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Liver allograft recipients are more likely to develop transplantation tolerance than those that
receive other types of organ graft. Experimental studies suggest that immune cells and other
non-parenchymal cells in the unique liver microenvironment play critical roles in promoting liver
tolerogenicity. Of these, liver interstitial dendritic cells (DCs) are heterogeneous, innate immune
cells that appear to play pivotal roles in the instigation, integration and regulation of
inflammatory responses after liver transplantation. Interstitial liver DCs (recruited in situ or
derived from circulating precursors) have been implicated in regulation of both ischemia/
reperfusion injury (IRI) and anti-donor immunity. Thus, livers transplanted from mice
constitutively lacking DCs into syngeneic, wild-type recipients, display increased tissue
injury, indicating a protective role of liver-resident donor DCs against transplant IRI. Also,
donor DC depletion before transplant prevents mouse spontaneous liver allograft tolerance
across major histocompatibility complex (MHC) barriers. On the other hand, mouse liver graft-
infiltrating host DCs that acquire donor MHC antigen via “cross-dressing”, regulate anti-donor
T cell reactivity in association with exhaustion of graft-infiltrating T cells and promote allograft
tolerance. In an early phase clinical trial, infusion of donor-derived regulatory DCs (DCreg)
before living donor liver transplantation can induce alterations in host T cell populations that
may be conducive to attenuation of anti-donor immune reactivity. We discuss the role of DCs
in regulation of warm and liver transplant IRI and the induction of liver allograft tolerance. We
also address design of cell therapies using DCreg to reduce the immunosuppressive drug
burden and promote clinical liver allograft tolerance.
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INTRODUCTION

Dendritic Cell Biology and Diversity
Our understanding of DC development and function is based largely on extensive studies in mouse
models and human in vitro systems. DCs are heterogeneous innate immune cells that link innate
and adaptive immunity (1). They are subdivided into conventional DCs (cDCs) that acquire,
process and present antigen (Ag), and non-conventional plasmacytoid DCs (pDCs) that produce
org June 2021 | Volume 12 | Article 7054651

https://www.frontiersin.org/articles/10.3389/fimmu.2021.705465/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.705465/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.705465/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:thomsonaw@upmc.edu
https://doi.org/10.3389/fimmu.2021.705465
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.705465
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.705465&domain=pdf&date_stamp=2021-06-28


Nakano et al. Regulatory DCs in Liver Transplantation
type-1 interferon (IFN) following viral stimulation. While
indispensable for antiviral immunity, pDCs also promote or
regulate other inflammatory/immune responses (2, 3). cDCs
and pDCs arise from a common bone marrow precursor in a
fms-like tyrosine kinase 3 ligand (Flt3L)-dependent manner (4–
7). Mouse cDCs are further divided into two subsets,- cDC1
(CD11c+,CD103+,CD11b-) and cDC2 (CD11c+,CD103-,
CD11b+) that differentiate under the influence of IFN
regulatory factor (IRF) 8 and IRF4, respectively. Mouse pDCs
are CD11c+, CD103-, CD11b-,B220+,Gr-1+, sialic acid-binding
immunoglobulin-like lectin (Siglec) H+ (5, 6, 8–11). Human
cDCs express high levels of CD11c and are subdivided into
CD1c+ (blood DC Ag (BDCA)1+), CD1b+, CD11b+, CD14+ DC
that promote T helper (Th)17 cells and correspond broadly to
mouse cDC2s, versus CD141+ (BDCA3+) DC that promote
Th1 cell responses and Ag cross-priming to CD8+ T cells,
corresponding to mouse DC1s. Human pDCs express CD123
(IL-3R), CD14 and CD303 (BDCA2) and potently produce type-
1 IFN. Each DC subset in mice and humans develops under the
control of a specific repertoire of transcription factors involving
differential levels of IRF8 and IRF4 expression (12–16).

