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Aluminum salts as an adjuvant for 
pre-pandemic influenza vaccines:  
a meta-analysis
Yu-Ju Lin1,2, Yun-Jui Shih1, Chang-Hsun Chen1 & Chi-Tai Fang   2,3

Avian-origin H5/H7 influenza has the potential to cause the next influenza pandemic. Availability of 
effective vaccines is an essential part of pre-pandemic preparedness. However, avian influenza surface 
antigens are poorly immunogenic to humans, which necessitates the use of adjuvants to augment the 
immunogenicity of pre-pandemic influenza vaccines. Aluminum salts are approved, safe, and affordable 
adjuvants, but their adjuvanticity for influenza vaccines remains unverified. We conducted the first 
meta-analysis on this issue. A total of nine randomized controlled trials (2006–2013, 22 comparisons, 
2,467 participants in total) compared aluminum-adjuvanted H5N1 vaccines versus non-adjuvanted 
counterparts. The weighted estimate for the ratio of the seroprotection rate after a single dose of H5N1 
vaccine is 0.66 (95% CI: 0.53 to 0.83) by hemagglutination-inhibition assay or 0.56 (95% CI: 0.42 to 
0.74) by neutralizing titer assay. The weighted estimate for the risk ratio of pain/tenderness at injection 
sites is 1.85 (95% CI: 1.56 to 2.19). The quality of evidence is low to very low for seroprotection (due to 
indirectness and potential reporting bias) and moderate for pain/tenderness (due to potential reporting 
bias), respectively. The significantly lower seroprotection rate after aluminum-adjuvanted H5N1 
vaccines and the significantly higher risk of pain at injection sites indicate that aluminum salts decrease 
immunogenicity but increase local reactogenicity of pre-pandemic H5N1 vaccines in humans.

Avian-origin H5N1 influenza, which has caused 860 cases of human infection around the world (2003-September 
2017, with 454 deaths, data from World Health Organization), has the potential to cause the next influenza pan-
demic. Availability of effective vaccines against this zoonotic virus is an essential part of pandemic preparedness. 
However, H5N1 antigens are poorly immunogenic to humans, which necessitates the use of an adjuvant, a sub-
stance that augments the immunogenicity of vaccines, in manufacturing pre-pandemic H5N1 vaccines1–3.

Until recently, aluminum salts have been the only adjuvants used in human vaccines licensed in the United 
States4. Unlike newer oil-in-water adjuvants such as MF59 or AS03, aluminum salts are inexpensive and safe and 
have been successfully used in diphtheria, tetanus, and pertussis vaccines for more than 80 years4,5. Aluminum 
salts are also used in hepatitis A, hepatitis B, and human papillomavirus vaccines6. Nevertheless, their adjuvantic-
ity for influenza vaccines remains unverified.

In animal models, experiments consistently demonstrate that aluminum salts enhance the immunogenicity of 
H5N1 influenza vaccines7. In contrast, randomized controlled clinical trials of aluminum salts-adjuvanted H5N1 
influenza vaccines in humans are either statistically inconclusive – likely due to the insufficient sample sizes in 
each of these clinical trials – or not specifically designed to evaluate the adjuvanticity of aluminum salts8.

To maximize the pandemic preparedness, it is necessary to clarify whether aluminum salts, the approved, safe, 
and affordable adjuvant, are effective in enhancing the immunogenicity of pre-pandemic influenza vaccines. To 
overcome the limitation of insufficient statistical power in single randomized controlled trials, we conducted the 
first meta-analysis on this issue.
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Results
Literature search.  Figure 1 shows the flowchart of the literature search. Trials were eligible if they were ran-
domized controlled trials that compared the immunogenicity of aluminum-adjuvanted H5N1 influenza vaccines 
versus that of non-adjuvanted counterparts (with the same dose of identical H5 antigen) in healthy individu-
als. We identified all eligible trials through searching PubMed, EMBASE, Cochrane, CINAHL, Web of Science, 
Scopus, and Google Scholar, along with reports completed in the clinical trial registry database (ClinicalTrials.
gov) before June 30, 2017. We used the following search keywords: “influenza vaccine” AND “aluminum”, filtered 
by human, clinical trial, and English language. We excluded those trials that did not compare adjuvanted vaccines 
versus non-adjuvanted counterpart, those that did not involve H5N1 vaccines, and those trials that used different 
antigen doses across the compared groups.

