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Abstract

While biologging tags have answered a wealth of ecological questions, the drivers and con-

sequences of movement and activity often remain difficult to ascertain, particularly marine

vertebrates which are difficult to observe directly. Basking sharks, the second largest shark

species in the world, aggregate in the summer in key foraging sites but despite advances in

biologging technologies, little is known about their breeding ecology and sub-surface behav-

iour. Advances in camera technologies holds potential for filling in these knowledge gaps by

providing environmental context and validating behaviours recorded with conventional

telemetry. Six basking sharks were tagged at their feeding site in the Sea of Hebrides, Scot-

land, with towed cameras combined with time-depth recorders and satellite telemetry. Cam-

eras recorded a cumulative 123 hours of video data over an average 64-hour deployment

and confirmed the position of the sharks within the water column. Feeding events only

occurred within a metre depth and made up¾ of the time spent swimming near the surface.

Sharks maintained similar tail beat frequencies regardless of whether feeding, swimming

near the surface or the seabed, where they spent surprisingly up to 88% of daylight hours.

This study reported the first complete breaching event and the first sub-surface putative

courtship display, with nose-to-tail chasing, parallel swimming as well as the first observa-

tion of grouping behaviour near the seabed. Social groups of sharks are thought to be very

short term and sporadic, and may play a role in finding breeding partners, particularly in soli-

tary sharks which may use aggregations as an opportunity to breed. In situ observation of

basking sharks at their seasonal aggregation site through animal borne cameras revealed

unprecedented insight into the social and environmental context of basking shark behaviour

which were previously limited to surface observations.

Introduction

The development of tracking technologies over the past 50 years has revolutionised the field of

ecology by collecting minimally biased, continuous data on free-ranging animal movement,
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behaviour, physiology or environment [1–6]. While biologging tags have answered a wealth of

ecological questions, the drivers and consequences of movement and activity often remain dif-

ficult to ascertain, particularly in the marine environment where mobile species are challeng-

ing to observe directly. A similar looking dive profile may reflect several types of behaviour

[7], while spatial overlap between animals does not necessarily mean that they interact, partic-

ularly when data is recorded at different spatial or temporal scales (i.e. fishing vessel tracking

data is recorded at coarser resolution than animal-borne devices [8]). While cameras have

been deployed on animals since the early 1900s [9], despite device miniaturisation and

advances in unit recovery systems (i.e. radio and tracking technologies), applications in beha-

vioural research remain relatively recent.

The use of animal-borne cameras in tandem with environmental or movement sensors has

not only been paramount in validating behaviours recorded by tags on free-ranging animals

[10–12], but has also given new understanding of fine-scale habitat selection, which would

remain undetected using conventional telemetry systems. For example camera tags have

revealed when dive depth may be constrained by bathymetry and not by behaviour [13],

recorded previously unknown interactions between white sharks (Carcharodon carcharias) in

kelp forests [14], and sixgill sharks (Hexanchus griseus) associating with rocky outcrops at 700

m depth [11]. Through direct observations of feeding events, animal-borne cameras have also

revealed the diet [15–19], feeding rates [20, 21], sensory systems [22, 23] and foraging strate-

gies [7, 12, 24] of a range of marine species. For example, little penguins (Eudyptula minor) are

more likely to hunt cooperatively when foraging for aggregating prey than when prey are soli-

tary [25], while instances of kleptoparasitism have been recorded by leopard seals (Hydrurga
leptonyx) [26] and Hawaiian monk seals (Monachus schauinslandi) [27], which would other-

wise go undetected through tracking data alone. Animal-borne cameras can also document

cryptic behaviours [28], the use of tools [29], as well as mating in marine mammals [30–32]

and sharks [33], helping to identify possible breeding sites [34].

Basking sharks (Cetorhinus maximus) are the world’s second largest fish species [35] with a

circumglobal distribution in temperate waters [36, 37]. They are susceptible to bycatch [38]

and are Endangered (IUCN) throughout their range [39]. The northeast Atlantic is home to

several internationally important conspicuous seasonal foraging aggregations, including the

Isle of Man, the south west of England, the west of Ireland and the Sea of Hebrides on the west

coast of Scotland [40–44]. This last site has been subject to scientific study to improve the evi-

dence base concerning a proposed Marine Protected Area (MPA), specifically intended for the

protection of basking sharks, and also minke whales (Balaenoptera acutorostrata). Previous

research efforts on basking sharks has advanced knowledge on their ecology, including forag-

ing and diving activities [45–47], energetic expenditure [48], habitat preference [49, 50], long

distance and seasonal migration patterns [36, 41, 51–53], site fidelity [41, 54, 55], and diel

behaviour [56]. Comparatively, little is known of their reproductive biology, or the environ-

mental or social context of sub-surface activity.

