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Abstract
Purpose of Review Artificial intelligence (AI) has increasingly been used in healthcare. Given the capacity of AI to handle 
large data and complex relationships between variables, AI is well suited for applications in healthcare. Recently, AI has 
been applied to allergy research.
Recent Findings In this article, we review how AI technologies have been utilized in basic science and clinical allergy 
research for asthma, atopic dermatitis, rhinology, adverse reactions to drugs and vaccines, food allergy, anaphylaxis, urti-
caria, and eosinophilic gastrointestinal disorders. We discuss barriers for AI adoption to improve the care of patients with 
atopic diseases.
Summary These studies demonstrate the utility of applying AI to the field of allergy to help investigators expand their 
understanding of disease pathogenesis, improve diagnostic accuracy, enable prediction for treatments and outcomes, and 
for drug discovery.

Keywords Artificial intelligence · Allergy · Immunology · Machine learning · Neural network · Algorithmic bias

Introduction

Artificial intelligence (AI) has been adopted in many indus-
tries outside of the healthcare field. AI is the harnessing 
of advanced computational algorithms to model complex 
human cognitive capabilities by learning and adapting to 
data that is collected. The study and application of AI in 
healthcare have increased rapidly in the last decade [1•, 2]. 
Within the field of allergy and immunology, early work has 
largely focused on inborn errors of immunity, asthma, and 
atopic dermatitis, but few applications have been broadly 
implemented [3••, 4]. Traditional statistics has not ade-
quately tackled complex datasets in medicine given the 

interdependent nonlinear relationships in a dataset [5]. Sev-
eral domains of AI, including machine learning (ML), deep 
learning (DL), and natural language processing (NLP), have 
significant potential to improve both diagnostic and thera-
peutic capabilities, as well as improve efficiency for clini-
cians and the healthcare system [6–8] (Table 1).

Interest in applying AI to other allergy and immunol-
ogy diagnostic and predictive applications is expanding 
(Fig. 1) while also balancing the risks and benefits of 
adoption [9, 10]. A recent study from Mayo Clinic evalu-
ating clinicians’ adherence to asthma guidelines with AI 
illustrates some of these concepts. Clinical notes from 300 
asthma patients were selected for analysis, 200 for a train-
ing set and 100 for a test set [11•]. With ML, the model 
must first be trained on a representative set of data and 
then validated with a test set of unseen data. The learning 
process on the training set can be supervised, in which 
the data are labeled, or unsupervised, in which the data 
are unlabeled and the algorithm analyzes the data with-
out human intervention [12]. In this study, the investiga-
tors used natural language processing (NLP) to analyze 
and extract data from text in clinician notes. NLP, some-
times referred to as text mining, is a method of computer-
based analysis of unstructured text [3••]. It utilizes deep 
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learning (DL), a branch of ML in which a computer learns 
complex concepts by learning multiple simple concepts 
through multi-layered networks. The NLP model that the 
investigators used to evaluate clinicians’ adherence to 
asthma guidelines utilized a rules-based algorithm that 
utilizes inputted knowledge about language and how facts 
are stated [13]. In this case, the algorithm was taught the 
2007 National Asthma Education and Prevention Pro-
gram guidelines to assess guideline-congruent elements 
described in free text from clinical notes. The model found 
that the clinicians’ adherence to guidelines in primary care 
was low, and the investigators concluded that AI can be 
helpful in evaluating clinician performance compared to 
standards of care [11•].

AI can be harnessed to better understand the increas-
ingly complex and large datasets of electronic health 
record (EHR) information including laboratory results, 
clinical notes, imaging, and genetic testing. Clinically, AI 
has the potential to provide decision support to clinicians 
to decrease delays in diagnosis. The study of AI in allergy 
and immunology is in its nascency, and further research 
and approaches for implementation are still in develop-
ment. Challenges such as ethical, privacy, legal, and regu-
latory processes will need to be addressed before AI can 
be widely adopted and incorporated into clinical practice. 
Clinicians will also need to be trained to understand AI 
principles and ML models.

Key Clinical Applications of AI in Allergy

Asthma

Within the field of allergy, AI investigation and applica-
tion have most frequently been applied to asthma due to 
the large population affected as well as healthcare utiliza-
tion and costs associated with poorly controlled or severe 
asthma. Proposed benefits of AI for asthma include the 
prediction of future development of asthma, more accurate 
diagnosis, prediction of asthma exacerbations, evaluation 
of clinician adherence to asthma guidelines, and classify-
ing asthma endotypes for optimal therapeutic intervention 
[11•, 14–23].

When the diagnosis of asthma is uncertain, ML can 
play a role in identifying which patients with respiratory 
symptoms indeed have asthma. ML models applied to 
data extracted from medical databases have been shown 
to accurately distinguish patients with asthma from other 
potential respiratory diagnoses, and further similar work 
has been proposed to strengthen such models [14, 15]. 
For children less than 5 years old, asthma diagnoses are 
often uncertain. Some clinicians are hesitant to apply an 
asthma diagnosis too early as many children will experi-
ence symptom resolution. ML models trained on clini-
cal and demographic data from children diagnosed with 

Fig. 1  Example applications 
and use cases of AI for allergy 
immunology. (created with 
Biorender)
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asthma between two and five years old within the Chil-
dren’s Hospital of Philadelphia Care Network were used to 
predict asthma persistence with up to 81% accuracy [24].

Once a diagnosis of asthma is clearly established, the 
prediction of asthma exacerbations is a clinical conun-
drum that could impact therapeutic decisions. ML models 
have been developed using factors such as environmental, 
clinical, and demographic data to predict exacerbations 
with an AUC greater than 0.7. These studies have been 
performed in a variety of patient populations from chil-
dren to adults presenting for routine or emergency asthma 
encounters, and in different regional locations [16–18]. 
ML has also been used to identify which clinical and labo-
ratory characteristics are most associated with a future 
exacerbation in adult patients presenting to the ED with 
an asthma exacerbation [19]. A peripheral blood eosino-
phil count was unsurprisingly found to have a prognostic 
role in predicting the risk of severe asthma exacerbations. 
New approaches such as “wearables” or remote patient 
monitoring (RPM) have allowed the evaluation of patterns 
by analyzing data from electronic inhalers [25]. Inhaler 
usage, peak inspiratory flow (PIF), time to PIF, inhala-
tion volume, and inhalation duration were assessed [20]. 
The resulting ML model predicted asthma exacerbation 
in the next 5 days in individuals with an AUC of 0.83, 
representing successful prediction ability with clear clini-
cal utility. Future ML application for asthma exacerbation 
prediction has been proposed using data from smart peak 
flow meters, smartwatches, and indoor air quality moni-
tors, though real-world applicability of these methods will 
be dependent on cost, coverage, and availability of the 
technology [21, 22]. Given the volume and complexity of 
electronic monitoring device data and the growth of the 
digitally connected drug delivery market for inhalers, ML 
will be an essential tool for the utilization of RPM [26].