Liver Dendritic Cells
Multiple DC subsets have been identified in the liver, although
their relative abundance differs from that in peripheral blood and
secondary lymphoid tissue (17–21). cDC1, cDC2 and pDCs and
their functional relevance in the steady-state and liver disease
have been reviewed (21). Improved understanding of liver DC
heterogeneity and function in mice and humans is required to
further elucidate their roles and for design of DC-directed
therapeutic intervention in liver injury, transplantation and
other liver disorders. Recently, single cell RNA sequencing
(seq) analysis has been used to quantify liver DC subsets
(cDC1, cDC2 and pDC) and to define signatures of DC-T cell
interactions in draining lymph nodes under healthy conditions
and in liver disease (22). Mouse liver DC heterogeneity has also
been described using cellular indexing of transcriptomes and
epitopes by sequencing (CITE-seq) (23). The phenotype and
function of liver interstitial DCs is influenced by the hepatic
microenvironment that promotes their inherent tolerogenicity in
the healthy steady-state (24–26). Thus, via their production of
macrophage colony-stimulating factor and other soluble and
cell-cell contact factors, liver stromal cells induce regulatory
cDCs that secrete high levels of IL-10 and nitric oxide (NO),
but little IL-12 and inhibit T cell proliferative responses/induce
activated T cell apoptosis (24, 27, 28). Exposure to gut-derived
pathogen-associated microbial products e.g. bacterial
lipopolysaccharide (LPS) inhibits liver cDC or pDC maturation
by stimulating IL-6- signal transducer and activator of
transcription 3 (STAT3) activity that upregulates expression of
interleukin-1 receptor-associated kinase M (IRAK-M), an
inhibitor of Toll-like receptor (TLR) signaling (29). This
phenomenon, referred to as endotoxin tolerance (30), extends
to several TLRs (cross-tolerance), as well as to TLRs and ischemic
injury. By contrast, exposure to LPS stimulates secretion of IL-10
and IL-27 by liver cDCs that can then expand regulatory T cells
(Tregs) (31, 32).
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Liver cDCs also express comparatively low levels of major
histocompatibility complex (MHC) class II and co-stimulatory
molecules (33), but comparatively high levels of the T cell co-
inhibitory molecule programed death ligand -1 (PD-L1).
Compared with lymphoid tissue DCs, they also express high
levels of the ectoenzyme CD39 (34) that degrades adenosine
triphosphate to adenosine, and the immunoreceptor
transmembrane adaptor protein DNAX activating protein of
12 kDa (DAP12) that regulates their maturation (35). Like liver
cDCs, liver pDCs express comparatively high levels of DAP12
and high PD-L1:CD80/86 ratios (36, 37) and secrete IL-10. Thus,
liver DCs are refractory to stimulation with microbial products
and express gene products that undermine effector T cell
responses, but promote Tregs (38).

We discuss below reported roles of liver DCs in regulation of
liver IRI and immune responses to liver allografts.We also consider
how regulatory DC (DCreg) therapy is being introduced in clinical
trials to ascertain its potential to promote reduced dependency on/
withdrawal of immunosuppression (IS) in liver transplantation.
LIVER ISCHEMIA REPERFUSION
INJURY (IRI)

Graft IRI remains an understudied area in transplantation,
despite its clinical significance. Hepatocellular damage
associated with liver removal, storage and engraftment is
critical to primary graft non-function or late dysfunction and
may promote acute and chronic rejection and graft loss (39–41).
IRI is a complex process that occurs when hypoxic tissue damage
is increased by the inflammatory pathways that are activated
during the return of blood flow and oxygen delivery, that
combines elements of “warm” and “cold” injury (39, 42).
Warm IRI is dominated by liver macrophage-derived cytotoxic
molecule-mediated hepatocellular damage. Cold IRI, that occurs
during ex-vivo organ preservation, is dominated by damage to
liver sinusoidal endothelial cells (SECs) and disruption of the
microcirculation (39, 43, 44).

Liver DCs and Regulation of Liver IRI
Regulatory properties of liver DCs have been described in both
liver warm and cold (transplant) IRI in the mouse (Table 1).

