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Abstract

Motivation: Metabolic pathways are an important class of molecular networks consisting of com-

pounds, enzymes and their interactions. The understanding of global metabolic pathways is ex-

tremely important for various applications in ecology and pharmacology. However, large parts of

metabolic pathways remain unknown, and most organism-specific pathways contain many missing

enzymes. Results: In this study we propose a novel method to predict the enzyme orthologs that

catalyze the putative reactions to facilitate the de novo reconstruction of metabolic pathways from

metabolome-scale compound sets. The algorithm detects the chemical transformation patterns of

substrate–product pairs using chemical graph alignments, and constructs a set of enzyme-specific

classifiers to simultaneously predict all the enzyme orthologs that could catalyze the putative reac-

tions of the substrate–product pairs in the joint learning framework. The originality of the method

lies in its ability to make predictions for thousands of enzyme orthologs simultaneously, as well as its

extraction of enzyme-specific chemical transformation patterns of substrate–product pairs. We dem-

onstrate the usefulness of the proposed method by applying it to some ten thousands of metabolic

compounds, and analyze the extracted chemical transformation patterns that provide insights into

the characteristics and specificities of enzymes. The proposed method will open the door to both pri-

mary (central) and secondary metabolism in genomics research, increasing research productivity to

tackle a wide variety of environmental and public health matters.
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1 Introduction

Metabolic pathways are an important class of molecular networks

that consist of chemical compounds (or metabolites), enzyme pro-

teins and their interactions. The understanding of global metabolic

pathways is extremely important for various applications in ecology

(Heidel-Fischer and Vogel, 2015) and pharmacology (Newman and

Cragg, 2012). However, large parts of metabolic pathways remain

unknown, and most organism-specific pathways contain many miss-

ing enzymes. For example, it is estimated that more than one million

compounds exist in the plant kingdom (Afendi et al., 2012), al-

though the number of enzymes that are experimentally verified and

approved by the International Union of Biochemistry and Molecular

Biology (IUBMB) is only approximately 5600 (McDonald and

Tipton, 2014). This indicates our lack of knowledge on enzymatic

reactions (Fig. 1a) . It is still difficult to experimentally verify en-

zyme functions in biological processes; thus, there is a strong need

for in silico metabolic pathway reconstruction (Karp, 2004).

A variety of methods have been developed for the in silico recon-

struction of metabolic pathways. They can be categorized into three

approaches (Fig. 1). The most traditional approach assigns putative

enzyme genes to appropriate positions in pre-defined reference path-

ways based on sequence homology with genes across different
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organisms (Fig. 1b). This approach is useful for central metabolism

(often referred to as primary metabolism), which is common in

many organisms, and a number of software packages enabling this

approach, such as KAAS (Moriya et al., 2007), MG-RAST (Meyer

et al., 2008), Model SEED (Henry et al., 2010), MEGAN (Huson

et al., 2011), MAPLE (Takami et al., 2012), BlastKOALA and

GhostKOALA (Kanehisa et al., 2016), are available.

However, reference pathways are not available for most of the

surrounding metabolism (often referred to as secondary metabolism)

that forms a much larger part of the global metabolic pathway

(Fig. 1a), because most of the compounds and enzymes are specific

to a limited number of organisms and are poorly characterized. This

secondary metabolism contains a vast number of ‘orphan metabol-

ites’, the compounds for which no enzymatic reactions or enzyme

proteins are yet known. Therefore, one of the challenging issues in

systems biology is the de novo reconstruction of global metabolic

pathways, i.e. identifying previously unknown reactions and en-

zymes that are not yet included in the reference pathway maps.

The de novo reconstruction of metabolic pathways has two

goals: (i) elucidation of putative reactions (previously unknown re-

actions) among compounds and (ii) elucidation of the associated en-

zymes catalyzing the putative reactions. Toward the first goal,

several in silico methods have been developed based on the chemical

structures of compounds by hypothesizing intermediate compounds

necessary between the source and target compounds (Darvas, 1988;

Ellis et al., 2008; Faulon and Sault, 2001; Greene et al., 1999;

Moriya et al., 2010; Talafous et al., 1994) or by predicting the en-

zymatic reaction-likeness among many compounds; that is, whether

given pairs of compounds can be chemically interconverted by single

enzymatic reactions (Hatzimanikatis et al., 2005; Kotera et al.,

2008, 2013, 2014a; Nakamura et al., 2012; Yamanishi et al., 2015).

All of these previous methods fail to address the second goal, i.e. en-

zyme prediction for previously unknown reactions.

The use of genomic features and other omics data (gene orders,

phylogenetic profiles, gene expression profiles) is a possible ap-

proach to enzyme prediction (Enright et al., 1999; Huynen et al.,

2000; Kharchenko et al., 2004; Marcotte et al., 1999; Osterman

and Overbeek, 2003; Overbeek et al., 1999; Yamanishi et al.,

2007). However, this approach is applicable only to missing en-

zymes that are located near well-characterized enzymes on known

metabolic pathways (Fig. 1c), so it cannot handle reactions outside

of existing pathway maps.