While basking sharks are likely to aggregate in the Sea of Hebrides to feed [43, 57], conspic-

uous behaviours not related to foraging have been observed such as nose-to-tail following, ech-

elon swimming and breaching [43, 57–59], which are thought to be associated with courtship

displays as reported in number of elasmobranch species [60–64]. There is no definite knowl-

edge of the time spent by sharks interacting with conspecifics, whether this occurs sub-surface,

and if courtship-like behaviour results in breeding attempts [49, 57, 65]. Such information

would support previous findings of the importance of the Sea of Hebrides for basking sharks

and aid the development of management plans within the proposed MPA. Animal-borne cam-

eras therefore represent a promising tool to explore social interactions in a cryptic environ-

ment and were used in the present study to (i) investigate sub-surface behaviour, (ii) record
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interactions with conspecifics, (iii) improve knowledge on their fine scale habitat and depth

use and (iv) reveal putative threats.

Materials and methods

Study site

All work was carried out in accordance with the UK HM Government Home Office under the

Animals (Scientific Procedures) Act 1986 (Project Licence P23C6EFD) and under the Wildlife

& Countryside Act 1981 (as amended) (Licence: 124812), and were reviewed and approved by

the University of Exeter’s animal welfare and ethics review board (AWERB). Basking sharks

were tagged with camera tags in the vicinity of the islands of Coll and Tiree within the Inner

Hebrides, Scotland (N 56˚33’, W 6˚41’) in August 2018 and July 2019 (Fig 1A and 1B). Sharks

were tagged by approaching them from behind using a 10 m vessel, until close enough to apply

the camera tag system using a weighted 4 m long Hawaiian sling darting pole. Tags were

attached to the base of the primary dorsal fin using a titanium dart (Wildlife Computers WA,

USA). Sharks were sexed at the time of tagging using a sub-surface video camera system.

Camera tags

Towed video camera tags (Fig 1C) comprised of four components: (i) a towed buoyant hydro-

dynamic body (CEiiA, Portugal) that encapsulated (ii) a camera system recording data with

forward and rearward point-of-view (MrROV, UK), (iii) a G5 time-depth recorder (Cefas,

UK) gathering information on temperature and depth at 1 Hz, and (iv) a SPOT6 satellite trans-

mitter (Wildlife Computers, USA) communicating with the Argos System. The camera tags

did not have lighting capability, which would have drawn on the battery, reduced the record-

ing duration (instead relying on natural light during the daytime) and may have influenced the

behaviour of the tagged animal or conspecifics. The combined package had a total weight of

1.3 kg in air, with a net buoyancy of 0.3 kg. Optimal towing dynamics of the system (e.g. atti-

tude and stability) were derived for a scenario assuming a majority movement velocity of 2 m/

sec (derived using electronic tags with integrated speed measurement [59]. Each tag system

was attached to a titanium dart via a monofilament tether (1.8 m length in 2018; 1.5 m length

in 2019), which comprised of a swivel and either an electronic Payload Release Device (PRD,

Wildlife Computers, USA), enabling detachment of the tag from the shark at a pre-specified

date and time (n = 5) or a manual galvanic corrosive link (model A2; International Fishing

Devices, FL, USA; n = 1). In 2018, the PRDs used on two sharks, were programmed to detach

at 06:00 BST the day following attachment and the galvanic release was estimated to provide a

12-hour attachment period given an approximate water temperature of 12˚C. In 2019, PRDs

were used on all deployments and programmed to release after a period of four days, which

covered a period of forecasted poor weather and as such ensured cameras did not detach dur-

ing periods when they could not be retrieved safely. Once the PRD activated, the camera tag

detached from the dart, floated to the surface and position identified using the Argos System

via the onboard SPOT6. Once the retrieval vessel was within 5 km of the most recent Argos

location, a hand-held IC-R20 VHF receiver with directional antenna (ICOM, UK) and an

RXG-234 goniometer (CLS, Toulouse, France) were used to aid retrieval. Towed cameras were

programmed to record video data at 1080p resolution at 50 frames per second until either the

memory or power were exhausted. Video recording was continuous in 2018, but a duty cycle

of 30 seconds of recording every 5 minutes was used in 2019 to extend the recording duration.