Liver Warm IRI
Loi et al. (45) reported that liver DCs isolated after hepatic warm
IR exhibited a more mature surface phenotype than those from
uninjured liver, but preferentially produced the anti-
inflammatory cytokines IL-10 and transforming growth factor
b that might inhibit T cell and natural killer (NK) cell stimulation
after IRI. It was also shown (46) that targeted deletion of cDCs by
injecting CD11c-diptheria toxin (DT) receptor mice with DT
12–18 hours prior to I/R increased liver injury. Moreover, cDCs
reduced liver IRI by secreting IL-10 that inhibited IL-6, tumor
necrosis factor (TNF) and reactive oxygen species production by
inflammatory monocytes recruited to the liver. More recent work
(49) indicates that signaling via the prostaglandin E receptor EP3
in DCs promotes liver repair after warm IR by inducing IL-13-
June 2021 | Volume 12 | Article 705465
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mediated switching of macrophages from pro-inflammatory to
IL-10-producing, reparative cells. Vitamin D analogue
administration promotes regulatory DCs and attenuates liver
warm IRI, whereas interruption of DC-T cell interaction
enhances proinflammatory DC maturation and tissue damage
(47). Adoptive transfer of wild-type (WT) but not DAP12-/-
cDCs reduces warm liver IRI in DAP12-/- mice that exhibit
enhanced tissue injury compared with WT animals (48). Taken
together, these findings suggest a protective role for DCs in warm
liver IRI.

Other data however, conflict with this view. Fms-like tyrosine
kinase 3 ligand (Flt3L) is a potent, endogenous DC poietin. Flt3L
KO mice exhibit profound reductions in mDC and pDC in liver
and lymphoid tissues (51, 54, 55). In these Flt3L KO mice (51),
warm liver IR results in reduced hepatic injury, with less
polymorphonuclear cell infiltration compared with WT
animals. Absence of hepatic interstitial DC in this study also
induces less upregulation of inflammatory cytokine and
chemokine (TNFa, CCL2 and CXCL2) gene expression in the
liver. Moreover, adoptive transfer of splenic or hepatic WT DC
into Flt3L KO or WT mice increases hepatic warm IR injury.
TIM-4 (T cell immunoglobulin domain and mucin domain
containing 4) expression by liver cDC has been reported to
play an important role in mouse segmental warm IRI (52); its
blockade by anti-TIM-4 antibody reduces liver injury and
inflammatory cytokine production and facilitates induction of
Foxp3+ Tregs, suggesting a potential therapeutic approach.
Thus, in contrast to the protective roles of liver DC described
above, these findings suggest injurious effects of DC in liver
Frontiers in Immunology | www.frontiersin.org 3
warm IRI (51). In another report (50), increasing cDCs in the
liver by GM-CSF hydrodynamic transfection increased liver
injury after warm IR in WT but not TLR4 KO mice. With
respect to liver pDCs, mice depleted of these cells using anti-pDC
Ag (PDCA)-1 antibody failed to upregulate hepatic IFNa and
exhibited reduced levels of hepatic IL-6, TNFa and liver injury
after warm IR compared with WT controls (53).

Thus, while reports using different experimental approaches
suggest both protective and deleterious effects of liver DCs in
liver warm IRI, the balance of reports indicate protective
properties of these cells in mouse models (53, 56–59). Further
studies, taking into account liver DC heterogeneity and focused
on the role of specific hepatic DC subsets, as well as the release of
small extracellular vesicles with proinflammatory versus
reparative properties by these cells during warm IRI (60, 61),
may help elucidate these conflicting observations. Depending on
microenvironmental conditions, complement system activators
and inhibitors may also influence the differentiation/function of
DC subsets towards immunogenicity or tolerance (62) and may
be worthy of further investigation in the context of liver DCs
their regulation of hepatic inflammatory responses.

Liver Transplant IRI
Several molecules have been implicated in regulation of liver
transplant (cold) IRI by DCs. Absence of CD39 in liver grafts
enhances cold IRI, associated with higher levels of pro‐
inflammatory cytokines (IL-6, TNFa, monocyte chemoattractant
protein-1, IL-12p40), compared to WT donors. In addition, these
CD39-/- allografts express higher levels of DCmaturationmarkers
TABLE 1 | Regulation of liver ischemia-reperfusion injury by intra-hepatic dendritic cells.