Enzyme prediction is related to reaction classification. Previous

studies have focused on the automated classification of enzymatic

reactions from chemical structures (Egelhofer et al., 2010; Hu et al.,

2010; Kotera et al., 2004; Latino and Aires-de Sousa, 2009;

Matsuta et al., 2013; Nath and Mitchell, 2012; O’Boyle et al., 2007;

Rahman et al., 2014; Yamanishi et al., 2009). All these previous

methods attempted to predict the Enzyme Commission (EC) num-

bers or sub-subclasses; that is, grouping enzymes by known reac-

tions. However, because of the principle of EC numbers and sub-

subclasses, it is not suitable to use them for predicting enzymes that

catalyze previously unknown reactions. Thus, the direct use of en-

zyme orthologs (grouping enzymes by sequence homology) is

required.

In this article, we propose a novel method for the de novo recon-

struction of metabolic pathways using metabolome-scale compound

sets (Fig. 1d). This approach enables the prediction of putative reac-

tion networks among compounds and the prediction of the associ-

ated enzyme orthologs catalyzing the putative reactions in a

seamless manner. We have already established an efficient super-

vised method that enables the prediction of putative reaction net-

works among compounds (Kotera et al., 2013, 2014a; Yamanishi

et al., 2015). In this work, we develop a novel algorithm to predict

enzyme orthologs catalyzing the putative reactions. This new algo-

rithm detects the chemical transformation patterns of substrate–

product pairs using chemical graph alignments, and constructs a set

of joint learning (JL)-based classifiers to simultaneously predict the

enzyme orthologs that could catalyze the putative reactions of these

substrate–product pairs. In the results section, we demonstrate the

usefulness of the proposed method by applying it to some tens of

thousands of metabolic compounds, and analyzing the extracted

chemical transformation patterns that provide insight into the char-

acteristics and specificities of enzymes. The proposed method will

open the door to both primary (central) and secondary metabolism

in genomics research, increasing research productivity to tackle a

wide variety of environmental and public health matters.

2 Materials

2.1 Enzyme orthologs
Enzymatic reactions and their associated enzyme orthologs were ob-

tained from the KEGG database (Kanehisa et al., 2014). An ortho-

log is a group of homologous protein-encoding genes that are

thought to have the same biological function in different organisms.

To retrieve enzyme orthologs, we used KEGG Orthology (KO) data-

base. Each KO entry has an identifier (K number) consisting of the

letter ‘K’ and a following five-digit numeral (e.g. K00001 for alcohol

dehydrogenase [EC:1.1.1.1]). Starting from 17 553 KO entries, we

collected only the orthologs that included complete EC numbers in

their definitions (incomplete EC numbers such as EC 1.1.1.-were

(a) (d)

(b)
Reference pathway

Organism-specific pathway

Enzyme prediction by sequence homology (c) Enzyme prediction by gene co-expression etc. 

de novo metabolic pathway reconstruction
from chemical structures

Known metabolic pathway and orphan metabolites

Fig. 1. Possible approaches for metabolic pathway reconstruction. Nodes and

edges indicate metabolites (chemical compounds) and reactions, respect-

ively. Black nodes indicate compounds for which at least one reaction is

known. White nodes indicate compounds for which chemical structures are

identified but no reactions are known (referred to as ‘orphan metabolites’).

Bold solid lines indicate well-characterized enzymatic reactions for which at

least an enzyme is known. Dotted lines indicate putative reactions (previously

unknown reactions) for which no enzymes are not known. (a) Known meta-

bolic pathways are surrounded by many orphan metabolites. (b) Enzyme pre-

diction by sequence homology is applicable to reactions with known

enzymes. (c) Missing enzyme prediction is performed with gene/protein simi-

larity based on gene co-expression and other omics data. (d) Enzyme predic-

tion by chemical structures, which is the focus of this study, enables the de

novo reconstruction of metabolic pathway by finding possible enzymes for

putative reactions involving orphan metabolites
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not considered); 3584 orthologs were obtained. In this study, we

refer to such orthologs as ‘an enzyme ortholog’, or just ‘an enzyme’

for short. We use the word ‘an enzyme protein’ when we mean one

of the proteins belonging to the enzyme ortholog.

A sequence similarity matrix of all enzyme orthologs was con-

structed as follows. First, we regarded at most three enzyme proteins

present in eukaryotes and also in prokaryotes as the representative

proteins for each enzyme ortholog. Subsequently, we evaluated the

similarity among the enzyme orthologs using the maximum value of

Smith-Waterman scores (Smith and Waterman, 1981), from the all-

to-all comparison of enzyme proteins between enzyme orthologs.

2.2 Chemical structures of metabolic compounds
The chemical structures of metabolites (compounds) were retrieved

from the KEGG LIGAND database (Kanehisa et al., 2014), and are

converted to the KEGG Chemical Function (KCF) format (Hattori

et al., 2003). In the KCF format, atoms and bonds in a chemical

structure were represented as vertices and edges, respectively (with

the exception of hydrogen atoms). Each vertex is given a label repre-

senting different physicochemical properties [e.g. ‘C1a’ for a methyl

carbon (CH3�)]. Hydrogen atoms were implicitly represented in the

attached atoms (see http://www.genome.jp/kegg/reaction/KCF.

html). Chemically identical compounds with the same structures

(duplicates) were removed, so the chemical structures of all com-

pounds were unique. A total of 15 714 metabolic compounds were

used in this study. The number of all possible compound–compound

pairs (involving 15 714 compounds) is 246 914 082.