The 2018 continuous video data were therefore sub-sampled to 30-second video sequences

every 5 minutes to match the duty cycling used in 2019. We also compared habitat use and
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behaviours revealed using the duty-cycled video with the continuous video data (collected in

2018), to understand what may have been missed in the duty-cycled data.

Satellite tracking data

Argos System location data were received during the study period, and were filtered to retain

location classes (decreasing spatial accuracy) 3, 2, 1, A and B [66]. No location data were

received during the camera attachment period for sharks tagged in 2018 as they were entirely

subsurface for their respective deployment periods. Frequent location data were received for

Fig 1. Study site and towed camera tags. (A) Study site and tagging location of the six basking sharks (orange circles)

within the Sea of the Hebrides Marine Protected Area (blue polygon) (B). (C) Towed camera technical drawing (not to

scale) with a schematic of the rear and forward field of view (FOV) of the camera attached to 7m shark by a 1.8m tether

in relation to the shark’s swimming speed. The FOV of a camera towed by shark swimming at 0.5 m.s-1 is represented

in blue while the FOV when swimming at 2 m.s-1 is highlighted in red.

https://doi.org/10.1371/journal.pone.0253388.g001
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sharks 4, 5 and 6 (in 2019), however, during the camera attachment period. Feeding events

and the presence of conspecifics observed in the video data were geolocated using the nearest

Argos System locations received within 10 minutes of each event for these three sharks.

Data analysis

All video data were observed in VLC Media Player (Version 3.0.8). Initial assessment of all

data was undertaken by viewing each 30-second video file at twice the native speed to ascertain

information on the following: (i) ambient lighting conditions (more than 50% of video data

gathered in dark conditions, termed ‘blackout’, separated into day and night) and (ii) seabed

presence and habitat type (whether seabed was visible in more than 50% of data and dominant

habitat type). Seabed habitats were classified following the European Nature Information Sys-

tem (EUNIS; https://eunis.eea.europa.eu) habitat classification system, and also included sur-

face and mid-water swimming where neither the seabed nor surface were visible (S1 Table).

The frequency and extent of other behaviours, including feeding behaviour (when the shark’s

mouths was open for more than 50% of the video duration, i.e. >15 seconds), presence of con-

specifics and other species were recorded, and species were identified to the finest possible tax-

onomic level. Where necessary, video data were watched at native or slowed to half speed to

ascertain behaviour changes or other events.

To investigate the initial responses of basking sharks to tagging, Tail Beat Frequency (TBF)

was calculated as the number of lateral undulatory movements visible in the video data. Using

data collected in 2018, where video recording was continuous, TBF was estimated every min-

ute (using 30 second of data), and every five minutes for the 2019 duty cycled data for the first

30 minutes following tagging. TBF was also estimated for each 30-second video sequence of

surface feeding behaviour to compare swimming behaviour with previously reported swim-

ming metrics from surface observations [67, 68]. Temperature and depth data collected by the

time-depth recorder were analysed in R (version 3.5.3) for the duration that the cameras were

recording.

Results

Basking sharks were instrumented with towed camera tags (2018: n = 2 females, n = 1 male;

2019: n = 2 males, n = 1 unidentified sex) ranging between 5 and 7 m in length. Tags were

attached for a mean duration of 63.9 h ± 51.9 s.d. (range 7.8 to 111.1 h; 2018 mean 16.8 h ± 7.8

s.d.; 2019 mean 111.1 h ± 1.5 s.d.). Cameras recorded a cumulative 122.9 h of video data (mean

20.5 h ± 13.1 s.d., range 8.1 to 42.3 h), of which duty-cycled video represented a cumulative

20.8 h of data (mean: 3.5 h ± 3.1 s.d., range 0.8 to 8.5 h). All three rearward facing cameras

failed to gather data in 2018 but were successful in 2019. On average (mean), 37% of video

data (range 24% to 48%) were gathered at night, or while sharks were swimming at depths,

when ambient light conditions were insufficient to observe the shark or its surrounding habitat

(S2 Table).

Tagging response and recovery

The behavioural response to tagging was assessed using video and depth data gathered in the

first 30 minutes of tag deployment. For sharks tagged in 2018, when cameras recorded contin-

uously, raw video data were used. Sharks rapidly descended to the seabed following tagging to

a mean depth of 28 m (± 20.2 s.d.; range 17.4 to 64 m) apart from shark 4 that descended to 2

m depth before returning to the surface to forage. After tagging, shark 1 swam to deeper waters

remaining close to the seabed at least until 50 to 60 m depth below which ambient light condi-

tions were too poor to validate whether the shark was near the seabed. Tail beat frequency and
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rate of turning indicated that there was considerable variation in the response of individual

sharks to tagging (Fig 2). Shark 2 displayed the highest TBF within the first 5 minutes following

tagging (1.1 Hz) before stabilising at 0.3 Hz. Shark 1 maintained the highest TBF over the 30

minute period (0.4 Hz) whereas shark 5 revealed the weakest response (0.2 Hz).

