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Though the etiology of autism spectrum disorder (ASD) remains largely unknown,

recent findings suggest that hormone dysregulation within the prenatal environment,

in conjunction with genetic factors, may alter fetal neurodevelopment. Early emphasis

has been placed on the potential role of in utero exposure to androgens, particularly

testosterone, to theorize ASD as the manifestation of an “extreme male brain.” The

relationship between autism risk and obstetric conditions associated with inflammation

and steroid dysregulation merits a much broader understanding of the in utero steroid

environment and its potential influence on fetal neuroendocrine development. The

exploration of hormone dysregulation in the prenatal environment and ASD development

builds upon prior research publishing associations with obstetric conditions and ASD

risk. The insight gained may be applied to the development of chronic adult metabolic

diseases that share prenatal risk factors with ASD. Future research directions will also

be discussed.

Keywords: autism, autism spectrum disorders, steroid hormone (progesterone, testosterone, estradiol), perinatal,

prenatal, risk factors

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent
deficits in social interaction and communication in addition to stereotyped, repetitive behaviors (1).
While the etiology of ASD remains largely unknown, multifactorial contributors such as genetics,
neuroanatomical abnormalities, and the environment likely play a role (2). Prenatal factors
associated with elevated ASD risk include maternal conditions that contribute to a suboptimal
prenatal environment, particularly as it relates to inflammation, metabolism, and steroid hormone
regulation (3, 4).

Prenatal stress (5, 6), maternal immune dysfunction (5, 7–9), pre-existing/gestational diabetes
(3, 10), pre-pregnancy obesity (11), weight gain during pregnancy (12), pre-existing/gestational
hypertension (13, 14), polycystic ovarian syndrome (PCOS) (4, 15) and prenatal complications such
as low birth weight (3) and pre-term birth (16) have all been associated with ASD in offspring. How
these conditions may alter prenatal mechanisms promoting ASD pathogenesis has yet to be clearly
established, though several physiological processes that link these conditions have been implicated
including direct insults (e.g., oxidative stress, hypoxia, inflammation) and adaptive responses (e.g.,
epigenetic changes, fetal programming) (17–20).

Studying the relevance of prenatal risk factors in ASD pathogenesis inherently involves
understanding the remarkable, well-coordinated interaction among the mother, fetus, and
placenta—referred to as the maternofetoplacental unit (21, 22). The interdependence across the
maternofetoplacental unit for steroid hormone production, immune response mediation, and
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nutrient transfer is particularly relevant to sustain pregnancy
and ensure newborn viability. The placenta, together with the
amnion and chorion, create a unique immune environment that
permits co-existence of the fetal allograft within the mother while
accessing her rich nutrient and oxygen supply for development,
growth, and survival.

Immune response and steroid production are intrinsically
linked during pregnancy with the placenta acting as the key
mediator, particularly regarding estradiol and progesterone
synthesis. Estradiol augments both cell- and antibody-mediated
immune responses (23). Rising levels of estradiol during
pregnancy promote an immunologic shift from an inflammatory
state to a regulatory response (23–26). The dramatic increases
in progesterone enhance maternal-fetal tolerance (27) and
promote anti-inflammatory factors through progesterone-
induced binding factor (PIBF) (28, 29). Placental progesterone,
estradiol, and human chorionic gonadotropin (hCG) facilitate
blastocyst implantation and spiral artery formation, which
are essential early gestational events to sustain pregnancy.
These hormones support implantation by recruiting immune
cells to the maternal-fetal interface (30–33). Immune cells
subsequently secrete angiogenic factors such as transforming
growth factor beta (TGF-β) and vascular endothelial growth
factor (VEGF) (31) to promote spiral artery formation (34) and
placental vascularization.

The influence that placental steroid hormone production
exerts across the maternofetoplacental unit—involving
inflammatory responses, oxygen/nutrient exchange, and
neuroendocrine functioning—cannot be overstated. This
review article will describe the current understanding of the
in utero steroid-related environment associated with ASD
and explore its potential role in ASD pathogenesis. Existing
literature that is relevant to the prenatal hormone milieu in
ASD largely appears to fall within the following four domains:
obstetric conditions, fetal programming, sex differential, and
steroid-related biomarkers. The literature on each domain will
be summarized.

OBSTETRIC CONDITIONS

Hypertensive Disorders
Hypertensive disorders during pregnancy, regardless of
subset (i.e., chronic, gestational, de novo or superimposed
preeclampsia), have been correlated with elevated ASD incidence
among offspring (13, 14, 35–37). Placental insufficiency is one
of the most concerning complications of hypertension during
pregnancy (22, 38, 39). Common indicators or complications
of placental insufficiency that overlap with ASD risk factors
include small for gestational age/in utero growth restriction,
prematurity, maternal infection, and maternal metabolic
syndrome (16, 38–42). Histologic signs of placental insufficiency,
such as trophoblastic inclusions, are also more commonly
found in placentas of children who develop ASD (43). Steroid
hormone dysregulation, altered immune function, and placental
insufficiency are intertwined, as maternal serum inflammatory
markers (e.g., atypical cytokine profiles, leukocytosis, and
elevated platelet counts) are associated with gestational

hypertension (44), while the maternal cardiovascular adaption to
pregnancy is influenced by placental estrogen and progesterone
production (45).