2.3 Substrate–product pairs in enzymatic reactions
Substrate–product pairs in enzymatic reactions (also referred to as

reactant pairs) were obtained from the KEGG RPAIR database

(Kanehisa et al., 2014). A substrate–product pair is defined as the

pair of a substrate and a product with a conserved chemical moiety

in an enzymatic reaction. For example, an enzymatic reaction

‘ethanolþNADþ ¼> acetaldehydeþNADHþHþ’ is decomposed

into two substrate–product pairs ‘ethanol - acetaldehyde’ and

‘NADþ - NADH’ based on the flow of atoms other than hydrogen

atoms. Of these, frequently used pairs such as the oxidoreduction

cofactors ‘NADþ - NADH’ are given the label ‘cofac’, whereas the

remaining pairs such as ‘ethanol - acetaldehyde’ are given the label

‘main’. In this study, the substrate–product pairs that have only the

‘main’ label were retrieved, and different reaction directions were

dealt with as different pairs (e.g. ‘ethanol–acetaldehyde’ and ‘acetal-

dehyde–ethanol’) in order to avoid missing the similarity between

the forward direction of a reaction and the reverse of another

reaction.

In order to explain the value of substrate–product pairs, we clari-

fied the difference between the two vocabularies ‘reaction’ and ‘trans-

formation’. The use of the word ‘reaction’ concerns all molecules in

the equation, such as ‘ethanolþNADþ ¼> acetaldehydeþ
NADHþHþ’, whereas the use of ‘transformation’ only concerns a

change in the substrate, such as ‘ethanol ¼> acetaldehyde’ (Jones and

Bunnett, 1989). In other words, a substrate–product pair describes a

transformation. In analyzing putative novel reactions that are not yet

well characterized, it is more useful to deal with transformations, be-

cause transformations are available in many cases even when the reac-

tions are not apparent (Kotera et al., 2014b). We therefore use

substrate–product pairs for the de novo reconstruction of metabolic

pathways. For the sake of simplicity, we use the word reaction in this

paper, considering that a substrate–product pair partially describes

the characteristics of a reaction.

We used 7022 substrate–product pairs whose enzymes are

known as gold standard data, in which 2514 out of 3584 enzyme

orthologs were assigned to at least one substrate–product pair.

Known substrate–product pairs were regarded as positive examples

for one of the 2514 enzyme orthologs, whereas the remaining sub-

strate–product pairs were regarded as negative examples for the en-

zyme ortholog. Note that the numbers of positive examples and

negative examples differ from enzyme to enzyme.

2.4 Chemical transformation pattern descriptors
The design of chemical transformation patterns of substrate–prod-

uct pairs is crucial for the task of enzyme prediction. We represented

each substrate–product pair by a high-dimensional descriptor based

on chemical substructure changes between a substrate and a product

using Pairwise Chemical Aligner (PACHA), because it worked the

best among existing chemical descriptors for enzymatic reaction-

likeness prediction according to previous work (Yamanishi et al.,

2015). We applied PACHA to perform a chemical graph alignment

in order to detect chemical changes between two chemical com-

pounds, and represented each substrate–product pair as an integer-

valued vector (the PACHA feature vector) that describes conserved

atoms, as well as generated and eliminated bonds. As the result of

this effort, 7022 substrate–product pairs were represented by 3569-

dimensional PACHA feature vectors.

We also applied this operation to all possible pairs of compounds

in addition to known substrate–product pairs. Note that, in this art-

icle, we use the words ‘compound–compound pairs’ when we con-

sider all possible pairs, and the words ‘substrate–product pairs’

when we specifically mention the pairs that occur in known reac-

tions. As the result of this effort, 246 914 082 compound–com-

pound pairs involving 15 714 compounds were represented by

3569-dimensional PACHA feature vectors.

3 Methods

The de novo reconstruction of metabolic pathways consists of (i)

prediction of putative reaction networks and (ii) prediction of the

associated enzymes catalyzing the putative reactions. Here we pre-

sent a novel algorithm for the second task.

3.1 Predictive models for enzyme ortholog prediction
We address the problem of enzyme ortholog prediction by focusing

on the chemical transformation patterns of compound–compound

pairs (e.g. substrate–product pairs). Note that there are thousands of

candidates for enzyme orthologs, and different enzyme orthologs

may have common characteristics in terms of reaction mechanisms

and amino acid sequences. The same reactions are sometimes cata-

lyzed by multiple enzymes. Thus, we propose to formulate the prob-

lem in the framework of supervised multiple label prediction.

