
the other hand, we found that the hydrogen bond between S3247.47 and residue V691.42 on TM1 contributes to 
the stabilization of the κOR in the inactive state as revealed from the simulation of the κOR-5′ -GNTI complex.

Materials and Methods
Protein preparations. The published crystal structure of human inactive JDTic-bound κOR (PDB code: 
4DJH), was obtained from an engineered κOR mutant protein where part of the intracellular loop between trans-
membrane helices TM5 and TM6, was replaced by T4 lysozyme (T4L)26. In order to do molecular dynamics 
simulations on the wild type receptor based on the crystal structure of the T4L mutant κOR dimer, we removed 
the T4L from the mutant receptor structure, the monomer B and other unnecessary parts. Then we reconstructed 
the loop of the remaining chain A by adding the missing residues S262 and T302–S303–H304–S305–T306 using 
the loop refinement protocol in Discovery Studio 3.5; 10 loops were generated and the most reasonable one was 
chosen for receptor construction. According to the latest crystal structure of inactive NTI-complexed δ OR, ion 
Na+  was exactly located at the allosteric pocket position28.

The above three-dimensional integrated κOR structure was then imported into the Schrödinger software 
package. The protein structure was prepared with Protein Preparation Tool (ProPrep) in the Schrodinger 2012 
suit software. Asn, Gln, and His residues checked for protonated states automatically in ProPrep. Hydrogen atoms 
were added into the κOR crystal structure at the physiology pH environment by the PROPKA tool in Maestro with 
optimized hydrogen-bond network. No non-standard protonation state of the amino acids was found.

Molecular docking. By referring to the conformation of ligand NTI in crystal structures of δOR, κOR-selective 
antagonist 5′ -GNTI and κOR-selective agonist 6′ -GNTI were sketched in Maestro and subjected to a Monte 
Carlo Μ ultiple Minimum conformational search using the OPLS_2005 force field and water as implicit solvent 
(Surface Generalized Born (SGB) model). The output conformations were used as the starting point for the docking 
experiments.

The pocket Grid file of the κOR was generated by 20 Å around residue D1383.32 with the Receptor Grid 
Generation module, and docked with Glide Docking module (Glide 5.8)49,50. The Van der Waals (vdW) scaling 
was set to 0.8 for nonpolar atoms of receptor and ligand. During docking, the number of docking output was set as 
10000 poses per docking run at most. The most reasonable conformation was picked out for molecular dynamics 
simulations.

MD preparations. Two 5′ -GNTI-κOR complexes, one 6′ -GNTI-κOR complex and one apo-κOR system, were 
built for the simulations. A POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) bilayer with the surface 
area of 75 ×  75 Å2 on the X-Y plane was generated under Charmm36 force field by VMD program (Version 1.9.1). 
For each system, the receptor was first embedded into the POPC bilayer using our in-house program pre-aligned 
in the OPM (Orientations of Proteins in Membranes) database51–54. Thereafter, Pre-equilibrated 103 POPC lipids 
coupled with 11067 TIP3P water molecules in a box ~75 ×  75 ×  100 Å3 were used solvate the protein. Lipid mole-
cules within 0.85 Å of the heavy atoms on the protein structure and water molecules in the bilayer were removed. 51 
Na+  and 59 Cl- ions were used to produce neutral systems with 0.15 M NaCl in the water phase of GNTI systems, 
whereas the number of Cl- ions was 57 in apo-κOR system. We described the protein using CHARMM36 force 
field with cmap correction.

Ligand force field was generated by Paramchem webserver, a program coupled with CHARMM Force field55–57. 
Small molecules with a correct configuration were imported into Paramchem webserver and force field parameters 
of these compounds were then obtained through a script CHARMM General Force Field (CGenFF).

Molecular dynamics simulations. All simulations were performed using Gromacs V.4.6.558 and the 
CHARMM36 parameters for all compositions. In the first simulation step, the system was subjected to a 10000-step 
energy minimization with 1000.0 kJ/mol/nm as the force threshold. Then, the systems were gradually heated 
from 0 K to 310 K followed by 50 ps initial equilibration at constant volume and temperature at 310 K (NVT). An 
additional 1 ns equilibration was performed at constant pressure and temperature (NPT ensemble; 310 K, 1 bar) 
with two thermostats (stabilizing temperature independently for protein-ligand system, and the lipids-water-ions 
system) at 0032 ps time steps. vdW and short-range electrostatic interactions were cut off at 12 Å. Long-range elec-
trostatic interactions were computed by the Particle Mesh Ewald (PME) summation scheme. The MD simulations 
of the additional 5′ -GNTI system was performed for 100 ns, while all the other systems were performed for about 
600 ns under NPT conditions with Parrinello-Rahman pressure coupler methods and Nose-Hoover thermostat 
for temperature coupling. The time step for MD simulation was 2 fs and the integrator leap-frog algorithm was 
employed. While the MD simulations of the additional 5′ -GNTI-κOR system was performed for 100 ns, all the 
other systems were performed for about 600 ns using the NPT ensemble with the Parrinello-Rahman pressure 
coupling and the Nose-Hoover temperature coupling methods.

Analysis of simulations. RMSD and RMSF calculations, ligand cluster statistics, hydrogen bond analysis, 
angle and distance evolutions were produced by the program Gromacs. The interval time of trajectory calcula-
tions, including RMSD, RMSF, angle, distance and principal component analysis, was 500 ps in 600 ns systems, 
whereas that in 100 ns 5′ -GNTI systems was 100 ps. RMSD values were calculated through comparing to the 
initial simulation conformations. Principal components analysis was carried on through the g_covar tool. All the 
smooth curves in Figs 4, 7 and Fig. S3 were fitting groups, which were identical with corresponding Angle/RMSD 
calculations in color.
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To determine the sub-state conformations that close ligands bound to κOR, structural clustering was performed 
using the g_cluster tool in Gromacs with the linkage algorithm based on the RMSD of each ligand molecule after 
alignment of the Cα  atoms in the transmembrane helices in each frame to the starting structure59. A 0.2 Å RMSD 
cut-off was chosen because it best captured spatially distinct clusters and allowed the top clusters to be representa-
tive of the predominant binding sites explored. The clustering was performed on the simulation frames with 100 ps 
interval time. The populations of each cluster are given in Table 1. We examined the two most populated clusters 
and calculated the RMSDs for each ligand found in these clusters (Table 1).

Angle analysis was carried on by g_angle tool in Gromacs. The specific input parameters were as follows. The 
kink angle of TM6 was measured with atom Cα of V2856.46, P2896.50 and F2936.54; The angle between I2946.55 and 
TM6 was measured with atom Cδ and Cα of I2946.55 and atom Cα of W2876.48, while that angle between E2976.58 and 
TM6 was computed with atom Cδ and Cα of E2976.58 and atom Cα of F2936.54; The kink angle of TM7 was measured 
with atom Cα of Y3207.43, P3277.50 and A3317.54; The angle between D1052.50 and TM2 was measured with atom Cγ 
and Cα of D1052.50 and atom Cα of I982.43.

NMA was conducted using the ElNemo60 (http://www.igs.cnrs-mrs.fr/elnemo/index.html), a web interface to 
the elastic network model-based NMA.
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