Gestational Diabetes/Insulin Resistance
Maternal diabetes, both pre-existing and gestational onset,
is also an established ASD risk factor (46, 47). While the
exact mechanism underlying the relationship between ASD
and maternal diabetes is unknown, maternal diabetes can
lead to several obstetric complications affecting the mother
(e.g., gestational hypertension, pre-eclampsia) and baby (e.g.,
high or low birth weight, shoulder dystocia, hypoglycemia,
hyperbilirubinemia, hypocalcemia, and respiratory distress) (48,
49). These conditions result from the amplification of the typical
prenatal metabolic state characterized by hypercortisolemia
(50) and insulin resistance (51, 52). During uncomplicated
pregnancies, relative maternal hypercortisolemia and insulin
resistance facilitate adequate transfer of nutritional resources
from mother to baby. As pregnancy progresses, a developmental
switch prompted by rising fetal cortisol synthesis shifts resource
allocation from tissue proliferation to maturation (53). In
maternal diabetes, excess glucose supply to the fetus causes
higher fetal insulin production to maintain glucose homeostasis,
stimulating fetal overgrowth and delaying lung maturation (54).
Diabetes during pregnancy also leads to higher placental release
of pro-inflammatory cytokines (e.g., leptin, tumor necrosis
factor-α (TGF-α), and interleukins) (55), with the potential
consequence of reducing oxygen diffusion across the placenta by
enhancing placental thickening (48).

Pre-pregnancy Obesity/Gestational Weight
Gain
Epidemiologic studies identify increased ASD risk associated
with pre-pregnancy obesity (46) and/or gestational weight
gain (2, 12, 56). Obesity promotes both inflammation and
endocrine dysfunction, perturbing the prenatal environment.
As a pro-inflammatory state, obesity contributes to elevated
lipids, leptin, and IL-6 during pregnancy (57). The bioavailability
and synthesis of estrogens are impacted through the endocrine
and metabolic function of adipose tissue (58). Furthermore,
studies exploring the in utero steroid environment, primarily
as it relates to hormone-sensitive cancer risk among offspring,
have found elevated maternal serum estrogen, progesterone, and
testosterone levels in pregnancies characterized by higher weight
gain (58–61). Because the gestational weight gain associated
with increased ASD risk (12) is not clinically relevant from
an obstetric perspective (i.e., about three pounds), its link with
ASD may relate to a shared etiology rather than a cause and
effect relationship.

Maternal Stress
Epidemiologic studies have also found that heightened maternal
stress during the 2nd trimester increases fetal vulnerability to
adverse outcomes such as shortened gestational age, preterm
birth, low birth weight, and small for gestational age (62). ASD
has also been associated with intense maternal stress (e.g., life
events and hurricanes) during this gestational window (5, 6, 63).
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FETAL PROGRAMMING

Fetal programming, a concept also referred to as the
“developmental origins of health and disease” hypothesis,
explains that in utero disruption during critical developmental
periods can relay health consequences to the fetus that
persist throughout adulthood (64–68). Originally bolstered by
epidemiological findings describing regional overlap in areas
with high infant mortality and coronary heart disease (69), there
has been increased recognition that in utero phenomena can
lead to a wide range of chronic conditions. Supporting evidence
includes the well-established relationship between prenatal
exposure to maternal metabolic conditions [e.g., hypertension
(70), diabetes (71–73), obesity (74–76)] and chronic metabolic
disorders that begin in adolescence and adulthood (77, 78).
Pre-pregnancy maternal obesity has been linked to poorer
metabolic, endocrine, cardiovascular, and neurodevelopmental
outcomes in offspring (79). Even after adjusting for pre-
pregnancy obesity, maternal metabolic conditions such as
gestational diabetes remain associated with increased risk of
cardiovascular disease (80), obesity (81), type 2 diabetes (82),
and early childhood metabolic syndrome development (83)
among offspring.

Fetal programming of adolescent/adult metabolic disorders
may occur through epigenetic changes (84). Telomeres
are repetitive DNA tracts that protect against excessive
chromosomal degradation (85). Shortened telomeres occur
in fetuses exposed to gestational diabetes and are associated
with higher cardiometabolic disease risk in adults (86, 87).
Pre-eclampsia has been shown to induce epigenetic changes in
offspring through decreased DNA methylation of IGF2 (88), a
mediator of cell proliferation and apoptosis (89). Aside from
its influence on postnatal growth, aberrant IGF2 expression is
linked to subsequent development of hypertension, diabetes, and
other metabolic disorders (88).

The proposed basis for fetal programming includes calibration
of fetal regulatory systems in response to intrauterine nutrient
availability to optimize extra-uterine survival. The subsequent
mismatch between pre- and postnatal resources—whether
involving excess or scarcity—predisposes offspring to develop
one or more metabolic disorders. Fetal programming serves
as a potential mechanism through which stress, metabolic
disturbances, inflammation, and steroid dysregulation during
pregnancy could predispose offspring to ASD. Altered fetal
hypothalamic-pituitary-adrenal (HPA) axis development falls
within the concept of fetal programming (90–92).

HPA Axis Functioning in ASD
The HPA axis modulates neural, endocrine, and immune
responses to stress to maintain homeostasis (93). While HPA
axis plays a critical role in coordinating short-term physiological
stress responses (94), HPA axis dysregulation has been implicated
in several psychological and physiological disorders (95–100).
Some children with ASD demonstrate signs of HPA axis
dysregulation (101–106) such as altered circadian rhythms (107)
and abnormal cortisol stress responses (105). Collectively, these
findings raise the possibility that aberrant HPA axis functioning

in some ASD individuals may have originated during fetal life
through fetal programming.