For optimal treatment of asthma, ML approaches to 
multi-omics datasets have been proposed to better under-
stand asthma endotypes using predictive biomarkers [23]. 
The heterogeneity of asthma belies even standard bio-
marker approaches with patients exhibiting differential 
responses to the same monoclonal agent despite similar 
biomarker profiles. ML integration of high-dimensional 
“omics” data paired with clinical characteristics or “non-
omics” represents an opportunity to increase precision 
and personalization in asthma care in the future [23]. The 
significant cost of asthma therapeutics, including bio-
logic agents and inhalers, represents an opportunity for 
AI to reduce healthcare costs with quicker and more pre-
cise identification of responders to specific drugs. Given 
the multitude of complex data associated with an asthma 
diagnosis, prediction, and classification, AI has begun to 
be utilized more in asthma research with future clinical 
applicability.

Atopic Dermatitis

Given the high prevalence of atopic dermatitis in the general 
population, the quantity of data generated in claims data-
bases lends itself to analysis with AI methods. Recently, AI 
has been applied to AD diagnosis, severity prediction and 
scoring, omics analysis, and treatment response prediction. 
AI in AD has been previously reviewed; however, the field 
remains active with research [4, 27–29].

AD may be diagnosed by different specialties with dis-
parate approaches to the diagnosis of AD. Recent publica-
tions have demonstrated that photographic images of skin 
lesions can be analyzed using DL algorithms including 
deep convolutional neural network (CNN) and hybrid deep 
neural networks to accurately distinguish AD from other 
common skin conditions [30–32]. Data from other imaging 
modalities using ultrasound or dermal imaging have been 
proposed as potential avenues to improve diagnostic accu-
racy regardless of the specialist involved. Some examples 
include multiphoton tomography for noninvasive subcellular 
3D-resolved imaging and Raster-scanning optoacoustic mes-
oscopy images that use DL CNN to diagnose AD based on 
their prior success in psoriasis diagnosis [33–35].

Beyond diagnosing AD, AI is useful in assessing and scor-
ing the severity of AD. SCORing Atopic Dermatitis (SCO-
RAD) is a commonly used clinical tool to measure AD severity; 
however, it is time-consuming and interobserver reliability is 
inconsistent [36]. Automatic SCORAD uses DL with CNN to 
measure AD severity accurately, rapidly, and without interob-
server variability [37]. ML models trained on patient-reported 
data or serum biomarker measurements have been used to pre-
dict future AD severity with SCORAD [38–40]. Researchers 
have employed ML to identify which clinical and demographic 
characteristics are most associated with severe AD to better 
understand which patients are at the highest risk [41].

ML models and more complex datasets that incorporate 
transcripts, microbiota, metabolomic, and exposure data 
can help researchers to better understand AD pathogenesis 
[42–44]. For example, studies have associated pollution 
exposures with AD disease prevalence [45]. Similarly, AD 
flares have been associated with wildfires [46].

An important area of clinical interest in severe AD is 
determining which treatment options are best suited for 
individual patients as new therapies are discovered. A ML 
model using serum cytokines and chemokine data collected 
from patients prior to treatment with azathioprine or meth-
otrexate was not able to successfully predict therapeutic 
response to these drugs [47]. However, a ML model trained 
on demographic and clinical variables of patients initiating 
dupilumab therapy for AD was able to predict non-response 
to dupilumab with 69% accuracy [48]. Predicting treatment 
response to AD therapeutics represents an important area for 
future application of AI.
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Rhinology

AI strategies have been studied within the field of otolar-
yngology, including rhinosinusitis classification, image 
processing for diagnostic capabilities, treatment outcome 
prediction, and optimization of surgery. Rhinologists have 
assessed ML and DL algorithms in surgical planning using 
DL models to classify anatomic structures and to diagnose 
sinusitis [49–51]. A DL algorithm was developed to diag-
nose maxillary sinusitis on panoramic radiography with 
good sensitivity and specificity for the diagnosis of sinusi-
tis, on par with the performance of radiologists and dental 
residents [52].

One of the challenges in treating CRS (chronic rhinosi-
nusitis with nasal polyps, CRSwNP, or without CRSsNP) 
relates to the heterogeneity of presentations, as well as 
disparate responses to therapy in more refractory cases. 
AI has also been used to better understand CRS endotypes 
through ML clustering approaches [53]. A recent study 
used ANN modeling to distinguish an eosinophilic endo-
type of CRSwNP using clinical biomarkers. Clinical features 
included nasal nitric oxide levels, peripheral absolute eosin-
ophil count, total IgE, and CT sinus scores. Two AAN mod-
els to predict eosinophilic CRSwNP outperformed logistic 
regression modeling with the AUC ROC of 0.976 vs 0.902 
(p = 0.048) and 0.970 vs. 0.845 (p = 0.011) [54•]. Moving 
beyond disease subtypes of CRS to endotypes categorized 
by molecular and inflammatory profiles using algorithms for 
imaging as well as immune signatures may help determine 
more personalized and targeted diagnostic and management 
strategies. In the future, AI offers the promising opportu-
nity to identify which CRS patients may respond to specific 
drugs as well as to aid in consideration of those who may 
most benefit from sinus surgery.

Adverse Reactions to Drugs

Drug allergy represents a significant public health issue with 
7% of adults reporting a drug allergy, with an even higher 
prevalence of reported penicillin allergy among hospitalized 
patients [55, 56]. Classification of adverse drug reactions 
can be difficult with both inappropriate diagnoses as well 
as missed diagnoses. Indeed, less than 10% of patients who 
report a history of penicillin allergy have a positive skin test 
[57, 58]. Having a penicillin allergy label is associated with 
higher healthcare resource utilization, emphasizing the need 
for accurate diagnosis and labeling [59]. ML has been used 
to risk stratify, and potentially de-label penicillin allergy 
with medical record analysis playing a key role in address-
ing drug allergy at a population level [60, 61, 62•, 63, 64].

Hypersensitivity to NSAIDs or aspirin represents the most 
common drug hypersensitivity with broad implications, but 

little is known about its pathogenesis and aspirin-exacerbated 
respiratory disease (AERD) can be challenging to diagnose 
[65]. An ANN trained on demographic and laboratory data 
from a subset of asthma patients with and without AERD 
was able to diagnose AERD with 85% accuracy on a larger 
cohort of asthma patients [66]. In order to further understand 
the mechanisms of NSAID-induced urticaria/angioedema, an 
ML model was trained to distinguish between pre-dose and 
post-dose mRNA transcripts of patients undergoing aspirin 
desensitization in the setting of coronary artery disease from 
controls to identify differences in pathway enrichment before 
and after desensitization. The ML model found that the 
IL-22 pathway was most upregulated in the pre-desensitized 
patients [67].

In contrast to NSAIDs and ASA, skin testing and drug  
challenges are the mainstay for the evaluation of IgE-
mediated penicillin allergy. However, the need for urgent drug 
administration or lack of appropriate specialists may impede 
appropriate evaluation [55, 68]. In these situations, AI may 
serve a role in identifying immediate IgE-mediated allergy in 
patients with a reported history of penicillin intolerance. An 
ANN trained on clinical data from patients with and without 
confirmed beta-lactam allergy at a single center was able to 
prospectively predict beta-lactam allergy with an AUC of  
0.939 [61]. Another ANN trained on EHR data from patients 
with labeled penicillin allergy was able to distinguish between 
true allergy and intolerance with an AUC of 0.994 when 
compared with expert criteria and manual chart review [60].