Suppose that there are M enzyme orthologs, and we are given N

compounds as C1;C2; . . . ;CN and all possible compound–com-

pound pairs as ðC1;C2Þ; ðC1;C3Þ; . . . ; ðCN�1;CNÞ. We consider pre-

dicting which enzyme orthologs would catalyze the putative

reaction; i.e. the (i, j)-th compound–compound pair (Ci, Cj)

i; j ¼ 1; 2; . . . ;N. Each compound–compound pair (Ci, Cj) is repre-

sented by a D-dimensional feature vector as /ðCi;CjÞ. For example,

a compound–compound pair is represented by the PACHA feature

vector based on the chemical graph alignment between the two com-

pound structures in this study.

We construct a learning set of compound–compound pairs that

are substrate–product pairs for which the associated enzyme
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orthologs are known. There are M candidates for enzyme orthologs,

and each compound–compound pair in the learning set is assigned a

binary class label representing the m-th enzyme ortholog

(m ¼ 1; 2; . . . ;M). Let ym;i;j 2 fþ1;�1g be the class label for the

m-th enzyme ortholog assigned to (Ci, Cj), where ym;i;j ¼ þ1

means that (Ci, Cj) is catalyzed by the m-th enzyme ortholog, and

ym;i;j ¼ �1 means that (Ci, Cj) is not catalyzed by the m-th enzyme

ortholog.

We construct a predictive model to predict whether or not a

given compound–compound pair (Ci, Cj) would be catalyzed by the

m-th enzyme ortholog (m ¼ 1;2; . . . ;M). Linear models are a useful

tool to analyze extremely high-dimensional data for both prediction

and feature extraction tasks. Thus, we adopt a linear function

defined as fmðCi;CjÞ ¼ wm
T/ðCi;CjÞ, where wm is a D-dimensional

weight vector for the m-th enzyme ortholog. We represent a set

of M model weights by a D�M matrix defined as

W :¼ ½w1;w2; . . . ;wM�, and estimate the weight matrix W by mini-

mizing an objective function based on the learning set.

3.2 Joint learning of multiple models
In order to overcome the scarcity of pre-knowledge concerning rela-

tionships between substrate–product pairs and enzyme orthologs,

we propose to jointly learn individual predictive models f1, f2,. . .,fM,

sharing information across M enzyme orthologs.

We attempt to jointly estimate all the weight vectors

w1; w2,. . .,wM in the models by minimizing the logistic loss as

follows:

RðWÞ ¼
XM

m¼1

XN

i¼1

Xi�1

j¼1
Pm;i;j þ

XN

j¼iþ1
Pm;i;j

n o
;

where

Pm;i;j ¼ logð1þ expð�ym;i;jwm
T/ðCi;CjÞÞÞ:

We introduce a regularization term XðWÞ to the loss function in

order to enhance the generalization properties. Thus, the optimiza-

tion problem is written as follows:

min
W

RðWÞ þ XðWÞ: (1)

Here we introduce two kinds of regularization terms. First, we

use a standard ridge regularization term to avoid the over-fitting

problem, which is defined as

Xr :¼ 1

2
TrðWWTÞ:

Second, we design another regularization term reflecting the

amino acid sequence similarities among enzyme orthologs. In this

study we evaluated the similarity among enzyme orthologs using the

Smith-Waterman score, and construct an M � M similarity matrix S

for enzyme orthologs in which each element Si;j is a similarity score

between the i-th and j-th enzyme orthologs (see the Materials section

for more details). Then, we introduce the following regularization

term:

XsðWÞ :¼ 1

4

XM

l¼1

XM

m¼1
Sl;m

�����
wlffiffiffiffiffiffiffi
Kl;l

p � wmffiffiffiffiffiffiffiffiffiffiffi
Km;m

p
�����

¼ 1

2
TrðWLsW

TÞ;

where k � k is the Euclidean norm, K is a diagonal matrix defined as

Kl;l :¼
PM

m¼1 Sl;m, and Ls is a symmetric normalized Laplacian

defined as K�1=2ðK� SÞK�1=2. The regularization term XsðWÞ has

the effect of making the weight vectors wi and wj close to each other

if Sl;m is high.

Finally, we introduce the following regularization term in the op-

timization problem (1):

XðWÞ :¼ ksXsðWÞ þ krXrðWÞ;

where ks � 0 and kr � 0 are hyper-parameters to control the

strength of the regularization terms Xs and Xr, respectively.

Because Laplacian matrices are positive-semidefinite, the loss func-

tion and the regularization terms are convex. Thus, the optimization

problem (1) can be solved by using standard gradient-based methods.

We apply the Limited memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) algorithm (Liu and Nocedal, 1989) with the following

derivatives:

@RðWÞ
@W

� �
�;m
¼
XN

i¼1

Xi�1

j¼1

@Pm;i;j

@wm
þ
XN

j¼iþ1

@Pm;i;j

@wm

� �
;

where �½ ��;m denotes the m-th column vector of a matrix, and the de-

rivatives are calculated as follows:

@Pm;i;j

@wm
¼ �/ðCi;CjÞ

ym;i;jexpð�ym;i;jwm
T/ðCi;CjÞÞ

1þ expð�ym;i;jwm
T/ðCi;CjÞÞ

:

The derivatives of the regularization terms can be calculated as

follows:

@XsðWÞ
@W

¼WLs;
@XrðWÞ
@W

¼W:

3.3 New enzyme ortholog prediction for any

compound–compound pairs
Once we have learned the predictive models, which is estimating W,

we can apply the predictive model to newly given compound–

compound pairs for which the associated enzyme orthologs are un-

known. Given a new compound–compound pair ðCðnewÞ
k ;C

ðnewÞ
‘ Þ

ðk; l ¼ 1; 2; . . . :;NnewÞ, where Nnew is the number of new unique

compounds, the enzyme ortholog prediction is performed with the

learned model fmðm ¼ 1; 2; . . . ;MÞ. If the output of fmðCðnewÞ
k ;C

ðnewÞ
‘ Þ

is a high score, the new compound–compound pair is predicted to be

catalyzed by the m-th enzyme ortholog.