Vertical movement

Depth use varied between sharks, and between years (Fig 3). In 2018, sharks 1, 2 and 3 spent

less than 1% of time swimming within a metre of the surface (0.15%, 0.38% and 0.13% of time

respectively), while in 2019, sharks 4, 5 and 6 spent longer at the surface (49%, 30% and 15%

respectively). Sharks tagged in 2018 swam at greater depth than those tagged in 2019 (mean in

2018 25.6 m ± 13.6, versus mean in 2019 13.6 m ± 3.5), with a maximum depth of 131 m

recorded by shark 1. Sharks 1, 2 and 3 were in proximity to the seabed (seabed visible within

video; e.g. Fig 3A–3C) for nearly half of the camera operation period (57%, 47% and 42%

respectively of the duty cycled data, vs 61%, 48% and 48% respectively in the continuous data).

When restricted to daylight hours, during which the vertical position of the shark in the water

column could be characterised, sharks 1 to 3 were in proximity to the seabed 57%, 81% and

88% of camera recording time (in the duty cycled data, similar to the continuous data 61%,

82% and 92% respectively, Fig 3A–3C). Shark 1 made repeated short ascents to the surface

before returning to 50 to 60 m depth where no behaviour could be inferred from the video

data due to insufficient ambient light, whereas sharks 2 and 3 remained predominantly within

the upper 30 m of the water column. Comparatively, sharks 4, 5 and 6 spent less than 20% of

their camera recording duration near to the seafloor. These three sharks switched between

intermittent surface swimming to repeated dives between the surface and the seafloor (“yo-yo”

dives), interspersed with excursions to the seafloor (Fig 3D and 3E).

Fig 2. Response to tagging. (A) Tail beat frequency in response to tagging calculated from 30 second segments of

video data taken every minute for first 30 minutes of video data (uses continuously recorded data gathered in 2018

only). (B) Tail beat frequency calculated for each 30 second recording period every 5 minutes (for 30 minutes) for duty

cycled camera tags deployed in 2019. Local order regression smoothing (colour lines; 0.5 span).

https://doi.org/10.1371/journal.pone.0253388.g002
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Seabed habitat characterisation

Shark 1 spent 36% of daylight hours at depth where insufficient light levels prevented seabed

habitat characterisation. When in sufficiently lit conditions, shark 1 was observed over three

dominant seabed habitat types: i) infralittoral rock that includes bedrock and boulders with

seaweed and kelp communities (EUNIS habitat code A3, 19% of time, S1 Table), ii) circalit-

toral rock including habitat dominated by macrofaunal communities such as echinoderms

(A4, 19%), and iii) sublittoral sediments composed of sand, pebbles and mixed sediment (A5,

18%) (Fig 4A). Sharks 2 and 3 were observed predominantly over kelp, rock and seaweed habi-

tat (A3, 34% of the recording duration each), and 12% and 6% of time over mixed sediment

habitat (A5) respectively (Fig 4B and 4C). Shark 2 spent the most time (10%) of all three sharks

tagged in 2018 swimming in the mid-water column. Continuous video data for the three

sharks tagged in 2018 revealed similar habitat association, with less than 3% variation in habi-

tat type compared to duty-cycled data (S1 Fig). Shark 4 tagged was only observed in proximity

to the seabed on a single video recording over rocky substrate (A4) and spent 65% of the

recording time at the surface (Fig 4D). Shark 5 swam over the largest range of seabed habitats

(Fig 4E) and was associated most frequently with circalittoral habitats (A4, 12%). Shark 6 spent

Fig 3. Depth use behaviour of basking sharks gathered from towed camera tags. (A) Shark 1, (B) shark 2, and (C) shark 3 tagged in 2018, and (D) shark

4, (E) shark 5 and (F) shark 6 tagged in 2019. Periods of seabed (black bars) or surface swimming (red bars) when ambient light permitted habitat

characterisation, where the top bars in A-C represent depth use inferred from duty-cycled video data, and lower bars continuous data. Tracking duration

(h) shown in parentheses.

https://doi.org/10.1371/journal.pone.0253388.g003
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the most time of all sharks swimming mid-water (34% of recording duration), and predomi-

nantly associated with infralittoral rock dominated by seaweed (A3.215, 7%) (Fig 4F).