Of the 2,895 published papers and 28 completed clinical trial reports identified by initial keyword searches, 
nine non-duplicated randomized trials met the eligibility criteria1,9–16. These nine trials (completed during 
2006–2013) included 22 comparisons (some trials consisted of several comparisons that assessed different anti-
gen doses of the same vaccines, see Supplementary Table S1 for the details of each comparison), with a total 
of 2,467 healthy participants. All included trials used a two-dose schedule (with an interval of one month) for 
testing pre-pandemic H5N1 vaccines. Of the 22 comparisons, 16 and 12 comparisons reported seroprotec-
tion rates (proportions of subjects with titers reaching seroprotection levels, see Methods for the definition) by 
hemagglutination-inhibition assay and by neutralizing titer assay, respectively, 21–28 days after the first-dose 
vaccination.

Seroprotection.  Compared with non-adjuvanted counterparts, H5N1 vaccines with aluminum salts adju-
vant were associated with a significantly lower, rather than higher, seroprotection rate 21–28 days after the first 
dose. The weighted estimate for the ratio of the seroprotection rate by hemagglutination-inhibition assay was 0.66 
(95% confidence interval [CI]: 0.53 to 0.83, I-square: 0.0%) across a range of different antigen doses (Fig. 2). The 
weighted estimate for the ratio of the seroprotection rate by neutralizing titer assay was 0.56 (95% CI: 0.42 to 0.74, 
I-square: 0.0%) across a range of different antigen doses (Fig. 3).

After the second dose, aluminum-adjuvanted H5N1 vaccines still did not yield a higher seroprotection rate. 
The seroprotection rate after the second dose was lower than that conferred by non-adjuvanted counterparts, 
although the difference was not statistically significant. The weighted estimate for ratios of the seroprotection 
rate 21–28 days after the second dose of H5N1 vaccine were 0.97 (95% CI: 0.82 to 1.13, I-square: 21.8%) by 
hemagglutination-inhibition assay (Supplementary Fig. S1) and 0.99 (95% CI: 0.88 to 1.12, I-square: 11.8%) by 
neutralizing titer assay (Supplementary Fig. S2).

Funnel plot analyses did not show publication biases (Supplementary Fig. S3).

Harm.  Compared with non-adjuvanted counterparts, H5N1 vaccines with aluminum salts adjuvant were asso-
ciated with a significantly higher risk of pain/tenderness at the injection site during the 7 days after the first vacci-
nation, with the weighted risk ratio of 1.85 (95% CI: 1.56 to 2.19, I-square: 30.8%) (Fig. 4). There was no difference 
in risk of fever after vaccination (weighted risk ratio 1.00, 95% CI: 0.30 to 3.35, I-square: 0.0%) (Supplementary 
Fig. S4).

After the second dose, aluminum-adjuvanted H5N1 vaccines were still associated with a significantly higher 
risk of pain/tenderness at the injection site (weighted risk ratio 1.72, 95% CI: 1.20 to 2.46, I-square: 70.0%) 
(Supplementary Fig. S5). There was no difference in risk of fever after the second vaccination (weighted risk ratio 
0.31, 95% CI: 0.06 to 1.52) (Supplementary Fig. S6).

Figure 1.  Flowchart of the literature search.
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Risk of bias assessment.  Three trials, Keitel12, Ehrlich10, and Chichester15, had low risk of bias. Bresson1 was 
open-label trial. Pan16 was single-blind. Three trials, Bresson1, Bernstein9, and Brady13 did not reported seroprotection 
data after the first dose vaccination. Two trials, Nolan11 and Keitel14, did not reported adverse events separately after the 
first vs. after the second dose. The assessment was summarized in Supplementary Figs S7 and S8.
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Figure 2.  Forest plot showing the ratio of the seroprotection rate by hemagglutinin-inhibition assay, 21–28 days 
after the first dose of H5N1 vaccines in participants who received aluminum-adjuvanted vaccines versus non-
adjuvanted vaccines.
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Figure 3.  Forest plot showing the ratio of the seroprotection rate by neutralization antibody assay, 21–28 days 
after the first dose of H5N1 vaccines in participants who received aluminum-adjuvanted vaccines versus non-
adjuvanted vaccines.
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Quality of evidence.  We used the GRADE approach to assess the quality of evidence, taking risks of bias, 
risks of random errors, risks of publication bias, and risks of lack of external validity into consideration. We 
summarized the findings in Supplementary Table S2 (seroprotection) and Supplementary Table S3 (harm). The 
certainty of evidence was low to very low for seroprotection rate endpoints due to potential outcome reporting 
bias (only 16 and 12 of the 22 included comparisons reported seroprotection rates data after the first-dose vac-
cination) and indirectness (seroprotection is a surrogate for real life protection against infection, disease and 
death) (Table S2), and moderate for local pain/tenderness at the injection sites (Table S3) due to potential out-
come reporting bias (only 15 and 5 of the 22 included comparisons reported pain/tenderness and fever after the 
first-dose vaccination), respectively. The certainty of evidence was very low for fever due to the wide confidence 
intervals (0.30 to 3.35 and 0.06 to 1.52) as well as potential outcome reporting bias (Table S3).