3.4 Feature extraction of enzyme-specific chemical

transformation patterns
Linear models also have an interpretability of features. Since each

element of a feature vector /ðCi;CjÞ corresponds to an element of

the weight vector wm, we can extract effective features contributing

to the prediction by sorting the feature elements of /ðCi;CjÞ accord-

ing to the corresponding values of the weight vector wm in the model

fmðm ¼ 1; 2; . . . ;MÞ. In this study, we extract highly weighted fea-

tures as the enzyme-specific chemical transformation patterns of the

m-th enzyme ortholog.

4 Results

4.1 Performance evaluation of the enzyme ortholog

prediction
We tested the ability of the proposed JL method to predict enzyme

orthologs from compound–compound pairs (i.e. substrate–product

pairs) based on their chemical structure data. We used the PACHA

feature vectors to represent the chemical substructure transform-

ation patterns of compound–compound pairs. As a baseline method,

Simultaneous prediction of enzyme orthologs from chemical transformation patterns i281
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we tested the nearest neighbor (NN) method, because the similarity

search is the most popular reaction classification approach (Kotera

et al., 2004; Rahman et al., 2014; Yamanishi et al., 2009), assuming

that the substrate–product pairs associated with the same enzyme

are likely to share conserved chemical substructures and their trans-

formation patterns.

As gold standard data, we used 7070 substrate–product pairs

associated with at least one of the 2514 enzyme orthologs, where

compound–compound pairs associated with an enzyme ortholog

were regarded as positive examples and the other compound–com-

pound pairs were regarded as negative examples for the enzyme

ortholog. We performed the 5-fold cross-validation as follows. First,

we randomly split compound–compound pairs in the gold standard

data into five subsets of roughly equal size. Second, we took each

subset as a test set and the remaining four subsets as a training set.

Note that we used the same training set and the same test set across

all enzyme orthologs. Third, we constructed predictive models based

on only the training set. Finally, we evaluated the prediction accur-

acy using the prediction scores of compound–compound pairs in the

test set over the five folds. We evaluated the prediction performance

using the receiver operating characteristic (ROC) curve, and sum-

marized the performance by the area under the ROC curve (AUC)

score.

Figure 2 shows the AUC scores for the 2514 enzyme orthologs

resulting from the five-fold cross-validation experiments with the

baseline NN method and the proposed JL method. The upper three

panels show index-plots of the AUC scores (upper left and middle)

and a scatter-plot of the AUC scores (upper right) for the NN and JL

methods. In most cases, the JL method outperformed the NN

method in terms of higher AUC scores, suggesting that JL is mean-

ingful for the prediction of enzyme orthologs. These results suggest

that the proposed JL method can capture the important features of

enzyme-specific changes in chemical structure that occur during re-

actions more effectively than NN method.

The bottom left and bottom middle panels in Figure 2 show the

AUC scores based on the degrees (the number of positive examples

for each enzyme ortholog) for the NN method and the JL method,

respectively. It can be seen that the AUC scores generally increase

with the degrees of enzyme orthologs. This implies that it is difficult

to predict enzyme orthologs from compound–compound pairs when

the number of known substrate–product pairs in the learning set is

small because of the narrow substrate specificity of enzymes. The

bottom right panel in Figure 2 shows a comparison of the average

AUC scores calculated on the same degrees, obtained using the NN

method and the JL method. The JL method worked better than the

NN method for any degree, which suggests that the JL method can

effectively predict the responsible enzyme orthologs of given com-

pound–compound pairs in practice.

Figure 3 shows several examples of enzyme orthologs and

known reactions with various AUC scores obtained while perform-

ing the 5-fold cross-validation experiments. In general, the enzyme

orthologs with high AUC scores tend to act on a relatively large

number of substrates, mediating common types of chemical changes

to the characteristic common substructures. A typical example is

K05278 (flavonol synthase), which is known to act on four sub-

strates, all mediating the hydroxylation of flavonoid structures.