Fetal HPA Axis Maturation
Understanding fetal HPA axis development in the 2nd trimester
(i.e., 13th to 26th week gestation) provides a context in
which to interpret the association between ASD and steroid
hormone levels (whether measured in maternal serum or
amniotic fluid) during this gestational window. By the 12th
week of gestation, the fetal hypothalamus releases corticotropin-
releasing hormone (CRH) to signal the anterior pituitary gland to
release adrenocorticotropic hormone (ACTH) (108–110). ACTH
stimulates the fetal zone of the adrenal gland to synthesize
dehydroepiandrosterone (DHEA) (110) and its conjugated form,
dehydroepiandrosterone sulfate (DHEAS) (111). Although the
fetal HPA axis is active by 12–18 weeks gestation (112), fetal
adrenal gland development lags behind that of the hypothalamus
and anterior pituitary. The fetal adrenal gland does not typically
develop de novo cortisol synthesis capacity—referred to as fetal
HPA axis maturation—until around 23–24 weeks gestation (91,
113–115). Because cortisol promotes the physiologic shift from
somatic growth to organ maturation [e.g., lungs (116), gut (117),
liver (116, 118)], fetal HPA axis maturation is essential for extra-
uterine survival (119). Under duress, fetal HPA axis maturation
can occur as early as 20 weeks gestation (113). This may be
induced by increased placenta estradiol production (120).

The Placenta’s Role in Fetal HPA Axis
Maturation
Placental estradiol synthesis promotes fetal HPA axis maturation
through multiple mechanisms. Estradiol influences cortisol
transfer from the mother to fetus to establish a maternal-
fetal cortisol gradient through its actions on placental 11β-
hydroxysteroid dehydrogenase (11β-HSD) activity (121). 11β-
HSD converts active maternal cortisol into inert cortisone.
This gradient serves to protect the fetus from maternal
cortisol overexposure (122, 123). Maternal cortisol in the fetal
compartment exerts negative feedback on the fetal hypothalamus
and anterior pituitary gland. As pregnancy progresses, 11β-
HSD activity increases, less maternal cortisol reaches the fetal
compartment, and negative feedback to the fetal HPA axis is
reduced (115, 122, 124–126). The subsequent increase in fetal
HPA axis activation coincides with the emergence of the fetal
adrenal’s de novo cortisol synthesis capacity (125) leading to fetal
HPA axis maturation (see Figure 1). The placenta synthesizes
estradiol from its precursor DHEA(S) which is derived from
both fetal and maternal adrenal glands (124, 140). Excess fetal
DHEA(S) supply can drive increased placental estradiol synthesis
(110, 124, 141, 142). Because the placenta shunts over 90% of
the estradiol it produces into the maternal circulation, maternal
serum estradiol levels reflect placental estradiol synthesis (130).

The placenta also influences fetal HPA axis maturation
through its production of CRH (pCRH). pCRH stimulates
fetal adrenal DHEA(S) production by (1) signaling fetal
pituitary ACTH release (143), (2) heightening fetal adrenal
gland sensitivity to ACTH (144), and (3) stimulating DHEA(S)
producing fetal adrenal cells directly (145, 146). By increasing
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FIGURE 1 | Placental estradiol and the fetal HPA axis at mid-gestation. (A) Normal fetal HPA axis functioning in the setting of typical placental estradiol activity at

mid-gestation. (A) Depicts normal suppression of fetal HPA axis activity during mid-gestation by maternal cortisol. The placental glucocorticoid barrier contains

(Continued)
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FIGURE 1 | 11β-HSD enzymes, which control fetal exposure to maternal cortisol (110) by converting most of the maternal cortisol entering the placenta to its inert

form, cortisone. While fetal cortisol levels are 5–10 times lower than maternal cortisol levels (127), the maternal cortisol that enters the fetal compartment suppresses

fetal HPA axis activity through negative feedback on the fetal hypothalamus and pituitary gland (112). Typically, the fetal adrenal gland has not yet developed de novo

cortisol synthesis capacity at this point in gestation (124). Rather, the fetal adrenal gland primarily produces DHEA(S) when stimulated by ACTH or pCRH. Fetal

DHEA(S), along with maternal DHEA(S), subsequently serves as the substrate for placental estradiol production (115, 128, 129). The placenta shunts over 90% of

estradiol produced into the maternal circulation, thus maternal serum estradiol levels by mid-gestation reflect placental estradiol production (130). (B) Obstetrical

adversity increases placental estradiol production at mid-gestation. Maternal adversity [e.g., stressors (131), inflammation (132–134), and metabolic disorders

(135–138)] can increase placental estradiol production by stimulating pCRH release through disrupting placental structure and function. Subsequently, fetal stress

increases, which activates the fetal HPA axis. Both pCRH and fetal HPA axis activation increase fetal adrenal DHEA(S) synthesis, leading to higher placental estradiol

production. (C) Early fetal HPA axis maturation precipitated by excess placental estradiol activity at mid-gestation. Estradiol acts on 11β-HSD placental glucocorticoid

barrier enzymes to increase conversion of maternal cortisol to inert cortisone, thereby reducing the amount of maternal cortisol entering the fetal compartment (139).

Less maternal cortisol in the fetal compartment reduces its negative feedback on the fetal hypothalamus and pituitary gland. The relative absence of negative

feedback precipitates fetal HPA axis maturation, which is characterized by the onset of de novo cortisol synthesis capacity by the fetal adrenal gland (125). Higher

placental estradiol production leads to elevated maternal serum estradiol concentrations.

fetal DHEA(S) synthesis, pCRH facilitates increased placental
estradiol production. As estradiol acts on placental barrier
enzymes that modulate fetal cortisol exposure, pCRH can
indirectly facilitate precocious HPA axis maturation by
decreasing negative feedback from maternal cortisol. pCRH also
directly promotes adrenal de novo cortisol synthesis (147, 148).
Following its maturation, activation of the fetal HPA axis signals
adrenal production of both DHEA(S) and de novo cortisol.

Inflammation and Hypoxia Stimulate Early
Fetal HPA Axis Maturation
Excess inflammation triggered by infection, tissue injury,
autoimmunity, or disruption in immunogenic tolerance to the
fetus (149) can provoke early fetal HPA axis maturation through
increased fetal HPA axis activity (115). Likewise, hypoxia can
also stimulate fetal HPA axis maturation through a similar
mechanism (150). Considering estradiol’s role in strengthening
the maternal-fetal cortisol gradient, estradiol serves as a
feasible intermediary through which inflammation and hypoxia
contribute to precocious fetal HPA axis maturation.