Discussion
This is the first meta-analysis of randomized controlled trials on the efficacy of aluminum salts as an adjuvant for 
pre-pandemic influenza vaccines. Our results showed an inferior seroprotection rate after aluminum-adjuvanted 
H5N1 vaccines compared with that conferred by non-adjuvanted counterparts. The absence of an increase in 
seroprotection rates of aluminum salts-adjuvanted vaccines indicates that aluminum salts are not suitable to serve 
as adjuvants for pre-pandemic H5N1 influenza vaccines for humans.

The observed lack of efficacy might be explained by the Th2 immune response elicited by aluminum salts5; for 
intracellular pathogens, such as novel influenza virus, a Th1 immune response is required instead17–19. The signif-
icantly worse seroprotection rate observed in the trial participants received aluminum salts-adjuvanted vaccines 
suggests that aluminum salts actually interfere with the immunogenicity of pre-pandemic influenza vaccines 
because the wrong type of T cell response is elicited.

The negative impact of aluminum salts on the immunogenicity of pre-pandemic influenza vaccine in human 
clinical trials is in sharp contrast with the positive animal experiment results in mice and ferret models. Aluminum 
salts significantly increase the immunogenicity of H5N1 vaccines, measured by both hemagglutination-inhibition 
and neutralization titer assays, in both mice20–22 and ferrets7,23,24. This discrepancy between animal experiments 
and human clinical trials highlights an important limitation of animal models as a testing ground for vaccine 
development: animal models have different toll-like receptor expression patterns compared with humans5. This 
difference might explain the different effects of aluminum salts in animals and humans. Moreover, there are sev-
eral well-known differences between species in terms of the pathophysiology and immune responses to influenza 
virus infection. For example, ferrets are highly susceptible to a wide range of influenza virus isolates, but mice 
are not. The presence of the mx1 antiviral gene in mice necessitates the use of specifically adapted influenza virus 
strains, which could markedly differ from the field virus isolates, in mouse models25,26. Each type of animal model 
has its unique usefulness and limitations in influenza research27–29, which makes it impossible to directly gener-
alize animal study results to humans.
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Figure 4.  Forest plot showing the risk ratio of pain/tenderness at the injection site during the 7 days after the 
first dose of H5N1 vaccines in participants who received aluminum-adjuvanted vaccines versus non-adjuvanted 
vaccines.
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With the aim to directly evaluate the effect of adjuvant on immunogenicity, we did not include comparisons of 
influenza vaccines with different antigen doses in this meta-analysis. Nevertheless, even if multiple-arms compar-
isons were taken into consideration, the conclusion on the lack of adjuvanticity of aluminum salts for influenza 
vaccines would be unlikely to change, as shown by a 2009 network meta-analysis study that primarily aimed 
to identify the best formulation of H5N1 vaccine30. This multiple treatment meta-analysis shows that, unlike 
non-aluminum adjuvants such as MF59 and AS03, aluminum salts did not significantly enhance the immuno-
genicity compared with non-adjuvanted vaccines (for comparsons using less than 7.5 mcg H5 antigen the risk 
differences were 0.01 [95% CI: −0.03 to 0.29] by hemagglutination-inhibition and 0.04 [95% CI: −0.11 to 0.34] by 
neutralizing titer; for comparisons using 15 mcg H5 antigen dose the risk ratio was 1.05 [95% CI: 0.81 to 1.36]30. 
Another meta-analysis31 compared the immunogenicity and safety of H5N1 vaccines with different antigen doses 
but did not present quantitative analysis results on the adjuvanticity of aluminum salts. This 2016 meta-analysis31 
included only 8 of the 9 randomized trials enrolled in the present meta-analysis, without the trial (with a total of 
545 subjects) reported in 2009 by Brady et al.13, which we included in our meta-analysis.

Currently, eight manufacturers (based in China, Russia, Kazakhstan, Japan, and Australia) provide licensed 
aluminum-adjuvanted H5N1 vaccines32. While the World Health Organization Strategic Advisory Group of 
Experts (SAGE) on Immunization stated that “studies using Al(OH)3 in H5 inactivated vaccines have produced 
variable results that are less than impressive”33, these vaccines are perceived as cost-saving alternatives to the 
expensive MF59- or AS03-adjuvanted pre-pandemic influenza vaccines. However, our meta-analyses show that, 
if aluminum salts were not added in the first place, these same vaccines could be more immunogenic against 
targeted influenza virus strains. The negative impact of aluminum salts on the immunogenicity of H5N1 vac-
cines might explain the unexpected failure of Emerflu (Sanofi) in 201134. EmerfluTM is a split-virion inactivated 
pre-pandemic H5N1 influenza vaccine with 30 μg of hemagglutinin and 600 μg of Al(OH)3 and was withdrawn 
from applications for licenses after pre-marketing trials showed that the seroprotection was below the established 
criteria34. Our findings that the addition of aluminum salts decreased, rather than increased, the immunogenicity 
of pre-pandemic influenza vaccines are highly relevant to vaccine manufacturers, which play an important role 
in pre-pandemic preparedness.