K08710 (N-isopropylammelide isopropylaminohydrolases) are

known to catalyze two reactions (RP09384 and RP05147). These re-

actions are not exactly the same type. RP09384 is the hydrolysis of a

primary amine (R-NH2), while RP05147 is the hydrolysis of a sec-

ondary amine (R-NH-R0). Nevertheless, they share common charac-

teristics in terms of reactions (hydrolysis of an amine) and a

conserved substructure (an ammelide residue), resulting in a rela-

tively high AUC score. If an ortholog is associated with just one
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Fig. 2. Evaluation of the ability of the baseline NN method and the proposed JL method to predict 2514 enzyme orthologs. The upper left and upper middle panels

show index-plots of the AUC scores of NN and JL, respectively. The upper right panel shows a scatter-plot of the AUC scores between NN and JL. The bottom left

and bottom middle panels show scatter-plots of the AUC scores against the degrees (the number of positive examples for each enzyme ortholog) for NN and JL,

respectively. The bottom right panel shows a scatter-plot of the average AUC scores calculated on the same degrees between NN and JL
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known reaction and the reaction has fewer characteristics, it is still

difficult to yield high AUC scores (e.g. K00541 and K00933).

4.2 Extraction of enzyme-specific chemical transforma-

tion patterns
The proposed predictive models can extract enzyme ortholog-

specific chemical transformation patterns based on highly weighted

features in the models. The extracted features correspond to the

elements of the PACHA feature vectors, which represent the con-

served atoms, the atoms in which the physicochemical properties (or

the functional groups) changed, and the chemical bonds generated/

eliminated during the reaction.

Figure 4 shows several examples of the extracted chemical trans-

formation patterns. The first example is K01592, tyrosine decarb-

oxylase [EC:4.1.1.25]. This enzyme is known to catalyze two

reactions, RP01073 and RP01958, which are the same type of reac-

tion, but with different substrates (Fig. 4a, left). The chemical align-

ment highlighted atoms and chemical bonds that were conserved

and changed (Fig. 4a, middle), and they were represented as the

PACHA feature vectors (Fig. 4a, right). The two reactions catalyzed

by the enzyme ortholog K01592 share many features in common,

including ‘e:C1c-C6a’, which represents decarboxylation from a

branched sp3 carbon, ‘a:C1c¼C1b’, which represents the transform-

ation of a branched sp3 carbon into a methylene carbon, and

‘a:N1a¼N1a’, which represents the conserved amino group. These

three characteristics can be considered collectively and referred to as

‘decarboxylation from alpha-amino acids’. These common charac-

teristics were represented as the non-zero elements in the PACHA

feature vectors, and the corresponding non-zero elements were

highly weighted in the models.

The second example is K00052, 3-isopropylmalate dehydrogen-

ase [EC:1.1.1.85], which is also known to act on two different

substrates (Fig. 4b, left). The reaction converting D-erythro-3-

methylmalate (C06032) into 2-oxobutanoate (C00109) involves

two chemical changes (RP01224): dehydrogenation of a secondary

hydroxy group ‘a:O1a¼O5a,” and decarboxylation from a

branched sp3 carbon ‘e:C1c-C6a’. The second substrate is 3-isopro-

pylmalate (C04411). It is known in this case that the enzyme cataly-

sis consists of two steps (RP04067 and RP01667). The

dehydrogenation of hydroxy group ‘a:O1a¼O5a’ occurs in the first

step (RP04067), and the spontaneous decarboxylation from a

branched sp3 carbon ‘e:C1c-C6a’ (and ‘a:C1c¼C1b’) occurs in the

second step. Because of this property, these two characteristics are

separately represented by two PACHA feature vectors, and the cor-

responding non-zero elements were highly weighted in the models.

In summary, these two examples have common characteristics

(both mediate decarboxylation) and different characteristics (only

K00052 mediates dehydrogenation, and the conserved atoms are

also different). Our method successfully extracted both the common

and different characteristics coded in their PACHA feature vectors.

4.3 Large-scale new predictions for enzyme orthologs
Finally, we performed a large-scale reconstruction of the metabolic

pathways connecting 15 714 compounds by predicting the enzym-

atic reaction-likeness and the associated enzyme orthologs for all

possible compound–compound pairs (246 914 082 pairs). First, we

performed the enzymatic reaction-likeness prediction using a previ-

ously developed method (Yamanishi et al., 2015). This provided

54 919 compound–compound pairs as new substrate–product pairs

in reactions. Note that the corresponding enzyme orthologs are not

known. Second, we made a comprehensive prediction of the enzyme

orthologs for the 54 919 compound–compound pairs using the JL

method proposed in this paper. We trained predictive models for

2514 enzyme orthologs using all substrate–product pairs in the gold

standard data, and applied the predictive models to the 54 919 com-

pound–compound pairs (potential substrate–product pairs). As the

result of this effort, we assigned high scoring enzyme ortholog candi-

dates to each of the compound–compound pairs.

Figure 5 shows examples of newly predicted associations be-

tween reactions and enzyme orthologs. Figure 5a and b show the re-

sults for the enzyme orthologs K01592 and K00052, respectively.

Note that K01592 and K00052 were also analyzed in Figure 4 in the

previous subsection. For the enzyme ortholog K01592, the reactions

RP01073 and RP01958 have many common PACHA features such

as ‘e:C1c-C6a’, ‘a:C1c¼C1b.’ and ‘a:N1a¼N1a.’, which represent

the characteristic ‘decarboxylation of alpha-amimo acids’ (Fig. 4a).