Furthermore, pCRH synthesis is upregulated in response
to signifiers of an adverse intrauterine environment, such
as elevated cortisol levels, pro-inflammatory cytokines,
catecholamines, and decreased uterine blood flow (115, 151, 152).
As pCRH promotes ACTH release from the fetal pituitary
gland (143) and expression of cortisol synthesizing enzymes
(147), elevated pCRH from in utero stress can serve as an
additional mechanism through which the fetal HPA axis matures
precociously (153).

Sex Differential in ASD
One of the strongest risk factors for developing ASD is male
sex. ASD prevalence in males is 3 to 4 fold higher than in
females (154–156). In the absence of intellectual disability,
this ratio increases further to 7:1 (157). Baron-Cohen et al.
(158) has proposed the “extreme male brain” theory to explain
the significant sex differential in ASD incidence. This theory
suggests that excess prenatal androgen exposure contributes to
the development of autistic traits in offspring by amplifying
traits thought to be more typical of males, such as systemization,
while diminishing traits commonly associated the femininity,
such as empathy (158). Sex steroid hormones have long been

thought to exert profound effects on the sexual dimorphism of
the brain (159, 160); however, the exact mechanism has yet to be
fully understood.

The “aromatization” hypothesis proposes that the roles
of estradiol and testosterone in fetal neurodevelopment are
intertwined (161), as masculinization of the rodent fetal brain
is dependent upon the conversion of testosterone to estradiol
by the enzyme aromatase (162, 163). In primates, reliance on
this mechanism to explain masculinization of the human fetal
brain remains unproven. Unlike primates, alpha-fetoprotein
in rodents has a high binding affinity to circulating estradiol
thereby sequestering estradiol and preventing it from entering
and masculinizing the fetal rodent brain (164). Therefore, only
the sex steroids produced by the fetal rodent influence brain
masculinization. The assumption that estradiol’s masculinizing
role in the rodent fetal brain could be extrapolated to the human
fetal brain is significantly flawed because it fails to account for
the substantial difference between these mammals in regards to
in utero estradiol sequestration by alpha-fetoprotein.

Zhao et al. (165) describes a multiple threshold liability
model to explain the sex difference in ASD risk. This model
theorizes that females require a higher genetic mutation
load relative to their male counterparts to develop ASD
thus contributing to ASD’s male predominance. Werling and
Geschwind (157) speculate that these mutations may interact
with androgen-related mechanisms in families with affected
females, as prior studies have found an association with
ASD and genes that modulate sex-steroid function (166–
168). As steroid hormone receptors exert epigenetic effects
through DNA methylation and histone acetylation (169–
172), it is possible that epigenetic modifications in response
to in utero sex-steroid hormone exposure affect sex-specific
neurodevelopmental processes.

Sex-Specific Fetal and Placental
Responses to Adversity
Fetal growth, development, and HPA axis programming in the
setting of obstetric adversity differ by fetal sex (173–175). These
sex-specific responses serve as additional mechanisms in which
to consider male ASD predominance (see Figure 2). As the
placenta is derived from extra-embryonic tissues, the placenta
has the same sex as the fetus (178). Evidence suggests that
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FIGURE 2 | Sex-specific fetal and placental adaptations to maternal adversity. Placentas of male and female fetuses respond differently to mild forms of maternal

adversity. In the placenta of female fetuses, multiple changes in glucocorticoid barrier enzyme activity, gene expression, and protein synthesis occur leading to

decreased growth (176, 177). This is advantageous as it preserves fetal oxygen and nutrient delivery. In the placenta of male fetuses, minimal changes in gene and

protein expression occur, and the male fetus continues to grow incurring increased vulnerability to adverse outcomes (176).

the placentas of male and female fetuses differ in response to
adverse prenatal environments through modulation of steroid
pathways, placental genes, and protein synthesis (176). Placental
growth and structure differ by sex, with male placentas being
smaller in size but more efficient at nutrient and oxygen
delivery (179, 180). Fetal growth depends upon the limited
capacity of the maternal-placental interface to deliver oxygen
and nutrients. Thus, greater placental efficiency among males
precipitates faster somatic growth while increasing vulnerability
to in utero perturbations (179, 181). This may have deleterious
neurodevelopmental consequences, as fetal brain development
relies on the availability of oxygen and nutrients such as fatty
acids, glucose, and amino acids (131, 182, 183). In contrast,
female placentas may have superior ability to buffer and adapt
to suboptimal prenatal conditions (180).

Newborns differ by sex in regards to birth weight, morbidity,
and mortality. This is attributable at least in part to sex-
specific adaptions that regulate the balance between fetal growth
and extra-uterine survival (184, 185). In the setting of mild
physical adversity (i.e., chronic maternal asthma), changes in
placental 11β-HSD glucocorticoid barrier enzyme activity, gene
expression, and protein synthesis occur and coincide with
reduced female fetal growth (176, 177). This prepares the
female fetus for future adverse events through preservation of
oxygen and nutrient delivery. In pregnancies complicated by
mild pre-eclampsia, male and female fetuses differ in growth

progression mediated by differential fetal microvascular (186)
and placental inflammatory cytokine responses (187). In the
setting of maternal hyperglycemia, males demonstrate greater
hyperglycemic growth stimulation (188) and higher incidences
of respiratory distress (175). The sex hormones estradiol
and testosterone stimulate opposing processes on fetal lung
development: estradiol facilitates surfactant production while
testosterone promotes lung tissue proliferation at the expense
of lung maturation (189). Collectively, sex-specific responses to
obstetrical adversity leave males less physiologically prepared for
survival, particularly if birth were to occur prematurely (176).