Model
(species)

Observation Protective or
deleterious effect of DCs

Reference

Warm IR
(mouse)

IR results in enhanced expression of anti-inflammatory cytokines (IL-10; TGFb) but
reduced expression of IL-12 by liver DCs

Protective Loi et al. (45)

Warm IR
(mouse)

Targeted deletion of cDCs increases liver injury; cDCs reduce liver IRI via IL-10 secretion Protective Bamboat et al. (46)

Warm IR
(mouse)

VitD analogue administration promotes tolerogenic DCs and attenuates liver injury;
interruption of DC-T cell interaction (with anti-CD44) increases proinflammatory DC
maturation and enhances tissue damage

Protective Funken et al. (47)

Warm IR
(mouse)

Adoptive transfer of WT but not DAP12-/- DCs reduces liver IRI in DAP12-/- mice * Protective Nakao et al. (48)

Warm IR
(mouse)

EP3-expressing DCs orchestrate the pro-reparative environment during liver repair after
hepatic IR

Protective Nakamoto et al. (49)

Warm IR
(mouse)

Increasing liver DCs in WT but not in TLR4 KO mice promotes liver injury Deleterious Tsung et al. (50)

Warm IR
(mouse)

Liver injury less in DC-deficient (Flt3L -/-) mice Deleterious Zhang et al. (51)

Warm IR
(mouse)

Blockade of TIM-4 on hepatic DCs ameliorates liver injury Deleterious Li et al. (52)

Warm IR
(mouse)

pDC-depleted mice display reduced liver IR injury Deleterious Castellaneta et al. (53)

Liver transplant
IR (mouse)

Livers from DC-deficient (Flt3L -/-) donors exhibit enhanced injury Protective Zhang et al. (51)

Liver transplant
IR (mouse)

Portal venous delivery of WT but not CD39-/- liver cDCs to donor livers protects against
graft injury

Protective Yoshida et al. (34)
June 2021 | Volu
cDC, conventional DC; DAP12, DNAX activating protein of 12kDa; EP3, E prostanoid receptor 3; Flt3L, fms-like tyrosine kinase 3 ligand; pDC, plasmacytoid DC; TGFb, transforming
growth factor b; TIM-4, T cell Ig domain and mucin domain 4; vitD, vitamin D; WT, wild-type.
*DAP12-/- mice exhibit enhanced liver warm IRI compared with WT mice.
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(CD80, CD86, MHC II) and lower levels of coinhibitory PD-L1.
Moreover, adoptive transfer of WT liver mDCs exerts a protective
effect against transplant-induced liver IRI, that is not achieved by
CD39-/- liver mDC infusion (34, 63).

When Flt3L KO donor livers (lacking interstitial DCs) are
transplanted into syngeneic WT mice with 24 hours of cold
ischemia, the grafts show dramatically increased IR injury, with
enhanced alanine transaminase levels, hepatic necrosis and
neutrophil infiltration, indicating a protective role of liver-
resident DC in WT livers (51). Thus, from the limited studies
undertaken to date, liver DCs appear to have a protective role
against liver transplant IRI in mice.
LIVER TRANSPLANT TOLERANCE

The liver is considered a tolerogenic environment, as evidenced
by oral tolerance, portal venous tolerance, the ability of adeno-
associated viral gene therapy to induce systemic tolerance to a
transgene (64), metastasis of tumors to the liver and, in animals,
acceptance of liver allografts across MHC barriers, without IS
therapy (65–69). Within the liver microenvironment, multiple
parenchymal and non-parenchymal cell populations (including
DCs, Kupffer cells, SECs and stellate cells) express gene products
e.g. indoleamine dioxygenase, arginase and PD-L1, that suppress
inflammatory and immune-mediated responses (70). DCs
express human leukocyte Ig-like receptor B (LILRB) family
members, ligation of which renders DCs tolerogenic, leading in
turn, to suppression of T cell responses (71) and immune
tolerance in humanized mice. Since LILRB family members are
considered receptors for HLA-G, that can be produced by liver
cells (hepatocytes, liver stem/progenitor cells and biliary
epithelial cells) (27, 72–74), this may potentially be an
additional mechanism of immune regulation within the liver
environment. The liver is also considered a site in which T cells
activated therein exhibit defective cytotoxic function (75), and a
site of increased T cell apoptosis (76). Potential mechanisms that
may mediate liver transplant tolerance have been reviewed
recently (26, 77).