Inaccuracies in documented drug allergies in the EHR 
are common and can be classified using AI. In one exam-
ple, NLP algorithms were found to be more accurate in 
identifying and classifying drug reactions than ICD diag-
nostic codes review or equally as accurate to manual clas-
sification by pharmacists [62•, 63]. Even patients who 
have demonstrated tolerance to a prior listed allergy with 
a drug challenge continue to be labeled as allergic in the 
EHR. An NLP algorithm was developed to detect discrep-
ancies between EHR-listed allergies and the results of drug 
challenges [64]. Such an approach could be used to ensure 
accurate categorization and alter prescribing in real time. 
These studies in aggregate demonstrate the potential utility 
of AI in identifying mechanisms of drug allergy, as well  
as identifying true IgE-mediated reactions by reported his-
tory; however, clinical validation and real-world clinical 
performance data in larger studies that include drug chal-
lenges will be needed prior to adoption.

Adverse Reactions to Vaccines

The development of SaRS-CoV2 mRNA vaccines heightened 
the focus on vaccine adverse events. With the initial reports of 
vaccine allergic reactions, a focus on polyethylene glycol (PEG) 
as a potential culprit component of mRNA COVID-19 vaccines 
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was raised as a cause of allergic and anaphylactic reactions. One 
study utilized an ML algorithm to evaluate EHR text for allergy 
documentation of clinician-reported PEG or vaccine allergy 
[69]. Another group trained an ML algorithm with demograph-
ics and clinical variables (allergic history, COVID-19 history, 
vaccine manufacturer, time of day of vaccination) from patients 
receiving COVID-19 mRNA vaccination to predict allergic and 
non-allergic symptoms 3 days after vaccination based on the 
patient report [70]. Despite the fact that ML has been proposed 
to analyze Vaccine Adverse Events Reporting System (VAERS) 
data in the US, the data structure, validity, and comprehen-
siveness of data entered are highly variable, as unstructured 
patient and clinician reporting occur [71]. One NLP model was 
developed to distinguish between adverse events and misinfor-
mation or false information reported in VAERS to extract the 
incidence of specific symptoms such as flu-like symptoms and 
arm-soreness with moderate to high accuracy, suggesting that 
this approach could be applied in the allergic context using dif-
ferent terms [72]. Although free-text data is ripe for AI, in real-
ity, controlled studies of vaccine reactions may be better suited 
to discern reaction profiles such as “immunization-stress related 
response” as was found in one study [73]. Understanding the 
prevalence of and predicting specific vaccine adverse events in 
concert with controlled studies can help inform vaccine design.

Food Allergy

AI has been used to predict which pediatric patients will 
develop or have persistence of food allergies. A DL frame-
work, specifically using long short-term memory (LSTM), 
was proposed to predict milk, egg, and peanut allergy in 
infants from birth to 3 years old in Russia, Finland, and Esto-
nia using gut microbiome profiles and food allergen-specific 
serum IgE from the DIABIMMUNE dataset. The DL tool 
performance was compared to clinical responses to food  
allergen exposure and had an AUC ROC of 0.69 in predict-
ing clinical food allergy status. High-risk infants from the 
Consortium of Food Allergy Researchers (CoFAR2) study  
were evaluated. Investigators prospectively measured and col-
lected peanut-specific and epitope-specific IgE and IgG4, total 
IgE, and SPT results, demographics, and clinical history in 293 
children [74]. A random forest ML algorithm trained on these 
data was able to predict the development of peanut allergy after 
4 years from data collected at various ages (AUC 0.84–0.87) 
with good accuracy [75]. In the LEAP study, clinical data 
including biomarkers of IgE and IgG4 to 64 sequential epitopes 
of Ara h 1–3 proteins were assessed in an elastic-net algorithm 
to predict peanut allergy at 5 years of age with accuracy ranges 
of 64–83% depending on the amount of data used [76•].

In addition to diagnosis, prediction of tolerance of oral 
food challenge (OFC) and response to OIT is a pressing 
need. Structured data from one retrospective study of pedi-
atric patients who had completed OFC to cooked egg were 

used to train an ML model using demographics, total IgE, 
IgE to egg white, egg yolk, and ovomucoid and demon-
strated an AUC ROC of 0.83 for predicting OFC success 
[77]. An ML decision tree analysis (DTA) similarly evalu-
ated diagnostic OFC outcomes and then retrospectively 
assessed demographics, clinical history, IgE, and SPT results 
to predict the likelihood of OFC outcomes with NPV and 
PPV of > 96% [78]. Both these studies were conducted in 
single centers and generalizability to other settings requires 
further study. Few studies have investigated OIT outcomes 
using AI. In patients aged 7 to 35 receiving milk oral immu-
notherapy (OIT) for cow’s milk allergy had IgE and IgG4 to 
sequential milk protein epitopes measured before and after 
milk OIT in a study assessing the efficacy of omalizumab for 
milk OIT tolerance. ML was used to identify baseline vari-
ables that predicted sustained unresponsiveness with 87% 
accuracy [79]. These preliminary studies demonstrate the 
utility of AI in the early identification of OIT outcomes and 
OFC results in patients with food allergies.

Emerging Areas: Anaphylaxis, Urticaria, and EGIDs

Anaphylaxis

Understanding accurate anaphylaxis diagnosis and incidence 
is important for patient care and surveillance of foods and 
medicines. In a manual review of medical records at Kaiser 
Permanente in Washington, only 64% of inpatient, outpatient, 
or emergency room encounters with a diagnostic code of ana-
phylaxis met the criteria for anaphylaxis [80]. The investiga-
tors found that a ML model trained to identify anaphylaxis 
from medical records had an AUC of 0.62, and when NLP 
was incorporated, the AUC increased to 0.70 for anaphylaxis 
identification [81]. AI and ML models may also have a role 
in identifying proteins capable of causing an allergic reaction. 
With the genetic engineering of foods and the development 
of new biological and peptide agents, there is the potential 
for the creation of novel or cross-reactive antigens capable of 
allergic or immunologic responses. An ML model was trained 
on proteins known to cause allergic reactions. When applied 
to a validation set of proteins, the model had 97% accuracy in 
discriminating between allergenic and non-allergic antigens 
[82]. Ultimately, AI modalities can be useful in tracking the 
incidence of anaphylaxis to food and drugs and other potential 
triggers, as well as predicting the allergenicity of new products 
or medicinal compounds.

Chronic Spontaneous Urticaria

ML methods can be helpful in understanding the pathophysi-
ology of chronic spontaneous urticaria (CSU) and making 
clinical predictions to guide management. Using CSU gene 
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expression data from the Gene Expression Omnibus data-
base, investigators used ANN and sampling-based ML meth-
ods to implicate active pathways in CSU, identify potential 
drug targets, and then link these targets to CSU processes 
such as mast cell activation and degranulation [83]. A ran-
dom survival forest ML model was trained on clinical and 
demographic features of CSU patients available at the time 
of diagnosis to predict clinical remission. The model also 
identified non-modifiable risk factors, such as age and 
presence of comorbidities, as well as modifiable risk fac-
tors, such as smoking and elevated BMI, as risk factors for 
a longer time to clinical remission [84]. Using SVM and 
k-nearest neighbors ML models, CSU patients were evalu-
ated to predict response to omalizumab. Demographics and 
laboratory features were collected prior to treatment, and 
patients were assessed at specific time points for clinical 
control of CSU after starting omalizumab. The ML models 
were able to predict response to omalizumab at 1, 3, and 
5 months with accuracy up to 77% [85]. Such prediction 
would allow clinicians to identify which patients would most 
benefit from omalizumab, saving cost and avoiding the risk 
of potential adverse events associated with trialing the drug 
in nonresponders. These studies demonstrate the range of 
applications of ML to decipher mechanisms of disease and 
drug targets, identify predictors for remission, and predict 
response to therapies such as omalizumab.