Surface foraging behaviour

None of the three sharks tagged in 2018 were observed feeding. By contrast, in 2019, a cumula-

tive 120 minutes of feeding behaviour at the surface was captured (Fig 5). No sharks were

observed feeding sub-surface. The time observed foraging varied between sharks, ranging

from 23 to 51 minutes over 1.2 and 4.2 h time periods respectively (period between first and

last video revealing foraging). Sharks 4, 5 and 6 were feeding for 35%, 26% and 21% of the

camera operation duration respectively. Foraging sharks were usually within 1 m of the surface

(average depth ± sd; shark 4: 0.3 m ± 0.2; shark 5: 0.9 ± 0.1; shark 6: 0.6 m ± 0.6) and feeding

began before astronomical sunrise (earliest foraging behaviour recorded 04:40 BST), and con-

tinued for at least half an hour following astronomical sunset (latest foraging behaviour

recorded 22:30 BST). Ambient light became too poor to identify feeding behaviour after 22:30

BST, however, based on time-depth recorder data, shark 5 remained at the surface until 22:55

BST before swimming to depth, so may have foraged during darkness. Sharks 4, 5 and 6 initi-

ated feeding behaviour within 30 minutes of the camera deployment, with shark 4 returning to

the surface in less than 20 seconds following tagging and was observed foraging in the first

video segment 4 minutes into the deployment. The longest feeding interval was 3 h for shark 4,

3.1 h for shark 5 and 1.5 h for shark 6. Sharks were recorded swallowing 16 times throughout

feeding events (3, 6 and 7 times for sharks 4 to 6 respectively). Feeding behaviour represented

three quarters of the duty-cycled video data gathered at the surface. If sharks allocated this

Fig 4. Habitat association by basking sharks. Proportion of time sharks 1–6 (A to F) spent swimming over different

habitat types characterised by their European Nature Information System (EUNIS) code (A3.125 mixed kelp with

opportunistic red seaweed on sand-covered infralittoral rock, A3.212 Laminaria hyperborea on tide-swept infralittoral

rock, A3.215 Dense foliose red seaweeds on silty moderately exposed infralittoral rock, A4.21 Echinoderms and crustose

communities on circalittoral rock, A5.13 Infralittoral coarse sediment, A5.23 Infralittoral fine sand, A5.52 Kelp and

seaweed communities on sublittoral sediment). Includes proportion of time sharks spent in the water column (No Vis.

Seabed), or when habitat could not be characterised owing to poor light conditions from deep diving (Blackout Day) or

recording at night (Blackout Night).

https://doi.org/10.1371/journal.pone.0253388.g004
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proportion of time to feeding when swimming within 1 m of the surface, sharks 4, 5 and 6

would have fed for 4.6, 7.9 and 11.3 h of their camera deployment duration respectively. TBF

of sharks while feeding was 0.20 Hz ± 0.02 for shark 6, 0.21 Hz ± 0.02 for shark 5, and 0.25

Hz ± 0.02 for shark 4. Sharks maintained the same TBF regardless of whether they were forag-

ing or not (Wilcoxon signed rank test V = 853, p = 0.49, foraging 0.22 Hz ± 0.03 versus mouth

closed 0.22 Hz ± 0.04), or when being in proximity to the seabed (TBF 0.24 Hz ± 0.08, range

0.17 Hz to 0.38 Hz) compared to the surface (0.22 Hz ± 0.02, range 0.19 Hz to 0.25 Hz). The

later comparison could not be tested statistically as only two sharks (sharks 5 and 6) were

recorded both at the surface and in proximity to the seafloor.

Conspecifics

Five towed camera tags recorded other basking sharks on eleven separate occasions, of which

six were during surface foraging events (sharks 4 to 6), with the longest interaction lasting 2 h

15 minutes during which shark 4 was following a feeding male shark (Fig 5B–5E and Fig 6E).

Sharks maintained similar TBF swimming at the surface regardless of whether in the presence

of conspecifics (0.23 Hz ± 0.02), feeding (0.22 Hz) or not (0.22 Hz ± 0.04). The camera tags did

not directly reveal mating but did record some courtship-like behaviours and early morning

group behaviour. Shark 5 recorded another shark foraging ~15 m away at the surface (Fig 5D),

which then stopped feeding and closely approached the tagged shark (within 2 m), switching

from its left side to its right by swimming underneath shark 5 before swimming alongside it.

Shark 4 followed a second shark very closely (<1 m) at speed (TBF 0.33 Hz) at 60 m depth.