The newly predicted reactions for K01592 also have the same char-

acteristics (Fig. 5a), of which the first reaction was verified in the

previous study (Pessione et al., 2009).

In contrast, for the enzyme ortholog K00052, the reac-

tion RP01224 has PACHA features such as ‘a:C1c¼C1b’,

‘a:O1a¼O5a’, ‘a:C1c¼C5a’ and ‘e:C1c-C6a’ (Fig. 4b). The two

K05278 flavonol synthase [EC:1.14.11.23] AUC=1.0

K08710 N-isopropylammelide isopropylaminohydrolase [EC:3.5.99.4] AUC=0.91

15.0=CUA]2.3.7.2:CE[ esanik enitaerc 33900K16.0=CUA]1.1.1.2:CE[ esarefsnartlyhtem-N edimanitocin 14500K

01020PR97720PR

RP05147RP09384

RP01398 RP00572

Fig. 3. Examples of enzyme orthologs and known reactions with various AUC scores obtained while performing the five-fold cross-validation experiments
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(a)

(b) K00052 3-isopropylmalate dehydrogenase [EC:1.1.1.85]

K01592 tyrosine decarboxylase [EC:4.1.1.25]   

Fig. 4. Examples of extracted features as enzyme-specific chemical transformation patterns. (a) The left panel shows two substrate–product pairs (RP01073 and

RP01958) associated with enzyme ortholog K01592, tyrosine decarboxylase. (b) The left panel shows three substrate–product pairs (RP01224, RP04067 and

RP01667) associated with enzyme ortholog K00052, 3-isopropylmalate dehydrogenase. In (a) and (b), the chemical graph alignments of the compounds are

shown in the middle. Red dashed lines indicate the elimination of chemical bonds, red dotted lines indicate the atoms that change their labels (functional groups),

and blue dotted lines indicate the atoms that are preserved during the reaction. The corresponding PACHA feature vectors are shown at the right. Features repre-

senting conserved chemical substructures are colored black and the features representing chemical changes are colored red

Fig. 5. Examples of newly predicted associations between reactions and enzyme orthologs. Four predicted reactions are shown for (a) K01592 and (b) K00052, re-

spectively. Known reactions catalyzed by (c) K01824 and (d) K00213 seem similar, and the predicted reactions for these enzyme orthologs K01824 and K00213 are

the same, as shown in (e)
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reactions RP04067 and RP01667 occur consecutively, and the

reaction RP04067 has the former two PACHA features (i.e.

‘a:C1c¼C1b’ and ‘a:O1a¼O5a’), representing the dehydrogenation

of a secondary hydroxyl group. The reaction RP01667 has the latter

two PACHA features (i.e. ‘a:C1c¼C5a’ and ‘e:C1c-C6a’), repre-

senting decarboxylation from a branched sp3 carbon. The extracted

two PACHA features distinguished these two characteristics. The

newly predicted reactions for K00052 have one of these characteris-

tics (Fig. 5b), of which the first reaction was verified in the previous

study (Suzuki et al., 1997).

As another example, the enzyme orthologs K01824 (cholesterol

delta-isomerase [EC:5.3.3.5]) and K00213 (7-dehydrocholesterol re-

ductase [EC:1.3.1.21]) mediate similar reactions involving similar

substrates. K01824 catalyzes the intramolecular translocation of

double bonds (Fig. 5c). K00213 catalyzes the dehydrogenation of a

carbon–carbon bond to yield a double bond (Fig. 5d). In other

words, one of the common characteristics between K01824 and

K00213 is the dehydrogenation (intra- or inter-molecular) of a

cholesterol-related substrate. Because of these common characteris-

tics, the newly predicted reactions for the two enzyme orthologs

were the same (Fig. 5e), and the second reaction was verified to be

catalyzed by 7-dehydrocholesterol reductase in the previous study

(Shefer et al., 1998). In summary, our proposed method allows us to

find possible reactions for certain enzyme orthologs and to find pos-

sible enzyme orthologs catalyzing similar reactions.

5 Discussion

In this study, we proposed a novel method for the de novo recon-

struction of metabolic pathways from metabolome-scale compound

sets. This was made possible by elucidating the putative reaction

networks among compounds and by predicting the associated en-

zyme orthologs catalyzing the putative reactions in a seamless man-

nar. Particularly, we developed a novel algorithm to predict enzyme

orthologs catalyzing the putative reactions in the JL framework. The

originality of the method lies in its ability to make predictions for

thousands of enzyme orthologs simultaneously, as well as its extrac-

tion of enzyme-specific chemical transformation patterns of sub-

strate–product pairs. We demonstrated the usefulness of the

proposed method in terms of prediction accuracy, large-scale applic-

ability and interpretability of the predictive models. The proposed

method will enable us to analyze both primary (central) and second-

ary metabolism as well as ‘underground metabolism’, the series of

alternative reactions by known enzymes (Notebaart et al., 2014;

Colin et al., 2015) which is expected to be useful for various

applications.