Eosinophilic Gastrointestinal Disorders (EGID)

Eosinophilic gastrointestinal disorders (EGID), specifically 
eosinophilic esophagitis (EoE), pose diagnostic challenges 
to clinicians due to poor inter-observer agreement among 
endoscopists as well as subjectivity in pathologists’ 
interpretation and reporting of histopathologic findings. ML 
modalities have been utilized to diagnose and classify disease 
severity. Using mRNA transcript data from esophageal 

biopsies, a ML model was trained to establish an EoE 
diagnostic probability score with a sensitivity of 90.9% and 
specificity of 93.2% [86]. Endoscopic images from patients 
with active EoE were used to train a CNN to diagnose EoE. 
When evaluated on a validation test set, the model correctly 
diagnosed EoE in 94.7% of images [87]. Counting eosinophils 
in multiple biopsies throughout the gastrointestinal tract, and 
reporting multiple high-power fields is time-consuming, 
resource-intensive, and consequently not performed 
universally by pathologists. Furthermore, increased research 
has pointed to additional histopathologic features in making an 
accurate diagnosis. ML models have been designed to alleviate 
slide and image analysis [88]. Deep learning modalities have 
also been used to analyze histology in patients with EoE to 
determine severity and predict disease activity [89, 90]. It is 
increasingly evident that AI/ML can serve an important role in 
EGID diagnosis and healthcare utilization. As with all models 
ensuring transferability and application beyond single-center 
use is needed.

Challenges and Barriers to Adoption of AI

Bias, Harm, and Ethical Considerations

There are many elements of bias, ethics, and harm that 
can be inappropriately incorporated at many levels of AI 
and ML creation. Consideration of fairness, transparency, 
explainability, and other ethical attributes are necessary to 
prevent harm during healthcare delivery (Fig. 2). Health 
equity must be at the forefront of consideration when evalu-
ating the role of AI in healthcare. Algorithmic bias is the 
incorporation of human biases into computer models. When 
inferring data elements, including demographic attributes 
such as biological sex, gender, race, and behavioral predic-
tions into algorithms, the risk of further worsening health 
equity exists. The sources of algorithmic bias originate in 

Fig. 2  Pillars of ethical AI 
delivery are shown. Require-
ments to prevent introduction of 
bias or harms for each pillar or 
stage of Ethical AI delivery are 
shown in boxes. (created with 
Biorender)
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the early stages of development when individual or historic 
biases are replicated, even unintentionally, into computer 
programs. The lack of diversity in training data sets them-
selves may also recapitulate biases and produce disparate 
healthcare outcomes for underrepresented groups when they 
are implemented at a population level. The data sources 
may also be problematic if structural competency and social 
determinants are not considered at the point of data cura-
tion. It is well known that a lack of diverse representation 
exists in data scientists, first and last authors of AI publica-
tions, and creators of AI [91]. Clinicians can help mitigate 
inappropriate model development by serving as experts dur-
ing the conception of the clinical problem as well as inter-
pretation and implementation to assure algorithmic fairness. 
Similarly, assuring the involvement of the population under 
study, other key stakeholders, and the inclusion of diverse 
disciplines such as social scientists to assure algorithmic 
fairness, is important [92]. Models can, and should, be 
trained responsibly, including on data that is representative 
of the entire population, with broad racial, ethnic, and soci-
odemographic representation. Additionally, developers of 
algorithms should report on how programs were designed, 
including a description of elements of CONSORT-AI, for 
full transparency. Regulation and auditing of AI should be 
planned and iterative to assure compliance with fair prin-
ciples [93••]. Ultimately, multiple layers of oversight are 
needed to prevent bias and harm to patients from inappro-
priate use.

Implementation, Governance, and Adoption of AI

Many barriers exist to implementing AI/ML including 
regulatory considerations, explainability, and reproducibility 
of algorithmics, as well as privacy, data, and legal constraints 
(Table 2). Regulatory barriers include the process of approval 

of the technology via FDA processes that categorize software 
as a medical device (SaMD) [94, 95]. FDA regulation  
requires that SaMD serve a medical purpose to diagnose, 
treat, prevent disease, or inform clinical management. In 
order to submit a market application for SaMD, a clear 
description of the patient population for the application and 
the intended users of the SaMD must be provided. SaMD 
must demonstrate a valid clinical association, in addition 
to analytical and clinical validation. Akin to Good Medical 
Practice, a similar framework is applied to Good Machine  
Learning Practice (GMLP). A human-centered approach 
and the conduct of clinical trials to assess effectiveness or 
real-world performance (RWP) prior to full-scale adoption is 
recommended. Certain AI models encounter implementation 
barriers for incorporation into routine clinical practice in 
medicine [96]. The efficacy and safety of ML algorithms need  
to be rigorously evaluated. Patient privacy and the protection 
of personal health information remain at the forefront of the 
focus of efforts, yet data access can also create challenges for 
aggregating quality data across health systems for optimal 
algorithm creation [97]. Studies examining AI in one system 
or with small datasets may not be replicated easily and 
interpretability carries risks that may only be identified once 
an AI algorithm is in use. Given the high-profit potential 
as well as downstream risks, legal considerations for both 
healthcare providers as well as health systems may restrict 
adoption. As an inevitably expanding field, clinicians in 
allergy immunology will need to be aware of how AI is 
developed, where it is being utilized, and how it provided a 
particular explanation or result for a diagnostic or treatment 
question. The full scope of potential harms and ethical 
considerations is beyond the scope of this review but has 
been reviewed extensively elsewhere [92, 96, 98–101, 102•, 
103]. As with any new tool, clinicians need to understand the 
inherent limitations and potential drawbacks of AI.

Table 2  Governance of AI implementation

Challenges Recommendations Resources

Appropriate regulation of software as a medi-
cal device (SaMD)

SaMD must be clinically validated, generate 
reliable outputs, and achieve its intended 
purpose in the context of clinical care

FDA SaMD Clini cal Evalu ation  Guida nce 
Docum ent

Adherence to good machine learning practices 
(GMLP)

AI/ML technologies in healthcare must adopt 
and apply practices that have been proven in 
other sectors as well as create new practices 
to promote safe, effective, and high-quality 
products

FDA SaMD – Digit al Healt h Cente r of Excel 
lence

Assurance of patient privacy and safety Developers of AI/ML must commit to protect-
ing the public from unsafe or ineffective 
systems, algorithmic discrimination, and 
abusive data practice

White  House  Bluep rint for an AI Bill of Rights

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/software-medical-device-samd-clinical-evaluation
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/software-medical-device-samd-clinical-evaluation
https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.whitehouse.gov/ostp/ai-bill-of-rights/
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Conclusion

The application of AI to clinical questions in allergy immunology  
offers the potential to improve diagnostic accuracy, therapeu-
tic approaches, and overall clinical care. The majority of ML 
learning models in allergy immunology thus far have focused on 
inborn errors of immunity, asthma, and atopic dermatitis, though 
other domains are being explored. Although AI has developed 
to the point of being incorporated for direct use in other fields 
such as radiology where a number of software applications 
have been approved by the FDA as medical devices, equivalent 
allergy-immunology approaches are in nascent stages. Several 
areas that impact clinical immunology include the use of systems 
biology approaches and AI for drug development and precision 
diagnostics. These may translate more readily into applications 
for therapeutic approaches and the discovery of pathogenesis at 
an individual level. Given the diagnostic challenges often faced 
by our patients and also the expanding landscape of biologics and 
targeted therapeutics, there are incredible opportunities for the 
application of AI/ML to deliver personalized medicine. As the 
field of AI research rapidly expands, there are many opportunities 
to implement AI to better understand and characterize allergic 
disease processes to deliver personalized care.