Liver DCs and Regulation of the Balance
Between Liver Transplant Tolerance
and Rejection
Hematopoietic progenitors within the liver are programed to
differentiate into DCregs with comparatively low MHC II and T
cell costimulatory molecule expression and high IL-10 but low
IL-12 secretion. Both liver cDCs and pDCs only weakly stimulate
allogeneic T cell proliferation and can promote activated T cell
hyporesponsiveness/apoptosis and Tregs (32, 78–80). Together
with other liver NPCs, liver DCreg appear to play key roles in the
induction of liver transplant tolerance (24); reviewed in (25, 26,
70, 81). The properties of mouse and human hepatic DCs that
may promote regulation of alloreactive T cell responses/tolerance
induction are summarized in Table 2.

In the liver, the coinhibitory molecule PD-L1 is expressed
constitutively by DCs, Kupffer cells and SECs (91, 92).
Frontiers in Immunology | www.frontiersin.org 4
PD-L1 also can be up-regulated on both NPCs and hepatocytes
following inflammatory stimulation (55, 93–95). It has been
reported that transplantation of mouse liver allografts from
PD-L1 KO donors, or blocking of PD-1/PD-L1 interactions
using anti-PD-L1 monoclonal antibody, results in acute liver
allograft rejection. This is associated with increased graft CD8+

T cell infiltration and FasL perforin, granzyme B, iNOS and OPN
mRNA expression in the recipients (96).

Depletion of donor interstitial DCs before mouse liver
transplantation using CD11c-diptheria toxin receptor (DTR)
donor mice in which DCs are depleted by DT administration,
prevents induction of spontaneous allograft tolerance (90).
Moreover, donor-derived cDCs can be generated ex vivo from
progenitors present in normal mouse liver. They can also be
generated from lymphoid tissue of untreated recipients of liver
but not heart allografts from the same donor strain that are
rejected acutely (97). In addition, when adoptively transferred to
prospective pancreatic islet allograft recipients, donor liver-
derived cDCs prolong graft survival (38). Collectively, these
and other observations have implicated donor-derived liver
cDCs in the promotion of liver transplant tolerance (70).

Absence of the transmembrane adaptor protein DAP12 (that
is constitutively expressed on liver DCs at higher levels that on
secondary lymphoid tissue DCs) (35) in mouse liver allografts
results in higher pro-inflammatory cytokine (IL-6, IL-12p40,
IFNg, and TNFa) gene expression within the graft, enhanced
IFNg production by graft-infiltrating CD8+ T cells and systemic
levels of IFNg, but reduced incidences of CD4+Foxp3+ cells,
associated with acute graft rejection (98).

Non-lymphoid tissue pDCs, such as those that reside in the
airways, gut and liver, play a significant role in regulating
mucosal immunity and are critical for the development of
tolerance to inhaled or ingested/dietary Ags (99). The liver is a
site of oral Ag presentation and compared to secondary
lymphoid tissue, is comparatively rich in pDCs (18) that
appear to rapidly induce anergy or deletion of Ag-specific T
cells (37, 79). We have reported (37) that hepatic pDCs of donor
origin, that express high levels of DAP12, triggering receptor of
myeloid cells 2 (TREM2) and high ratios of T cell coinhibitory
PD-L1:costimulatory CD86 compared with secondary lymphoid
tissue pDCs, play a key role in attenuating graft-infiltrating T
effector cell responses, enhancing Foxp3+ Tregs, and promoting
spontaneous acceptance of mouse liver allografts.