A growing body of evidence demonstrates a link between
placental pathology and ASD. Anderson et al. (43) found
increased trophoblastic inclusions in the placentas of fetuses who
later developed ASD. Trophoblastic inclusions, a histological
finding that results from atypical growth and folding of
the placenta (190), are more common in genetically atypical
gestations (191–194). Furthermore, studies of high ASD risk
cohorts (defined by having at least one older sibling with
ASD) also found increased placental trophoblastic inclusions
(195) in addition to altered placental morphology (196) and
placental chorionic surface vascular networks (197). The specific
morphological changes found, such as increased thickness and
roundness, may reflect decreased ability to adapt to variations
in the prenatal environment (196). Notably, variations within
the placental chorionic surface vascular networks may be
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the result of atypical vasculogenesis and angiogenesis (197).
Several conditions associated with ASD, such as pre-eclampsia
(198), intrauterine growth restriction (41), and pre-term birth
(16) are also attributed to placental vascular abnormalities
(199–201). In ASD individuals, Straughen et al. demonstrated an
association between placental inflammation, maternal vascular
malperfusion, and ASD (9) that occurred more prominently
among males.

Sex-specific placental signaling and epigenetic phenomena
in fetal adaption to nutrient availability and maternal
stress are exemplified by the X-linked gene O-linked N-
acetylglucosamine transferase (OGT) (131, 202). OGT induces
glucose-sensitive epigenetic changes that influence immune
responses, steroidogenic activity, and fetal development. Because
placental X inactivation spares OGT (20) such that the female
placenta has two active gene copies while the male placenta
has only one, OGT expression and interaction with steroid
receptors demonstrate sex-specificity (203, 204). This provides
an additional potential mechanism through which maternal
metabolic conditions (i.e., hyperglycemia, insulin insensitivity)
could influence the sex-differential observed in ASD (20).

STEROID-RELATED BIOMARKERS IN ASD

In utero steroidogenesis occurs through the well-coordinated
interactions among the mother, placenta, and fetus (21, 22).
The placenta is the main orchestrator of adaptions by the
maternofetoplacental unit of steroidogenic activity in response
to in utero and external environmental cues (205). As the
transcriptome of the placenta changes throughout pregnancy
(206), expression of placental genes involved in steroid hormone
regulation consequentially shift (205). This section is a review of
steroid-related biomarkers that have been associated with ASD
accompanied by a brief summary of their potential connection
to ASD.

Androgens
Multiple studies have demonstrated associations between
ASD/ASD traits and amniotic fluid androgen levels (i.e.,
androstenedione and testosterone) (207–212) supporting the
“extreme male brain” theory for ASD’s etiology proposed by
Baron-Cohen et al. (158). Amniocentesis is typically performed
between the 15th and 20th week of pregnancy, overlapping
the critical gestational window when the male fetus produces
peak amount of androgens to promote genital differentiation
(213). This testosterone surge occurs between 11 and 17 weeks
gestation (214).

Elevated androgen levels (androstenedione and testosterone)
in amniotic fluid collected from pregnancies with male offspring
correlated with later ASD diagnoses (212). Decreased eye contact
(207), poorer quality of social relationships (211), increased
restricted interests (211), reduced empathy (210), and higher
autism trait scores (208, 209) have also been associated with
elevated amniotic fluid androgen levels. Researchers conducting
these amniotic fluid studies applied ASD trait severity measures
that they developed, including the Quantitative Checklist for
Autism in Toddlers (Q-CHAT) (215), the Childhood Autism

Spectrum Test (CAST) (216), and the Child Autism Spectrum
Quotient (AQ-Child) (217). In contrast, Kung et al. (218) found
no relationship between autistic traits and amniotic testosterone
levels in pregnancies resulting in typically developing children
using the CAST. Elevated amniotic androgen levels associated
with ASD found by Baron-Cohen et al. (212) also did not appear
to persist in a re-analysis published in Baron-Cohen et al. (219).

Maternal serum has also been analyzed to investigate
the relationship between prenatal androgen levels and the
emergence of ASD (19). Maternal serum drawn during early
2nd trimester did not identify significant associations between
maternal androgen levels and ASD among offspring (19).
Although gestational timing for the maternal serum and
amniotic fluid collections overlap, differences in study findings
between Baron-Cohen et al. (212) and Bilder et al. (19)
may result in part from differences in study purposes and
designs. For the maternal serum study, investigators were
particularly interested in measuring steroid-related biomarkers
as potential intermediaries between ASD outcome and the effects
of obstetrical conditions associated with steroid dysregulation
(i.e., hypertension and diabetes) which they referred to as
“prenatal metabolic syndrome” (PNMS). As such, both the ASD
case and non-ASD control groups were enriched (by 50%) for
the presence of PNMS exposure. Extrinsic testosterone exposure
to the fetus is measurable in maternal serum, though fetal
testosterone production cannot be measured in maternal serum
because androgen movement across the placenta is generally
considered unidirectional from mother to fetus (220, 221).
Testosterone levels in amniotic fluid, however, reflect both fetal
testosterone exposure and production as the amniotic fluid
collected is composed primarily of fetal urine.

In Park et al. (222), no association was found between
androgen levels (testosterone, androstenedione, and DHEA)
in umbilical cord blood and autistic traits at 12 and 36
months of age among the Early Autism Risk Longitudinal
Investigation (EARLI) cohort using the Autism Observation
Scale for Infants (AOSI) and Social Responsiveness Scale
(SRS), respectively. The EARLI cohort were younger siblings
of children with ASD. Several other studies have also failed
to demonstrate an overall relationship between umbilical cord
testosterone levels and ASD traits (223–225). Unlike the amniotic
fluid and maternal serum studies described above, umbilical
cord blood samples represent prenatal testosterone exposure
at the time of parturition, far after the fetal testosterone
surge occurs (214). Upon subdividing the sibling cohort into
multiple groups based on proband and participant sex, umbilical
cord blood testosterone levels correlated with ASD traits
among siblings of female probands. The authors attributed
their findings to the multiple threshold liability model (157,
165) suggesting a higher genetic load required for females to
develop ASD.