Funding This work was funded in part by the Division of Intra-
mural Research, NIAID, NIH. Meng Chen is supported by NIH 
5R25AI147369-03.

Compliance with Ethical Standards 

Conflict of Interest Derek MacMath, Meng Chen, and Paneez Khoury 
declare that they have no conflict of interest.

Human and Animal Rights This article does not contain any studies 
with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have 
been highlighted as:  
•   Of importance  
•• Of major importance

 1.• Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medi-
cine. Nat Med. 2022 Jan 20;28(1):31–8. Review of major advances 
and trends of AI in medicine over the past two years with the 
discussion of promising avenues for future medical AI research.

 2. Lopez-Jimenez F, Attia Z, Arruda-Olson AM, Carter R, Chare-
onthaitawee P, Jouni H, et al. Artificial intelligence in cardiology: 
present and future. Mayo Clin Proc. 2020;95(5):1015–39.

 3.•• Rider NL, Srinivasan R, Khoury P. Artificial intelligence and 
the hunt for immunological disorders. Curr Opin Allergy Clin 
Immunol. 2020;20(6). Review highlighting artificial intelligence 
applications in clinical immunology.

 4. Ferrante G, Licari A, Fasola S, Marseglia GL, La Grutta S. 
Artificial intelligence in the diagnosis of pediatric allergic 
diseases. Pediatr Allergy Immunol. 2021;32(3):405–13.

 5. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artifi-
cial intelligence in surgery: promises and perils. Ann Surg. 
2018;268(1):70–6.

 6. Matheny M. Artificial intelligence in health care: the hope, the 
hype, the promise, the peril. National Academy of Medicine2; 
2019.

 7. Topol EJ. High-performance medicine: the convergence of 
human and artificial intelligence. Nat Med. 2019;25(1):44–56.

 8. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo 
M, Chou K, et al. A guide to deep learning in healthcare. Nat 
Med. 2019;25(1):24–9.

 9. Rudrapatna VA, Butte AJ. Opportunities and challenges 
in using real-world data for health care. J Clin Invest. 
2020;130(2):565–74.

 10. Khoury P, Srinivasan R, Kakumanu S, Ochoa S, Keswani 
A, Sparks R, et al. A framework for augmented intelligence 
in allergy and immunology practice and research-a work 
group report of the AAAAI health informatics, technology, 
and education committee. J Allergy Clin Immunol Pract. 
2022;10(5):1178–88.

 11.• Sagheb E, Wi C-I, Yoon J, Seol HY, Shrestha P, Ryu E, 
et al. Artificial intelligence assesses clinicians’ adherence to 
asthma guidelines using electronic health records. J Allergy 
Clin Immunol Pract. 2022 Apr;10(4):1047–1056.e1. Demon-
stration of the use of NLP to assess clinician adherence to 
asthma guidelines in a retrospective cross-sectional study 
evaluating 1039 clinical notes for 300 patients with an 
asthma diagnosis.

 12. Davenport T. Using AI to improve electronic health records 
[Internet]. Harvard Business Review. 2018 [cited 2020 Dec 13]. 
Available from: https:// hbr. org/ 2018/ 12/ using- ai- to- impro ve- 
elect ronic- health- recor ds.

 13. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 
2015;521(7553):436–44.

 14. Joumaa H, Sigogne R, Maravic M, Perray L, Bourdin A, 
Roche N. Artificial intelligence to differentiate asthma from 
COPD in medico-administrative databases. BMC Pulm Med. 
2022;22(1):357.

 15. Kaplan A, Cao H, FitzGerald JM, Iannotti N, Yang E, Kocks 
JWH, et al. Artificial intelligence/machine learning in respira-
tory medicine and potential role in asthma and COPD diagnosis. 
J Allergy Clin Immunol Pract. 2021;9(6):2255–61.

 16. Hurst JH, Zhao C, Hostetler HP, Ghiasi Gorveh M, Lang JE, 
Goldstein BA. Environmental and clinical data utility in pedi-
atric asthma exacerbation risk prediction models. BMC Med 
Inform Decis Mak. 2022;22(1):108.

 17. Jiao T, Schnitzer ME, Forget A, Blais L. Identifying asthma 
patients at high risk of exacerbation in a routine visit: a machine 
learning model. Respir Med. 2022;198: 106866.

 18. Inselman JW, Jeffery MM, Maddux JT, Lam RW, Shah ND, 
Rank MA, et al. A prediction model for asthma exacerbations 
after stopping asthma biologics. Ann Allergy Asthma Immunol. 
2022 Dec 9.

 19. D’Amato M, Ambrosino P, Simioli F, Adamo S, Stanziola AA, 
D’Addio G, et al. A machine learning approach to character-
ize patients with asthma exacerbation attending an acute care 
setting. Eur J Intern Med. 2022;104:66–72.

 20. Lugogo NL, DePietro M, Reich M, Merchant R, Chrystyn 
H, Pleasants R, et al. A predictive machine learning tool for 
asthma exacerbations: results from a 12-week, open-label 
study using an electronic multi-dose dry powder inhaler with 
integrated sensors. J Asthma Allergy. 2022;11(15):1623–37.

https://hbr.org/2018/12/using-ai-to-improve-electronic-health-records
https://hbr.org/2018/12/using-ai-to-improve-electronic-health-records


 Current Allergy and Asthma Reports

1 3

 21. Tsang KCH, Pinnock H, Wilson AM, Salvi D, Shah SA. Pre-
dicting asthma attacks using connected mobile devices and 
machine learning: the AAMOS-00 observational study proto-
col. BMJ Open. 2022;12(10): e064166.

 22. Bae WD, Alkobaisi S, Horak M, Park C-S, Kim S, Davidson 
J. Predicting health risks of adult asthmatics susceptible to 
indoor air quality using improved logistic and quantile regres-
sion models. Life (Basel). 2022 Oct 18;12(10).

 23. Ray A, Das J, Wenzel SE. Determining asthma endotypes and 
outcomes: complementing existing clinical practice with mod-
ern machine learning. Cell Rep Med. 2022;3(12): 100857.

 24. Bose S, Kenyon CC, Masino AJ. Personalized prediction 
of early childhood asthma persistence: a machine learning 
approach. PLoS ONE. 2021;16(3): e0247784.

 25. Iqbal FM, Lam K, Joshi M, Khan S, Ashrafian H, Darzi A. 
Clinical outcomes of digital sensor alerting systems in remote 
monitoring: a systematic review and meta-analysis. npj Digital 
Med. 2021 Jan 8;4(1):7.