Recently, we have also examined the role of graft-infiltrating
DCs in regulation of mouse spontaneous liver transplant
tolerance. The phenomenon of plasma membrane fragment
transfer or “cross-dressing” between leukocytes was reported in
1999 (100). It has been postulated that molecules acquired by
acceptor APCs during this process influence subsequent T cell
responses. Several recent publications (101–103) have drawn
attention to an important role of cross-dressed DCs (CD-DCs) in
rejection of experimental heart, kidney and skin transplants.
However, our recent novel findings (104) suggest that graft-
infiltrating host cDCs that acquire donor MHC Ag shortly after
liver transplantation via cross-dressing, regulate anti-donor T
cell responses and promote allograft tolerance.
June 2021 | Volume 12 | Article 705465
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Therapeutic Application of DCregs in
Clinical Liver Transplantation
Properties of DCregs and approaches to promoting their
tolerogenic functions in transplantation are depicted in
Figure 1. Following the initial observation that infusion of
liver-derived cDCs, one week before transplant, could promote
subsequent donor-strain allograft survival in mice (38), many
rodent studies have confirmed the ability of donor-derived DCs
(cDCs or pDCs) with immunoregulatory properties to enhance
organ allograft survival and donor-specific tolerance (105–108).
In addition, the safety and efficacy of donor-derived mDCs in
Frontiers in Immunology | www.frontiersin.org 5
prolonging MHC mis-matched renal allograft survival has been
demonstrated in a clinically-relevant nonhuman primate model
using a minimal IS drug regimen (109). These promising
findings have provided a rationale and justification for an early
phase (phase 1/2; open label, non-controlled, non-randomized)
clinical trial of donor-derived DCregs in an IS drug withdrawal
study in adult living donor liver transplant (LDLT) patients at
the University of Pittsburgh (110).

This first-in-human study commenced in late 2017 (NCT
03164265),- donor-derived DCregs generated from circulating
blood monocytes have been infused into 15 prospective liver
TABLE 2 | Properties of hepatic DCs that promote their immune regulatory function and may contribute to tolerance induction.

DC subset
(species)

Property Effect Reference(s)

cDCs
Mouse Low MHC class II and costimulatory molecule

expression
Infusion into prospective pancreatic islet allograft recipients prolongs
graft survival

Rastellini et al. (38)

Mouse Low MHC class II and co-stimulatory molecule
expression

Infusion induces IL-10-producing cells in allogeneic host lymphoid
tissue

Khanna et al. (33)

Mouse Low MHC class II and costimulatory molecule
expression

Systemic administration induces donor-specific T cell
hyporesponsiveness in a sponge allograft model

Chiang et al. (82)

Mouse Low TLR4 expression Induction of alloAg-specific T cell hyporesponsiveness following LPS
stimulation

Dr Creus et al. (83)

Mouse
(also pDCs)

Gut-derived bacterial products inhibit liver DC
maturation by stimulating IL-6-STAT3 activity that
upregulates IRAK-M expression

Higher maturation marker expression by IL-6 -/- liver cDCs and pDCs Lunz et al. (29)

Human Production of IL-10 but not IL-12p70, even after TLR4
stimulation

Poor ability to stimulate allogeneic T cell proliferation; stimulation of
IL-10 but suppression of IFNg production by T cells

Goddard et al. (84);
Kwekkeboom et al. (85)

Human Liver perfusate DCs exhibit low costimulatory molecule
expression and produce high IL-10 levels in response
to TLR4 ligation

Impaired T cell stimulatory capacity compared with skin or secondary
lymphoid tissue DCs

Bosma et al. (86)

Mouse Periportal and sinusoidal liver DCs loaded with Ag in
the portal vein

Induce Th2 responses in the liver, enhance apoptosis of Ag-specific T
cells and prevent hepatic injury caused by Th1 cells.