The other shark was then observed approaching the caudal fin of shark 4 perpendicularly

within 1 m, turned to swim beneath it, and followed shark 4 from below. In the subsequent

Fig 5. Basking shark satellite tracking during camera tag attachment. (A) Satellite tracking locations for shark 4

(green), shark 5 (orange) and shark 6 (red) during camera tag attachment periods in 2019. Location of feeding events

for each shark (squares in corresponding colours). Selected behaviours are highlighted with given locations (B-G). In

(B) to (E) shark 4 is seen feeding at the surface following a second male shark. Shark 5 camera captures a second shark

swimming slowly over the seabed in (F) as it swims towards the surface. (G) Shark 6 feeding at the surface.

https://doi.org/10.1371/journal.pone.0253388.g005
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video recording, recorded five minutes later, shark 4 was observed close following the second

shark nose-to-tail at speed at 29 m depth. A second shark was observed in the continuous

video data of shark 1 swimming ~ 20 m ahead and above the tagged sharked at 49 m depth.

The second shark was only visible for < 5 secs due to poor visibility at depth. TBF could not be

measured owing to instability of the camera. Group behaviour was also observed; shark 3 was

observed swimming slowly (TBF: 0.17 Hz, slower than average swimming speed 0.22 Hz) near

to the seabed (18–25 m depth) within 5 m of at least nine other basking sharks in the early

morning (05:11 to 06:05 BST 3-Aug-2018). The sharks swam closely enough that they touched

body and fins two and three times respectively, and swam both closely next to one another and

in an echelon formation. Shark 3 was observed swimming ~1 m directly above a second shark

in the same direction for 25 seconds before swimming away and following a third shark nose-

to-tail, while a fourth and fifth shark swam over the tagged shark, bumping into the camera. In

the continuous video data of shark 3, a three minute clip revealed at least nine individual

sharks, with an average of four sharks (± 1.9 sharks) sighted per 3 minute clip between 05:11 to

06:05 compared to two sharks (± 0.9, max 4 sharks) over the same time period for the 30 sec-

ond duty-cycled clips. This is the first evidence to our knowledge of basking sharks aggregating

near the seabed (Fig 6E, Shark 5 was observed making an abrupt 4 minute duration dive from

Fig 6. Observed behaviours from towed camera tags. (A) Shark 3 moving over sandy seabed, (B) shark 4 feeding

while following a second feeding shark at the surface, (C) shark 2 moving over mixed ground with seaweeds (D) shark

5 trailed closely by a second shark, (E) shark 3 engaged in early morning group behaviour—three sharks visible;

instrumented shark (centre) and two other sharks (far left and top right), (F) shark 4 rearward camera obscured by

plastic sheet, (G) shark 5 rearward camera revealing defecation, and (H) shark 5 rearward camera revealing small horse

mackerel following the tagged shark.

https://doi.org/10.1371/journal.pone.0253388.g006
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feeding at the surface to the descending to the seabed at 46 m depth at speed where the rear-

ward camera captures a second shark swimming slowly over the seabed (Fig 5D) and the

tagged shark ascends back to the surface with a tail beat frequency of 0.23 Hz.

Breaching and defecation

One shark breached clear of the water during recording (Fig 7) at 19:22 BST on the 2-Aug-

2018, ascending from 72 m deep at approximately 0.9 m s-1 of vertical gain, reaching the sur-

face in 77 seconds The shark exited the water completely before descending to similar depth

again (74 m) within 61 seconds at a vertical speed of 1.2 m s-1. Five defecation events were

recorded in two sharks by the rearward facing cameras, one by shark 4 at the surface, and four

times by shark 5 on average 6.1 h apart (± 3.7 s.d., range 1.8 to 8.3 h), twice when near to the

seabed (43 and 19 m respectively), and twice mid-water between 10 and 15 m deep (Fig 6G).

Other species

Video cameras recorded ctenophores, moon jellies (Aurelia aurita) and lion’s mane (Cyanea
capillata) jellyfish throughout the water column, species that are consistent for the region [69],

with no evidence of sharks either avoiding or eating them. Sharks swam over benthic sessile

organisms including sea urchins, brittle and common starfish, sea cucumber, and soft coral

(alcyonium). With the exception of shark 6, all sharks had between one and three lamprey

attached between the anal fins, as well as behind the dorsal fin in the case of shark 4. All sharks

were followed at some point (between 1 and 13% of the video data) by small fish (Fig 6H),

likely Atlantic horse mackerel (Trachurus trachurus), throughout the water column and near

to the seafloor, most commonly over rocky substrate. These fish were cleaning the sharks (or

themselves) in over half of the observations (up to 73% (n = 95) for shark 6), and shoaled

around the shark’s body or trailing their tail (recorded in rearward cameras of sharks 4, 5 and

6) in shoals up to hundreds of fish, although in the majority (80%) of video data there were less

than 100 fish. Two instances of antagonistic behaviour occurred, in which sharks 5 and 6

snapped their jaws and made abrupt tight turns of their head in response to shoals of Atlantic

horse mackerel appearing to bite the shark caudal fin, followed by three rapid tail beats, dis-

persing the fish.