Meconium androgen levels were also measured in the EARLI
cohort (226). Findings demonstrated a positive correlation with
some androgen levels (i.e., unconjugated testosterone and total
DHEA) and SRS scores overall. Following stratification of the
cohort by participant and proband sex, various associations were
found between androgen levels and ASD traits at 12 and 36
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months of age. Meconium begins accumulating in the 13th week
of gestation, with the highest volume produced between 28 and
34 weeks gestation (227). As meconium represents cumulative
exposures throughout gestation (228), it is difficult to link
meconium steroid concentrations to a specific gestational time
period of exposure.

Fetal testosterone in males is predominantly produced by the
Leydig cells of the testes beginning around 8 weeks gestation
(229). Placental human chorionic gonadotropin (hCG), in
tandem with luteinizing hormone (LH) produced in the fetal
pituitary gland, stimulates testosterone synthesis by the testes
during early gestation (214, 230–233). Interestingly, LH and
hCG share a common receptor transcribed from a single gene
(234). Placental hCG production rapidly increases following
implantation until it reaches its apex at the end of the first
trimester (235). Following this, hCG levels progressively reach a
nadir by 18–20 weeks gestation (236–238). As hCG levels decline,
LH levels rise. From 8 to 24 weeks of gestation, the testosterone
level in males substantially exceeds that of females (239), which is
believed to impart neurodevelopmental effects resulting in sex-
specific behavioral differences (240). However, the timing and
mechanism in which this occurs in the human fetal brain has not
been definitively determined. While the fetal adrenal gland can
also synthesize testosterone, the amount is negligible (241, 242)
and its contribution to amniotic fluid androgen levels is not
clearly established.

hCG
Aside from stimulating testosterone synthesis, hCG serves a
variety of functions, including pregnancy maintenance through
stimulation of the corpus luteum to secrete progesterone (129,
243). Additionally, hCG has been associated with angiogenesis,
mediation of immune tolerance, umbilical cord development,
myometrial contraction suppression, and fetal organ growth and
differentiation (244–246). To our knowledge, only one study
has directly examined 2nd trimester maternal serum hCG levels
in relation to ASD risk. Windham et al. (247) found a U-
shaped relationship (i.e., both higher and lower levels) between
hCG levels associated with increased ASD risk among offspring,
particularly in males.

Elevated hCG levels during the 2nd trimester have also
been linked to complications such as preeclampsia (248–250),
intrauterine growth restriction (IUGR) (248), pre-term delivery
(248, 250, 251), low birth weight (250), and fetal death (250, 251).
As the placenta secretes hCG in response to stress hormones
(252), an adverse prenatal environment may contribute to
steroid dysregulation in ASD through elevated hCG exerting its
influence on testosterone synthesis inmale fetuses. This proposed
mechanism of aberrations within the fetal steroid hormonal
milieu aligns with findings of elevated 2nd trimester amniotic
fluid testosterone levels associated with ASD described above.
Interestingly, hCG can also stimulate fetal adrenal DHEA(S)
secretion during the 2nd trimester (253). As DHEA(S) is a
substrate for placental estradiol synthesis, abnormalities in 2nd
trimester estradiol and testosterone linked to ASD development
may share a common genesis involving the placental response
to adversity.

Estrogens and Progesterone
While prior investigations have focused on androgens, recent
research studies have explored the potential role that estrogen
and progesterone may play in the development of ASD. Bilder
et al. (19) found significantly higher estradiol levels in early
2nd trimester maternal serum associated with ASD among
offspring. As described above, both ASD and comparison cohorts
were enriched for PNMS exposure. Along with higher estradiol
levels, lower SHBG levels were also identified, suggesting the
potentiation of estradiol activity in pregnancies associated with
ASD as SHBG binds biologically active estrogens rendering them
inert (254). Estradiol, rather than estriol, was selected as the
estrogen of interest for this study because maternal estradiol
levels represent placental estrogen activity more accurately
through estradiol’s substantially higher potency (255), longer
estrogen receptor binding duration (256), and higher maternal
serum concentrations (257, 258). Because maternal serum
estradiol levels result from, and reflect, placental estradiol
production by this gestation window (130), Bilder et al. (19)
interpreted these results as indicating increased ASD risk
associated with elevated placental estradiol production and
activity. Higher placental estradiol production could result
from greater fetal steroidogenic activity, and increased placental
estradiol activity could facilitate premature fetal HPA axis
maturation in the early 2nd trimester. Bilder et al. (19) did
not find a significant association between serum progesterone
concentrations and ASD risk.

Baron-Cohen et al. (219) also identified higher estrogen
levels (i.e., estradiol, estriol, and estrone), along with increased
progesterone levels, in 2nd trimester amniotic fluid of male
offspring with ASD relative to controls. Notably, elevated
estradiol was the most significant predictor of subsequent
ASD development. Baron-Cohen et al. (219) attributes the link
between higher amniotic estrogens, progesterone, and ASD
among offspring to increased fetal steroidogenic activity in ASD’s
etiologic pathway.

Elevated ASD risk associated with higher prenatal estrogen
levels in maternal serum (19) and amniotic fluid (219) contrast
with prior study results from Windham et al. (247), which
demonstrated lower unconjugated estriol levels in 2nd trimester
maternal serum. Estriol is a weak estrogen produced exclusively
during pregnancy and requires fetal liver enzyme activity in its
synthesis pathway (257, 258). Estriol levels in Windham et al.
(247) were initially measured as a component of a prenatal
integrated screening test for aneuploidy and neural tube defects.
Low maternal serum estriol levels have been used for decades
as a clinical indicator for obstetric complications (259), such as
placental insufficiency (260), fetal growth restriction (261), pre-
eclampsia (262), preterm birth (247), low birth weight (263),
and pregnancy loss (260). Windham et al. (247) attributes study
findings to the involvement of hormones in the development of
ASD through their influence on fetal development and signaling
activity in the CNS and immune system.