Watanabe et al. (87)

Mouse Reduced costimulatory molecule and IL-12 expression
induced by contact with sinusoidal endothelial cells

Impaired ability to prime naïve CD8 T cells Schildberg et al. (88)

Mouse IL-10 production; low Delta 4/Jagged 1 Notch ligand
ratio

Skew towards allogeneic Th2 cell differentiation; CD4 T cell apoptosis;
poor T cell allostimulatory activity associated with Treg function

Tokita et al. (79)

Mouse Liver stromal cell-induced DCs secrete high IL-10/low
IL-12; produce PGE2

Inhibit T cell proliferation/induce apoptosis of activated T cells; alleviate
autoimmune hepatitis

Xia et al. (24)

Human Liver stromal cells impair DC differentiation and
maturation (role for PGE2)

Impaired ability to induce T cell proliferation Bruno et al. (27)

Mouse Liver stroma induces regulatory DCs producing NO
and IL-10

Inhibition of CD8 T cell proliferation Wang et al. (28)

Human Secrete substantial IL-10 upon TLR4 ligation Generate more suppressive Tregs than blood DCs via an IL-10-
dependent mechanism

Bamboat et al. (32)

Mouse LPS-stimulated liver DCs secrete IL-10 and IL-27 Induce T cell hyporesponsiveness, associated with selective Treg
expansion

Chen et al. (31)

Mouse &
Human

Liver DCs with low lipid levels Induce regulatory T cells, anergy to cancer, and oral tolerance Ibrahim et al. (89)

Mouse Comparatively high cell surface CD39 expression Hyporesponsiveness to ATP; reduces responses to TLR4 ligation and
proinflammatory and immunostimulatory activity

Yoshida et al. (34)

Mouse Absence of cDCs in donor liver allografts Acute liver allograft rejection Yokota et al. (90)
pDCs
Mouse IL-27 production and STAT3-dependent IL-27-

induced PD-L1 expression
Promote Tregs; adoptive transfer suppresses DTH responses Matta et al. (36)

Mouse Express high levels of DAP12/TREM2 and high PD-L1:
CD86 ratios

Potently suppress allogeneic T cell proliferation; pDC-depleted donor
livers rejected acutely and Treg and exhausted CD8 T cells in grafts
reduced; Treg in LNs reduced