With the newly emerged threat of avian-origin H7N9 influenza from China35,36, H7N9 vaccines have become 
a priority in research and development for pre-pandemic preparedness. Several teams of researchers are currently 
testing candidate H7N9 vaccines in animal models37–39. One laboratory reported a very good adjuvant effect of 
aluminum salts for H7N9 vaccines in ferrets37. These promising animal data should be interpreted cautiously40, as 
illustrated by the negative impact of aluminum salts on the immunogenicity of H5N1 influenza vaccines shown 
in this meta-analysis.

An important limitation of our study is that only 7 and 5 of the 9 included randomized controlled trials (16 
and 12 of the 22 comparisons) reported seroprotection rates data after the first-dose vaccination, the primary out-
come of our meta-analysis, by hemagglutination-inhibition assay and by neutralizing titer assay, respectively. We 
had contacted with the authors of the remaining trials, but was unable to obtain unpublished data. Nevertheless, 
funnel plot analyses did not detect evidence for publication biases.

Our meta-analysis of all available data reported from randomized controlled trials in human subjects shows 
that aluminum salts decrease, rather than increase, the immunogenicity of pre-pandemic H5N1 influenza 
vaccines. Furthermore, aluminum salts increase local reactogenicity, with pain/tenderness at injection sites. 
Therefore, aluminum salts should not be recommended as adjuvants for these vaccines. This unexpected, but 
important, finding highlights the limitation of animal models as the testing ground for developing pre-pandemic 
influenza vaccines for humans.

Methods
Ethical Statement.  This is a meta-analysis of published randomized controlled trials reports and is 
exempted from human subject research review.

Definition of Seroprotection.  Seroprotection is defined as a titer of ≥1:40 (or ≥1:32) by hemagglutination- 
inhibition assay, as pre-specified by the investigators of each trial report; or a titer of ≥1:40 (or ≥1:20) by neutralizing  
titer assay, as pre-specified by the investigators of each trial report.

Main Outcome.  The main outcome is the ratio of the seroprotection rate 21–28 days after receiving the first 
dose of aluminum-adjuvanted H5N1 influenza vaccines versus that of non-adjuvanted counterparts (with the 
same antigen). A single dose of aluminum-adjuvanted H5N1 influenza vaccines is immunogenic and safe41 and 
meets the licensing criteria for interpandemic and pandemic influenza vaccines in the European Union and the 
United States when the H5 antigen dose is ≥6 mcg41.

Secondary Outcomes.  We assessed other potentially important outcomes, including the ratio of the sero-
protection rate 21–28 days after receiving the second dose of aluminum-adjuvanted H5N1 influenza vaccines 
versus that of non-adjuvanted counterparts; and the risk ratios of (a) pain/tenderness at the injection site during 
the 7 days after the first dose; (b) pain/tenderness at the injection site during the 7 days after the second dose; (c) 
fever (body temperature higher than 38 °C) during the 7 days after the first dose; and (d) fever (body temperature 
higher than 38 °C) during the 7 days after the second dose.

Statistical Software.  Forest plots were generated for summarizing ratios of seroprotection rates using ran-
dom effect models. We used a funnel plot to detect publication bias. STATA 9.0 (Stata, Stata Corp LP, College 
Station, TX, USA) was used for all statistical analyses.
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Bias of risk assessment.  Risk of bias was assessed using the Cochrane risk of bias tools. It consisted of 
seven specific domains, including: selection bias (random sequence generation and allocation concealment), 
performance bias (blinding of participants and personnel and other potential threats to validity), detection bias 
(blinding of outcome assessment and other potential threats to validity), attrition bias (incomplete outcome data) 
and reporting bias (selective outcome reporting assessed by comparing outcomes reported in the protocol to 
those reported in the completed RCT whenever possible)42.

Grade of Evidence.  We used the five GRADE considerations to assess the quality of evidence, i.e. risk of 
bias, inconsistency, indirectness, imprecision, and publication bias42,43. We employed GRADEpro (https://grade-
pro.org/) to create summary tables of the findings for each outcome. We justified all decisions to downgrade or 
upgrade the quality of evidence using footnotes and comments.

Data availability.  All data analyzed in this study are included in the published article.
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