Marine debris

Camera tags also provided incidental evidence of marine debris. Fishing line was observed

floating in the water column close to sharks on three separate occasions (shark 5 n = 1, shark 6

n = 2), while a plastic sheet became attached to shark 4’s towed camera 35 minutes into the

deployment (Fig 6F), obscuring part of the rear view until the end the deployment (11.7 h

later).

Differences between continuous and duty-cycled data

There were few differences in habitat association and behaviours observed in the duty-cycled

data compared to the continuous data for sharks 1, 2 and 3. The proportion of time allocated

to different habitat types varied by less than 3%. Only three behaviours were missed due to

duty-cycling: the sighting of a second shark for 5 seconds by shark 1, two fin touching events

during the grouping behaviour at depth by shark 3, and the breach, which was originally iden-

tified from the depth profile. The number of sightings of other species remained similar

between recording schedules, except for intermittent following of trailing fish which were

reported up to four times more frequently in the continuous data (14% compared to 3% of
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clips for shark 3). Most of the basking sharks’ noteworthy behaviours such as feeding, trailing

or being followed by conspecifics were sustained over periods longer than the four minutes 30

seconds period between video segments. The sub-sampled video data revealed the grouping

behaviour over the same overall time scale as the continuous data, but less than half as many

sharks were recorded on average (2.1 compared to 4.3), and less than half the maximum num-

ber sharks (4 compared to 9) were identified during a single video segment.

Discussion

Overview

This study represents the first long-term deployment of animal-borne cameras on basking

sharks recording a cumulative 123 hours of video data and revealed the first evidence of sub-

surface interaction with conspecifics. Cameras provided unprecedented insight into the social

and environmental context of basking shark behaviour, which was previously limited to sur-

face observations, as well as their fine scale habitat association at depth. While basking sharks

are thought to aggregate in Scottish waters to feed [50, 57], the sharks in this study spent a sur-

prising proportion of the study period in proximity to the seabed (up to 88% of recordings

made in daylight hours) where sharks swam predominantly over infralittoral rock. Knowledge

of habitat association is valuable for evaluating the effects of human activity upon the species

(e.g. fishing, aquaculture, wild harvesting of natural products, civil engineering, military activi-

ties). Any future threat assessments of this species should explicitly consider depth behaviour

and seabed habitat associations given the time sharks allocated to swimming near to the sea-

floor, which increases the possible risk of overlap with human activity sub-surface. For exam-

ple, in New Zealand, the greatest proportion of accidental capture of basking sharks were by

trawlers near or on the seafloor [38]. Towed cameras confirmed the presence of marine debris,

including fishing gear, highlighting possible risks of ingestion or entanglement [70, 71]; how-

ever, the Inner Hebrides experiences some of lowest levels of pollution from marine waste in

the UK [72]. The extent of association with the seabed also has implications for conducting

population estimates, since these are based primarily on surface observations [73]. The num-

ber of sharks in the region may be underestimated owing to the rather limited time spent at

the surface or even in the mid-water column.

Although the tracking duration was too short to robustly test diel patterns of depth use, all

sharks swam deeper at night than during the day, supporting previous findings of reverse verti-

cal diel migration in basking sharks in inner shelf areas near thermal fronts [47, 56, 74]. Sharks

may have followed the vertical diel migration of prey at night and fed at depth [45, 53], how-

ever, ambient light conditions were too dark to identify possible foraging behaviour, and no

feeding behaviour was captured even when sharks were discernible on the seabed at dawn.