 26. Eikholt AA, Wiertz MBR, Hew M, Chan AHY, van Boven 
JFM. Electronic monitoring devices to support inhalation tech-
nique in patients with asthma: a narrative review. Curr Treat 
Options Allergy. 2023 Feb 17.

 27. Duverdier A, Custovic A, Tanaka RJ. Data-driven research on 
eczema: systematic characterization of the field and recom-
mendations for the future. Clin Transl Allergy. 2022;12(6): 
e12170.

 28. De A, Sarda A, Gupta S, Das S. Use of artificial intelligence 
in dermatology. Indian J Dermatol. 2020;65(5):352–7.

 29. Eyerich K, Brown SJ, Perez White BE, Tanaka RJ, Bissonette 
R, Dhar S, et al. Human and computational models of atopic 
dermatitis: a review and perspectives by an expert panel of 
the International Eczema Council. J Allergy Clin Immunol. 
2019;143(1):36–45.

 30. Aggarwal SLP. Data augmentation in dermatology image 
recognition using machine learning. Skin Res Technol. 
2019;25(6):815–20.

 31. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep 
learning system for differential diagnosis of skin diseases. Nat 
Med. 2020;26(6):900–8.

 32. Rasheed A, Umar AI, Shirazi SH, Khan Z, Nawaz S, Shahzad M. 
Automatic eczema classification in clinical images based on hybrid 
deep neural network. Comput Biol Med. 2022;147: 105807.

 33. Guimarães P, Batista A, Zieger M, Kaatz M, Koenig K. Artifi-
cial intelligence in multiphoton tomography: atopic dermatitis 
diagnosis. Sci Rep. 2020;10(1):7968.

 34. Park S, Saw SN, Li X, Paknezhad M, Coppola D, Dinish US, 
et al. Model learning analysis of 3D optoacoustic mesoscopy 
images for the classification of atopic dermatitis. Biomed Opt 
Express. 2021;12(6):3671–83.

 35. Aguirre J, Schwarz M, Garzorz N, Omar M, Buehler A, Eyerich 
K, et al. Precision assessment of label-free psoriasis biomarkers 
with ultra-broadband optoacoustic mesoscopy. Nat Biomed Eng. 
2017;1(5):0068.

 36. Schmitt J, Langan S, Deckert S, Svensson A, von Kobyletzki 
L, Thomas K, et al. Assessment of clinical signs of atopic 
dermatitis: a systematic review and recommendation. J Allergy 
Clin Immunol. 2013;132(6):1337–47.

 37. Medela A, Mac Carthy T, Aguilar Robles SA, Chiesa-Estomba 
CM, Grimalt R. Automatic scoring of atopic dermatitis using 
deep learning: a pilot study. JID Innov. 2022;2(3): 100107.

 38. Hurault G, Domínguez-Hüttinger E, Langan SM, Williams HC, 
Tanaka RJ. Personalized prediction of daily eczema severity 
scores using a mechanistic machine learning model. Clin Exp 
Allergy. 2020;50(11):1258–66.

 39. Hurault G, Stalder JF, Mery S, Delarue A, Saint Aroman M, 
Josse G, et al. EczemaPred: A computational framework for 

personalised prediction of eczema severity dynamics. Clin 
Transl Allergy. 2022;12(3): e12140.

 40. Holm JG, Hurault G, Agner T, Clausen ML, Kezic S, Tanaka RJ, 
et al. Immunoinflammatory biomarkers in serum are associated 
with disease severity in atopic dermatitis. Dermatology (Basel). 
2021;237(4):513–20.

 41. Maintz L, Welchowski T, Herrmann N, Brauer J, Kläschen AS, 
Fimmers R, et al. Machine learning-based deep phenotyping of 
atopic dermatitis: severity-associated factors in adolescent and 
adult patients. JAMA Dermatol. 2021;157(12):1414–24.

 42. Clayton K, Vallejo A, Sirvent S, Davies J, Porter G, Reading IC, 
et al. Machine learning applied to atopic dermatitis transcriptome 
reveals distinct therapy-dependent modification of the keratinocyte 
immunophenotype. Br J Dermatol. 2021;184(5):913–22.

 43. Acharjee A, Gribaleva E, Bano S, Gkoutos GV. Multi-omics-based 
identification of atopic dermatitis target genes and their potential 
associations with metabolites and miRNAs. Am J Transl Res. 
2021;13(12):13697–709.

 44. Jiang Z, Li J, Kong N, Kim J-H, Kim B-S, Lee M-J, et al. Accu-
rate diagnosis of atopic dermatitis by combining transcriptome 
and microbiota data with supervised machine learning. Sci Rep. 
2022;12(1):290.

 45. Zeldin J, Chaudhary PP, Spathies J, Yadav M, D’Souza BN, 
Alishahedani ME, et al. Exposure to isocyanates predicts atopic 
dermatitis prevalence and disrupts therapeutic pathways in com-
mensal bacteria. Sci Adv. 2023 Jan 6;9(1):eade8898.

 46. Fadadu RP, Grimes B, Jewell NP, Vargo J, Young AT, Abuabara 
K, et al. Association of wildfire air pollution and health care use for 
atopic dermatitis and itch. JAMA Dermatol. 2021;157(6):658–66.

 47. Hurault G, Roekevisch E, Schram ME, Szegedi K, Kezic S, 
Middelkamp-Hup MA, et al. Can serum biomarkers predict the 
outcome of systemic immunosuppressive therapy in adult atopic 
dermatitis patients? Skin Health and Disease. 2022;2(1): e77.

 48. Wu JJ, Hong C-H, Merola JF, Gruben D, Güler E, Feeney C, 
et al. Predictors of nonresponse to dupilumab in patients with 
atopic dermatitis: a machine learning analysis. Ann Allergy 
Asthma Immunol. 2022;129(3):354-359.e5.

 49. Huang J, Habib AR, Mendis D, Chong J, Smith M, Duvnjak M, 
et al. An artificial intelligence algorithm that differentiates ante-
rior ethmoidal artery location on sinus computed tomography 
scans. J Laryngol Otol. 2020;134(1):52–5.

 50. Parmar P, Habib AR, Mendis D, Daniel A, Duvnjak M, Ho J, 
et al. An artificial intelligence algorithm that identifies middle 
turbinate pneumatisation (concha bullosa) on sinus computed 
tomography scans. J Laryngol Otol. 2020;134(4):328–31.

 51. Jeon Y, Lee K, Sunwoo L, Choi D, Oh DY, Lee KJ, et al. Deep 
learning for diagnosis of paranasal sinusitis using multi-view 
radiographs. Diagnostics (Basel). 2021 Feb 5;11(2).

 52. Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi 
T, et al. Deep-learning classification using convolutional neural 
network for evaluation of maxillary sinusitis on panoramic radi-
ography. Oral Radiol. 2019;35(3):301–7.

 53. Grayson JW, Hopkins C, Mori E, Senior B, Harvey RJ. Con-
temporary classification of chronic rhinosinusitis beyond polyps 
vs no polyps: a review. JAMA Otolaryngol Head Neck Surg. 
2020;146(9):831–8.

 54.• Zhou H, Fan W, Qin D, Liu P, Gao Z, Lv H, et al. Develop-
ment, validation and comparison of artificial neural network 
and logistic regression models predicting eosinophilic chronic 
rhinosinusitis with nasal polyps. Allergy Asthma Immunol Res. 
2023 Jan;15(1):67–82. ANN models to predict eosinophilic 
CRSwNP based on clinical biomarkers in 109 CRSwNP 
patients outperformed logistic regression models.