Cortisol
Baron-Cohen et al. (212) identified elevated cortisol levels in
the amniotic fluid collected during the pregnancies of male
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offspring who developed ASD, though this finding was not
replicated in Baron-Cohen et al. (219). However, Baron-Cohen
and colleagues (212, 219) conclude that the findings from both
studies support the presence of increase fetal steroidogenic
activity in ASD. The significant diurnal variation in serum
cortisol concentrations preempts its use as a biomarker in
bankedmaternal serum samples frommost large obstetric studies
because standardization of serum collection times for these
studies is typically not implemented.

Sex Hormone-Binding Globulin (SHBG)
Bilder et al. (19) found an inverse relationship between maternal
serum SHBG levels and risk for diabetes/hypertension exposure
and ASD. The highest SHBG levels were measured for the
cohort with neither PNMS exposure nor ASD. Conversely,
the lowest SHBG levels occurred in the cohort with both
PNMS exposure and ASD. In addition to binding estrogens and
testosterone, SHBG also serves as a serum biomarker for insulin
sensitivity that supersedes its relationship with sex hormones
regardless of sex, age, and pregnancy status (264). Even among
pregnancies without clinical PNMS manifestations, SHBG levels
were lower in the ASD cohort compared to either non-ASD
cohorts, suggesting the presence of exposure to a subclinical
metabolic condition during gestation in these offspring who
developed ASD. Unlike most serum biomarkers for insulin
sensitivity, SHBG measures require no specific collection time
(e.g., time of day or proximity to caloric consumption) to
ensure meaningful results interpretation. SHBG has been studied
as a predictive 1st and early 2nd trimester biomarker for the
emergence of gestational diabetes (265–267). Thus, SHBG is a
useful biomarker for investigating maternal insulin sensitivity as
a prenatal risk factor within maternal serum samples banked for
non-specific purposes.

“Estimated Fetal DHEA”
As a post hoc analysis, Bilder et al. (19) calculated a value
from maternal serum measurements of estradiol, DHEA, and
DHEAS to estimate the relative contribution by the fetal adrenal
gland to the DHEA substrate supply for placental estradiol
production (EF-DHEA). The area under the curve for EF-DHEA
used to predict ASD among offspring exceeded those of its
measured components. This was interpreted to indicate that
the relationship between elevated maternal serum estradiol and
increased ASD risk may in part be driven by excess fetal adrenal
activity in early 2nd trimester. The EF-DHEA calculation was
created specifically for this study and has not been validated
in animal models nor have these findings been replicated.
However, EF-DHEA findings are consistent with the amniotic
fluid results, particularly elevated cortisol, from Baron-Cohen
et al. (212) demonstrating an association between ASD among
offspring and increased fetal steroidogenic activity during this
gestational window.

Synthesis of Pertinent Biomarker Findings
Figure 3 links heightened in utero stress from inflammation,
stressors, and metabolic disturbances to perturbation within
the prenatal hormone milieu. Through pCRH stimulation, the

placenta upregulates fetal HPA axis activity in response to in
utero stress. Subsequently, the fetal adrenal glands increase
DHEA(S) synthesis leading to elevated placental estradiol
production. Higher placental estradiol and pCRH production
promotes HPA axis maturation denoted by fetal adrenal de novo
cortisol synthesis. In response to in utero stress, the placental
also increases hCG production which stimulates fetal gonadal
testosterone synthesis.

DISCUSSION

This review provides an up-to-date synopsis of the current
evidence and supported theories regarding the role that the
in utero steroid environment may play in ASD pathophysiology.
Considering placental steroid hormone biosynthesis,
metabolism, and transport (205), prenatal steroid dysregulation
may be attributed to disruptions in vital components of
placental structure and function in response to an adverse
maternofetoplacental environment. In particular, stress,
inflammation, and metabolic abnormalities can contribute to
morphological and functional placental changes that affect
nutrient and oxygen exchange, the protective transplacental
barrier, and hormone synthesis (268, 269).

Obstetric conditions associated with ASD that may contribute
to an adverse prenatal environment include hypertensive
disorders of pregnancy (i.e., chronic, gestational, de novo
or superimposed preeclampsia) (13, 14, 35–37), maternal
immune dysfunction (5, 7–9), pre-existing/gestational diabetes
(3, 10), pre-pregnancy obesity (11), gestational weight gain
(12), and PCOS (4, 15). Notably, common indicators or
complications of placental insufficiency also overlap with
ASD risk factors, including small for gestational age/in utero
growth restriction, prematurity, maternal infection, andmaternal
metabolic syndrome (16, 38–42). As the placenta is critical for
fetal growth and development, adverse prenatal environments
that impact the placenta may increase fetal stress and influence
fetal programming, thereby contributing to ASD etiology.

The placenta shares the sex of the fetus as it is derived
from extra-embryonic tissues (178). Numerous studies have
documented that placentas of male and female fetuses differ
in response to adverse prenatal environments (270–273).
Specifically, placental signaling and gene expression influence
sex-specific differences in fetal adaption to the in utero
environment related to nutrient availability, maternal stress,
and immune response (131, 202). In the setting of mild
adversity, ongoing somatic growth of male fetuses confers
increased vulnerability to subsequent adverse events (176, 177)
that can influence neurodevelopment. Additionally, evidence of
placental pathology appears more prominent from pregnancies
of male offspring with ASD compared to those of their female
counterparts. Further investigation of placental pathology in
ASD is needed, particularly as it relates to fetal/placental
sex differences.