Nakano et al. (37)
June 2021 | Volu
Ag, antigen; ATP, adenosine triphosphate; DAP12, DNAX-activating protein of 12 kDa; DTH, delayed- type hypersensitivity; IRAK-M, interleukin-1 receptor-associated kinase M; LPS,
lipopolysaccharide; LN, lymph node; MHC, major histocompatibility complex; PD-L1, programed death ligand-1; PGE2, prostaglandin E2; STAT3, signaling transducer of activated T cells;
Th, T helper; TLR, Toll-like receptor; TREM2, triggering receptor of myeloid cells 2.
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transplant patients, once only, one week before transplantation,
together with a half dose of mycophenolate mofetil (MMF) to
minimize any low potential risk of host sensitization. The DCregs
that are infused exhibit a tolerogenic gene transcriptional profile,
high cell surface PD-L1 to CD86 ratios, secrete high levels of
IL-10 but little of no IL-12 in response to TLR4- or and CD40
ligation, and only weakly stimulate proliferation of prospective
graft recipient T cells (111). The dose of DCregs infused (2.5-10 x
106/kg body weight) is based on the dose range that proved safe
and effective in the preceding NHP studies. Patients receive
conventional, post-transplant IS with steroid, MMF and
tacrolimus. A protocol biopsy is performed at 1 year and, if
permissive, careful weaning of tacrolimus is undertaken. Target
cell numbers have been achieved for each of the prospective
liver recipients and no adverse events associated with DCreg
infusion have been observed. In a second clinical IS drug
withdrawal study, also being performed in LDLT patients at
the University of Pittsburgh (NCT04208919), a single donor-
derived DCreg infusion is being administered to stable
graft recipients enrolled 1-3 years post-transplant following
biopsy confirmation of the absence of rejection. In addition to
determining the safety of the infused DCreg product, an
important objective of these studies is to determine preliminary
efficacy of DCreg infusion in achieving complete IS drug
withdrawal. Currently, drug withdrawal can only be achieved
in 10-15% of adult liver allograft recipients in the first 2 years
post-transplant (112).
Frontiers in Immunology | www.frontiersin.org 6
Mechanistic Studies
The initial trial of donor-derived DCregs in LDLT is being
accompanied by mechanistic studies aimed at understanding
the in vivo fate of the donor-derived DCregs and the influence of
their infusion on host anti-donor immune reactivity. Following
DCreg infusion one week before transplant, intact donor DCregs
can be detected in host peripheral blood shortly after completion
of the infusion by discriminatory MHC class I staining and flow
cytometric analysis. By 3 days post infusion, no intact donor
DCregs can be detected. However, in several HLA-A2 negative
graft recipients given HLA-A2 positive donor cells, transiently
elevated levels of both donor HLA and immunoregulatory PD-
L1, CD39 and CD73 could be detected in circulating small
extracellular vesicles (sEVs) (111). At the same time, flow and
advanced image stream analysis revealed “cross-dressing” of host
DCs in the peripheral blood and in host lymph nodes obtained at
the time of surgery, before graft implantation. PD-L1 co-
localization with donor HLA was observed at significantly
higher levels than with recipient HLA (111). These findings
resemble our observations (113) of graft-infiltrating host DCs
cross-dressed with donor MHC class I Ag and co-expressing
high levels of PD-L1 in mouse liver allograft recipients that
accept liver allografts without IS therapy. These cross-dressed
recipient DCs marked inhibited anti-donor T cell proliferation
ex vivo. Our observations in patients also resemble the
identification of circulating host APCs cross-dressed with
donor MHC Ag in human liver allograft recipients early and
FIGURE 1 | DCreg and promotion of their function. Center, DCreg showing cell membrane-expressed and secreted/molecules and released small extracellular
vesicles (exosomes) that can regulate T cell responses and immune reactivity; left panel, approaches to targeting of DCreg in situ; upper right panel, use of
immunosuppressive agents that promote DC tolerogenicity; lower right panel, adoptive transfer of DCreg in transplant recipients. DAP12, DNAX activating protein of
12 kDa; HO-1, hemoxygenase-1; PD-L1/2, programed death ligand1/2; miRNA, microRNA; TGFB, transforming growth factor beta; TREM2; triggering receptor
expressed on myeloid cells 2.
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transiently after transplantation (114). In our studies, between
the time of donor DCreg infusion and liver transplantation,
memory CD8+ T cells expressing high levels of the transcription
factors T-bet and Eomesodermin (T-bethiEomeshi) decreased,
whereas regulatory (CD25hiCD127-Foxp3+):T-bethiEomeshi

CD8+ T cell ratios increased. Although the number of
observations is small, this increase appeared to be associated
with the incidence of cross-dressed DCs observed in the
circulation. Thus, it appears that donor-derived DCreg
infusion in prospective liver transplant recipients may induce
systemic changes in host APCs and T cells that may be conducive
to modulated anti-donor immune T cells responses at the time of
transplantation. We postulate that the composition (quality) of
sEVs rather than the density (quantity) of peptide MHC-
expressing sEVs on cross-dressed DC may play an important
role in the induction of peripheral tolerance.
CONCLUSIONS

Liver interstitial DCs appear to play important roles in the
regulation of hepatic IRI and other inflammatory responses
within the liver environment. Donor-derived DCs and more
recently, graft-infiltrating host DCs that have acquired intact
donor MHC Ag via cross-dressing, have been implicated in the
promotion of spontaneous liver transplant tolerance in the
mouse. Demonstrations that adoptive transfer of donor-
derived DCregs can prolong organ transplant survival and
tolerance in preclinical models has led to clinical testing of
Frontiers in Immunology | www.frontiersin.org 7
DCregs for promotion of transplant tolerance in human liver
transplantation. These studies are accompanied by mechanistic
investigations designed to enhance insight into the influence of
these cells on host anti-donor immune reactivity.
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