 55. Demoly P, Adkinson NF, Brockow K, Castells M, Chiriac AM, 
Greenberger PA, et al. International Consensus on drug allergy. 
Allergy. 2014;69(4):420–37.



Current Allergy and Asthma Reports 

1 3

 56. Sogn DD, Evans R, Shepherd GM, Casale TB, Condemi 
J, Greenberger PA, et al. Results of the National Institute of 
Allergy and Infectious Diseases Collaborative Clinical Trial to 
test the predictive value of skin testing with major and minor 
penicillin derivatives in hospitalized adults. Arch Intern Med. 
1992;152(5):1025–32.

 57. Park M, Markus P, Matesic D, Li JTC. Safety and effectiveness 
of a preoperative allergy clinic in decreasing vancomycin use in 
patients with a history of penicillin allergy. Ann Allergy Asthma 
Immunol. 2006;97(5):681–7.

 58. Gadde J, Spence M, Wheeler B, Adkinson NF. Clinical experi-
ence with penicillin skin testing in a large inner-city STD clinic. 
JAMA. 1993;270(20):2456–63.

 59. Blumenthal KG, Oreskovic NM, Fu X, Shebl FM, Mancini CM, 
Maniates JM, et al. High-cost, high-need patients: the impact of 
reported penicillin allergy. Am J Manag Care. 2020;26(4):154–61.

 60. Inglis JM, Bacchi S, Troelnikov A, Smith W, Shakib S. Automa-
tion of penicillin adverse drug reaction categorisation and risk 
stratification with machine learning natural language processing. 
Int J Med Inform. 2021;156: 104611.

 61. Moreno EM, Moreno V, Laffond E, Gracia-Bara MT, Muñoz-
Bellido FJ, Macías EM, et al. Usefulness of an artificial neural 
network in the prediction of β-lactam allergy. J Allergy Clin 
Immunol Pract. 2020;8(9):2974-2982.e1.

 62.• Banerji A, Lai KH, Li Y, Saff RR, Camargo CA, Blumenthal KG, 
et al. Natural language processing combined with ICD-9-CM codes 
as a novel method to study the epidemiology of allergic drug reac-
tions. J Allergy Clin Immunol Pract. 2020;8(3):1032–1038.e1. High-
lights the potential for NLP utilization in epidemiologic evalua-
tion of drug allergy by showing how NLP increases the PPV of 
ICD code review in identifying true cases of drug allergy.

 63. Chaichulee S, Promchai C, Kaewkomon T, Kongkamol C, Ingviya 
T, Sangsupawanich P. Multi-label classification of symptom terms 
from free-text bilingual adverse drug reaction reports using natural 
language processing. PLoS One. 2022;17(8): e0270595.

 64. Lo Y-C, Varghese S, Blackley S, Seger DL, Blumenthal KG, 
Goss FR, et al. Reconciling allergy information in the electronic 
health record after a drug challenge using natural language pro-
cessing. FrontAllergy. 2022;10(3): 904923.

 65. Blanca-Lopez N, Somoza-Alvarez ML, Bellon T, Amo G, Canto 
G, Blanca M. NSAIDs hypersensitivity: questions not resolved. 
Curr Opin Allergy Clin Immunol. 2018;18(4):291–301.

 66. Tyrak KE, Pajdzik K, Konduracka E, Ćmiel A, Jakieła B, 
Celejewska-Wójcik N, et al. Artificial neural network identifies 
nonsteroidal anti-inflammatory drugs exacerbated respiratory 
disease (N-ERD) cohort. Allergy. 2020;75(7):1649–58.

 67. Tay SH, Santosa A, Goh ECH, Xu CX, Wu LH, Bigliardi-Qi 
M, et  al. Distinct transcriptomic and metabolomic profiles 
characterize NSAID-induced urticaria/angioedema patients 
undergoing aspirin desensitization. J Allergy Clin Immunol. 
2022;150(6):1486–97.

 68. Joint Task Force on Practice Parameters, American Academy of 
Allergy, Asthma and Immunology, American College of Allergy, 
Asthma and Immunology, Joint Council of Allergy, Asthma and 
Immunology. Drug allergy: an updated practice parameter. Ann 
Allergy Asthma Immunol. 2010 Oct;105(4):259–73.

 69. Abrams EM, Greenhawt M, Shaker M, Kosowan L, Singer AG. 
Primary care provider-reported prevalence of vaccine and poly-
ethylene glycol allergy in Canada. Ann Allergy Asthma Immu-
nol. 2021;127(4):446-450.e1.

 70. Abbaspour S, Robbins GK, Blumenthal KG, Hashimoto D, Hopcia 
K, Mukerji SS, et al. Identifying modifiable predictors of COVID-
19 vaccine side effects: a machine learning approach. Vaccines 
(Basel). 2022 Oct 19;10(10).

 71. Flora J, Khan W, Jin J, Jin D, Hussain A, Dajani K, et  al. 
Usefulness of vaccine adverse event reporting system for 

machine-learning based vaccine research: a case study for 
COVID-19 vaccines. Int J Mol Sci. 2022 Jul 26;23(15).

 72. Patel JS, Zhan S, Siddiqui Z, Dzomba B, Wu H. Automatic iden-
tification of self-reported COVID-19 vaccine information from 
vaccine adverse events reporting system. Methods Inf Med. 2023 
Jan 9.

 73. Khalid MB, Frischmeyer-Guerrerio PA. The conundrum of 
COVID-19 mRNA vaccine-induced anaphylaxis. J Allergy Clin 
Immunol Glob. 2023;2(1):1–13.

 74. Metwally AA, Yu PS, Reiman D, Dai Y, Finn PW, Perkins DL. 
Utilizing longitudinal microbiome taxonomic profiles to predict 
food allergy via long short-term memory networks. PLoS Com-
put Biol. 2019;15(2): e1006693.

 75. Suprun M, Sicherer SH, Wood RA, Jones SM, Leung DYM, 
Henning AK, et al. Early epitope-specific IgE antibodies are 
predictive of childhood peanut allergy. J Allergy Clin Immunol. 
2020;146(5):1080–8.

 76.• Grinek S, Suprun M, Raghunathan R, Tomalin LE, Getts R, 
Bahnson T, et al. Epitope-specific IgE at 1 year of age can pre-
dict peanut allergy status at 5 years. Int Arch Allergy Immu-
nol. 2022 Dec 9;1–6. Utilization of elastic net regression ML 
model trained on demographics, total IgE, IgE to egg white, 
egg yolk, and ovomucoid from pediatric patients in the pea-
nut avoidance arm of LEAP trial at 1 year to predict heated 
egg OFC success at 5 years with 83% accuracy.

 77. Kuniyoshi Y, Tokutake H, Takahashi N, Kamura A, Yasuda S, 
Tashiro M. Machine learning approach and oral food challenge 
with heated egg. Pediatr Allergy Immunol. 2021;32(4):776–8.

 78. Machnes-Maayan D, Yahia SH, Frizinsky S, Maoz-Segal R, 
Offengenden I, Kenett RS, et al. A clinical pathway for the diag-
nosis of sesame allergy in children. World Allergy Organiz J. 
2022;15(11): 100713.