Here we elaborate on the importance of predicting enzyme

orthologs rather than predicting EC numbers. There have been sev-

eral previous studies to predict EC numbers from chemical struc-

tures (Egelhofer et al., 2010; Hu et al., 2010; Kotera et al., 2004;

Latino and Aires-de Sousa, 2009; Matsuta et al., 2013; Nath and

Mitchell, 2012; O’Boyle et al., 2007; Rahman et al., 2014;

Yamanishi et al., 2009). An EC number consists of four numerals

connected by dots. The first three numerals (EC sub-subclasses) rep-

resent an enzyme classification based on the reactions they catalyze,

whereas full EC numbers (including the fourth numeral) are enzyme

identifiers, rather than an enzyme classification. When an enzyme is

found to catalyze a previously unknown reaction, a new EC number

is assigned (McDonald and Tipton, 2014). This makes it reasonable

to find existing EC numbers for a known reaction, but it makes no

sense to predict existing EC numbers (including the fourth digit) for

a previously unknown reaction. In contrast, it still makes sense to

predict existing EC sub-subclasses for a previously unknown reac-

tion. However, the number of EC sub-subclasses is much smaller

than the number of enzyme orthologs, meaning that an EC sub-

subclass generally corresponds to many enzyme orthologs, which

makes it ineffective to use EC sub-subclasses for enzyme prediction.

For this reason, we attempted to directly link enzyme orthologs to

reactions.

An ortholog is a group of highly homologous genes or proteins

that are considered to have the same biological function across dif-

ferent organisms. Examples include Clusters of Orthologous Groups

(Natale et al., 2000) and KO (Kanehisa et al., 2014). Theoretically,

any set of ortholog groups can be used in the analysis, but in this

study we used the KO database because of its higher coverage. To

date, 17 228 orthologs have been defined in the KO database, of

which there are 3584 enzyme orthologs. The number of enzyme

orthologs is larger than the number of EC sub-subclasses (281 EC

sub-subclasses). More importantly, enzyme orthologs represent

groups of enzymes based on the sequence homology, not on the re-

actions they catalyze. Therefore the enzyme function may change

due to amino acid substitutions. A limited number of enzyme pro-

teins within an enzyme ortholog catalyze a verified reaction. Some

enzyme proteins may catalyze the same reaction or different reac-

tions, and others may catalyze no reaction at all. It is therefore rea-

sonable to assume that an enzyme ortholog may catalyze a novel

reaction that is yet to be identified.

In order to elaborate on our results, we examined the distribu-

tion of sequence similarity calculated using the Smith-Waterman

score (Smith and Waterman, 1981) within the same enzyme ortho-

logs and between different enzyme orthologs. If the hierarchical clas-

sification of enzymes by EC numbers reflected the similarity of

enzyme proteins, then enzymes in the same EC sub-subclass whould

be more similar than those in different EC sub-subclasses. However,

this is not always true. The first, second and third box-plots in

Figure 6 show the distributions of sequence similarity scores among

enzymes associated with EC 4.1.1.25 and EC 1.1.1.85 (see Figs. 4,
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Fig. 6. Distributions of the sequence similarity scores within the same, and

between the different EC sub-subclasses. The first, second and third box-plots

show the distributions of the sequence similarity scores of enzymes belong-

ing to EC 4.1.1.25 and the ‘EC 4.1.1.*’ (enzymes within EC 4.1.1 but not EC

4.1.1.25), enzymes belonging to EC 1.1.1.85 and the ‘EC 1.1.1.*’ (enzymes

within EC 1.1.1 but not EC 1.1.1.85), and enzymes belonging to EC 4.1.1.25

and EC 1.1.1.85, respectively. The fourth, fifth and sixth box-plots show the

distributions of the sequence similarity scores of enzymes belonging to EC

5.3.3.5 and the ‘EC 5.3.3.*’ (enzymes within EC 5.3.3 but not EC 5.3.3.5), en-

zymes belonging to EC 1.3.1.21 and the ‘EC 1.3.1.*’ (enzymes within EC 1.3.1

but not EC 1.3.1.21), and enzymes belonging to EC 5.3.3.5 and EC 1.3.1.21,

respectively
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5a and b). The median scores between EC 4.1.1.25 and EC 1.1.1.85

were not significantly different from those within the same EC sub-

subclasses. In fact, these two enzymes had common characteristics

in their reactions, as shown in Figure 4a for EC 4.1.1.25 and Figure

4b for EC 1.1.1.85.

The fourth, fifth and sixth box-plots in Figure 6 show the distri-

butions of the sequence similarity scores among enzymes associated

with EC 5.3.3.5 and EC 1.3.1.21 (see Figures 5c and d). The median

scores between EC 5.3.3.5 and EC 1.3.1.21 were larger than those

within EC sub-subclass 5.3.3, and also within 1.3.1. This implies

that EC 5.3.3.5 and EC 1.3.1.21 are very similar in terms of both en-

zymatic reactions and enzyme proteins, making it reasonable to pre-

dict the same chemical transformations (Fig. 5e). These results

demonstrate an advantage of the enzyme ortholog over the EC sub-

subclass for the de novo reconstruction of metabolic pathways. The

proposed method is expected to reconstruct metabolic pathways

consisting of a wide range of new reactions that are not defined

within the existing EC numbers.
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