Second trimester serves as a critical time for fetal steroidogenic
activity in regards to fetal HPA axis maturation. Multiple ASD
epidemiologic studies highlight the 2nd trimester as the period
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FIGURE 3 | Linking in utero stress to increased fetal steroidogenic activity and ASD biomarkers at mid-gestation.

of greatest fetal vulnerability to stressful maternal life events
(5, 6, 63). Bilder et al. (19) and Baron-Cohen et al. (212, 219)
interpret the link between higher estrogen levels and ASD risk
as an indicator of elevated fetal steroidogenic activity in the 2nd
trimester of offspring who develop ASD. While Baron-Cohen
et al. (212, 219) conceptualize fetal steroidogenic activity more
broadly, particularly in regards to fetal androgen production,
Bilder et al. (19) focuses on excess fetal adrenal activity and
premature fetal HPA axis maturation. By strengthening the
maternal-fetal cortisol gradient, placental estradiol reduces the
amount of maternal cortisol in the fetal compartment (139)
thereby easing maternal cortisol suppression of the fetal HPA
axis and promoting its maturation. Fetal steroidogenic activity
is enhanced by CRH released by the fetal hypothalamus and
placenta (124, 145, 274–276). CRH production is stimulated
by stress, inflammation, and hypoxia providing a mechanism
through which obstetrical adversity could contribute to increased
fetal steroidogenic activity and early HPA axis maturation (115,
150, 277).

The relationship between higher 2nd trimester estrogen levels
and increased ASD risk is intriguing as estrogen is widely
seen as an indicator of maternal and fetal health. Estradiol
acts to preserve fetal viability during in utero stress through
suppression of inflammation (278, 279) and uterine artery
dilation that increases oxygen and nutrient supply to the fetus
(280, 281). Estradiol also mediates several critical factors in
neurodevelopment providing an overall neuroprotective benefit
(162). From the perspective of fetal viability, excess estradiol
in the early 2nd trimester can stimulate precocious fetal HPA
axis maturation in preparation for extrauterine life. As described

above, low—rather than high—maternal serum estrogen levels
predict several conditions related to maternal and fetal adversity.
Therefore, it is possible that elevated estradiol in early 2nd
trimester maternal serum and amniotic fluid may be the result
of a compensatory rather than primarily pathologic mechanism.
However, it must be noted that the historical obstetric practice of
using a synthetic estrogen to foster healthy pregnancies was quite
misguided. The use of the synthetic estrogen diethylstilbestrol
(DES) in pregnant women during the mid-1900’s was halted
when exposed adolescent and young adult female offspring were
found to develop a rare type of cancer, vaginal adenocarcinoma
(282). Subsequent studies have found transgenerational adverse
effects of DES exposure, as reproductive tract and immunologic
abnormalities have occurred in exposed male and female
offspring (283). Grandchildren of exposed women were also
found to have a higher incidence of ADHD (284). To our
knowledge, there have been no studies published that report
on an epidemiologic investigation of ASD risk associated
with DES exposure. Although DES exposure differs in many
respects from increased placental estrogen synthesis, such a
study could improve understanding of estrogen’s potential role
in ASD’s etiology.

An early theory connecting the prenatal steroid environment
with ASD conceptualizes ASD as an extreme manifestation of
male cognitive traits and implicates excess in utero androgen
exposure in ASD’s etiology (158). Although elevated amniotic
testosterone levels were associated with the presence of ASD traits
in most (207–211), but not all studies (218), results regarding
ASD diagnosis and testosterone concentrations have been more
variable (212, 219). Two amniotic fluid studies and a maternal
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serum study found no relationship between testosterone and
ASD (19, 218, 219). Results from umbilical cord blood and
meconium analyses were mixed (222, 226). Disparate findings
on androgen biomarkers may be attributable to differences
in sample type, gestational timing, ASD outcome measures,
and cohort characteristics. Additional investigations are needed
which implement multiple sampling strategies and gestational
time points in a large obstetrical cohort to clarify the relationship
between androgen levels throughout pregnancy and ASD risk.

Overall, prior research findings have established that
an altered prenatal environment is a component of ASD
pathogenesis. However, the exact process detailing the
interaction between diverse prenatal factors and increased ASD
risk remains unclear. While several studies link various aspects of
perturbations in utero to ASD development, to our knowledge,
there has been a lack of a unifying paradigm. Based on our
current understanding, we propose that disruption within the
maternofetoplacental unit initiates a causal sequence resulting
in placental changes, thereby influencing fetal programming,
steroid hormone modulation, and HPA axis development
in ASD.

Factors that contribute to disruption within the
maternofetoplacental unit include metabolic disturbances,
inflammatory conditions, and stressors. These broad categories
are manifested by several obstetric conditions that are associated
with ASD development. The placenta reacts to changes in
utero through adaptations that differ based on sex, which are
disadvantageous to male fetuses. Fetal programming is affected,
which may have neurodevelopmental implications. Considering
the placenta’s endocrine functions, steroid hormone modulation
is also impacted which could alter HPA axis development and
functioning. This may be relevant to HPA axis dysregulation
found in some individuals with ASD.

Current literature findings support multidisciplinary
research efforts to investigate the manner in which the in
utero steroid milieu and fetal steroidogenic activity interact
with genetic/epigenetic, environmental, inflammatory, and
obstetrical ASD risk factors. Studies examining these interaction
effects on fetal neuroendocrine development may identify
feasible intervention targets that could reduce risk for neonatal
morbidity/mortality and childhood neurodevelopmental
disabilities. In particular, elucidating the link between the in
utero steroid environment and immune response may provide
an opportunity to optimize both immediate outcomes and
long-term neurodevelopmental functioning.
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