 79. Suárez-Fariñas M, Suprun M, Chang HL, Gimenez G, Grishina 
G, Getts R, et al. Predicting development of sustained unre-
sponsiveness to milk oral immunotherapy using epitope-
specific antibody binding profiles. J Allergy Clin Immunol. 
2019;143(3):1038–46.

 80. Bann MA, Carrell DS, Gruber S, Shinde M, Ball R, Nelson JC, 
et al. Identification and validation of anaphylaxis using elec-
tronic health data in a population-based setting. Epidemiology. 
2021;32(3):439–43.

 81. Carrell DS, Gruber S, Floyd JS, Bann MA, Cushing-Haugen 
KL, Johnson RL, et al. Improving methods of identifying ana-
phylaxis for medical product safety surveillance using natural 
language processing and machine learning. Am J Epidemiol. 
2023;192(2):283–95.

 82. Garcia-Moreno FM, Gutiérrez-Naranjo MA. ALLERDET: a 
novel web app for prediction of protein allergenicity. J Biomed 
Inform. 2022;135: 104217.

 83. Segú-Vergés C, Gómez J, Terradas-Montana P, Artigas L, 
Smeets S, Ferrer M, et al. Unveiling chronic spontaneous urti-
caria pathophysiology through systems biology. J Allergy Clin 
Immunol. 2022 Dec 29.

 84. Pivneva I, Balp M-M, Geissbühler Y, Severin T, Smeets S,  
Signorovitch J, et al. Predicting clinical remission of chronic urti-
caria using random survival forests: machine learning applied to 
real-world data. Dermatol Ther (Heidelb). 2022;12(12):2747–63.

 85. Sardina DS, Valenti G, Papia F, Uasuf CG. Exploring machine learn-
ing techniques to predict the response to omalizumab in chronic 
spontaneous urticaria. Diagnostics (Basel). 2021 Nov 20;11(11).

 86. Sallis BF, Erkert L, Moñino-Romero S, Acar U, Wu R, Konnikova 
L, et al. An algorithm for the classification of mRNA patterns in 
eosinophilic esophagitis: integration of machine learning. J Allergy 
Clin Immunol. 2018;141(4):1354-1364.e9.

 87. Okimoto E, Ishimura N, Adachi K, Kinoshita Y, Ishihara S, Tada 
T. Application of convolutional neural networks for diagnosis of 



 Current Allergy and Asthma Reports

1 3

eosinophilic esophagitis based on endoscopic imaging. J Clin 
Med. 2022 Apr 30;11(9).

 88. Czyzewski T, Daniel N, Rochman M, Caldwell JM, Osswald GA, 
Collins MH, et al. Machine learning approach for biopsy-based 
identification of eosinophilic esophagitis reveals importance of 
global features. IEEE Open J Eng Med Biol. 2021;16(2):218–23.

 89. Archila LR, Smith L, Sihvo H-K, Westerling-Bui T, Koponen 
V, O’Sullivan DM, et al. Development and technical validation 
of an artificial intelligence model for quantitative analysis of 
histopathologic features of eosinophilic esophagitis. J Pathol 
Inform. 2022;27(13): 100144.

 90. Larey A, Aknin E, Daniel N, Osswald GA, Caldwell JM, Rochman 
M, et al. Harnessing artificial intelligence to infer novel spatial 
biomarkers for the diagnosis of eosinophilic esophagitis. arXiv. 
2022 May 26.

 91. Celi LA, Cellini J, Charpignon M-L, Dee EC, Dernoncourt 
F, Eber R, et al. Sources of bias in artificial intelligence that 
perpetuate healthcare disparities-a global review. PLOS Digit 
Health. 2022;1(3): e0000022.

 92. McCradden MD, Joshi S, Mazwi M, Anderson JA. Ethical limi-
tations of algorithmic fairness solutions in health care machine 
learning. Lancet Digit Health. 2020;2(5):e221–3.

 93.•• Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, 
SPIRIT-AI and CONSORT-AI Working Group. Reporting 
guidelines for clinical trial reports for interventions involving 
artificial intelligence: the CONSORT-AI extension. Nat Med. 
2020 Sep 9;26(9):1364–74. Consensus guidelines establish-
ing new reporting standards for clinical trials evaluating AI 
interventions.

 94. Software as a Medical Device (SaMD) | FDA [Internet]. 
[cited 2023 Mar 18]. Available from: https:// www. fda. gov/ 
medic al- devic es/ digit al- health- center- excel lence/ softw are- 
medic al- device- samd.

 95. Software as a Medical Device (SAMD): clinical evaluation | 
FDA [Internet]. [cited 2023 Mar 18]. Available from: https:// 

www. fda. gov/ regul atory- infor mation/ search- fda- guida nce- 
docum ents/ softw are- medic al- device- samd- clini cal- evalu ation.

 96. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical 
implementation of artificial intelligence technologies in medi-
cine. Nat Med. 2019;25(1):30–6.

 97. Blueprint for an AI Bill of Rights | OSTP | The white house 
[Internet]. [cited 2023 Mar 18]. Available from: https:// www. 
white house. gov/ ostp/ ai- bill- of- rights/.

 98. Vayena E, Blasimme A, Cohen IG. Machine learning in medi-
cine: addressing ethical challenges. PLoS Med. 2018;15(11): 
e1002689.

 99. Char DS, Shah NH, Magnus D. Implementing machine learning 
in health care - addressing ethical challenges. N Engl J Med. 
2018;378(11):981–3.

 100. Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled 
healthcare delivery. J R Soc Med. 2019;112(1):22–8.

 101. McGreevey JD, Hanson CW, Koppel R. Clinical, legal, and 
ethical aspects of artificial intelligence-assisted conversational 
agents in health care. JAMA. 2020;324(6):552–3.

 102.• Vollmer S, Mateen BA, Bohner G, Király FJ, Ghani R, Jonsson 
P, et al. Machine learning and artificial intelligence research for 
patient benefit: 20 critical questions on transparency, replicabil-
ity, ethics, and effectiveness. BMJ. 2020 Mar 20;368:l6927. Pro-
poses a framework for investigators using machine learning 
to ensure that AI tools in medicine are safe and effective.

 103. Morley J, Floridi L, Kinsey L, Elhalal A. From what to how: an 
initial review of publicly available AI ethics tools, methods and 
research to translate principles into practices. Sci Eng Ethics. 
2020;26(4):2141–68.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/software-medical-device-samd-clinical-evaluation
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/software-medical-device-samd-clinical-evaluation
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/software-medical-device-samd-clinical-evaluation
https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://www.whitehouse.gov/ostp/ai-bill-of-rights/

	Artificial Intelligence: Exploring the Future of Innovation in Allergy Immunology
	Abstract
	Purpose of Review 
	Recent Findings 
	Summary 

	Introduction
	Key Clinical Applications of AI in Allergy
	Asthma
	Atopic Dermatitis
	Rhinology
	Adverse Reactions to Drugs
	Adverse Reactions to Vaccines
	Food Allergy
	Emerging Areas: Anaphylaxis, Urticaria, and EGIDs
	Anaphylaxis
	Chronic Spontaneous Urticaria
	Eosinophilic Gastrointestinal Disorders (EGID)

	Challenges and Barriers to Adoption of AI
	Bias, Harm, and Ethical Considerations
	Implementation, Governance, and Adoption of AI


	Conclusion
	References