Sharks made intermittent oscillatory dives to the seabed between foraging events, typified by

shark 4. While these dives are likely to have multiple functions in sharks [75–78], yo-yo type

dives have been suggested to play a role in prey searching [45, 76] as an optimal foraging strat-

egy to maximise encounter rate with spatially and temporally distributed prey such as zoo-

plankton [79]. However, feeding behaviour was only observed at the surface and only for three

sharks tagged in 2019. Sharks maintained similar tail beat frequencies when swimming at the

surface regardless of whether they were feeding or not and were similar to previously reported

Fig 7. Basking shark breaching. Breach recorded by a towed camera tag. (A) The shark starts to ascend from 72 m

depth at approximately 0.94 m s-1 of vertical gain, reaching the surface (in view, B) in 77 seconds The shark can be

seen completely out of the water (C), before descending (D) to depth again. The timing and depth associated with each

image (A-D) are identified on the breaching depth profile (E).

https://doi.org/10.1371/journal.pone.0253388.g007
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boat-based observation [67]. As ram ventilating species, basking sharks may need to maintain

a minimum speed to optimise water flow across the gills to meet oxygen requirements [80],

possibly compensating for the high drag associated with filter feeding at the surface. Animal-

borne cameras can therefore reveal aspects of basking shark feeding ecology, such as digestion,

which may be challenging or impossible to infer from conventional tracking technologies. In

the present study, although video data collected was duty-cycled, prey swallowing and defeca-

tion events were recorded. If combined with feeding rates, local prey concentration and daily

energy expenditure, more accurate energetic models could be populated for basking sharks.

While it has been suggested that marine mammals and seabirds play a role in enhancing pri-

mary productivity and stimulating carbon export [81–83], the biogeochemical role of basking

sharks in the oceans has not been explored. The towed cameras revealed that the sharks defe-

cated at the surface as well as on the seabed, possibly enhancing primary production at depth

through fertilisation. While basking sharks are thought to aggregate in the region to feed,

sharks fed less than might be expected, with none of the sharks tagged in 2018 feeding in over

16 hours of cumulative video data. Owing to the energetic costs associated with filter feeding,

which may be up to twice the costs associated with routine activity at similar speeds [84, 85],

basking sharks may have not been feeding because of low prey densities in 2018 at which

sharks would not achieve net energy gain [86].

Tagged sharks recorded the presence of conspecifics on eleven separate occasions. Conspe-

cifics were predominantly observed at the surface during feeding events either following or

leading the tagged shark closely. While close following is likely to provide a hydrodynamic

advantage to the following shark by conserving energy associated with drag or possibly help

capture prey missed by the leading shark [57], it has also been suggested to play a role in pre-

courtship display [57, 87, 88]. In this study, a female shark was observed swimming towards a

male shark from a distance, exhibiting nose-to-tail following, stacking behaviour (swimming

below the tagged shark) and parallel swimming while shark 5 was not feeding. Intentional

swimming was also recorded by Gore et al. [57], however this type of behaviour was more

rarely recorded compared to other close following behaviours. While similar social behaviour

has been reported in aggregating sharks at the surface [87–89], this study reported the first

sub-surface putative courtship displays for basking sharks. At least nine sharks were observed

close following and swimming parallel to shark 3 near to the seabed at dawn, presenting the

first evidence of basking shark aggregations at depth. Social groups of sharks are thought to be

very short term and sporadic, and may play a role in finding breeding partners [65], particu-

larly in usually solitary sharks such as basking sharks that may use summer aggregations as an

opportunity to find mates [87], with high relative population densities possibly triggering mat-

ing behaviour in schooling species [90]. Since the tagged sharks maintained similar tailbeat fre-

quencies regardless of being in the presence of conspecifics or alone, both at the surface and at

depth, interactions with conspecifics may be missed by using conventional tracking technolo-

gies. While no mating behaviour was directly recorded, this study reports previously unknown

sub-surface putative courtship displays, highlighting the importance of the region to basking

sharks.

Cameras provided unprecedented social context to rare behaviours such as two fast burst

chasing events at depth associated with sharks 4 and 5 closely following, or being followed, by

a second shark. One chase event lasted over five minutes perhaps suggesting more than an

aggressive response. In addition, a complete breach revealing ascent and descent performed by

a basking shark was recorded onboard the animal in the present study. Shark 1 was observed

to ascend rapidly from the seafloor before clearing the surface and descending back to similar

depths. Breaching is observed in a range of species [63, 91–93] and has been associated with

communication [94], mate finding [95], predatory ambush [96] and even fun [97]. Because
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breaching has been estimated to be relatively energetically demanding [48, 59, 93, 98], it is

likely to have a fitness benefit [99]. While the function of breaching remains unclear, it may be

related to social behaviour [48, 57, 65]. Breaching has been observed in areas where surface

activity, such as close following, has been recorded [57, 87].

With all tagging studies, it is essential to consider the effect of tags on the animal. In this

study the response to tagging was measured, with sharks displaying an initial tail beat fre-

quency up to three times higher than the relative baseline frequency. Within 15 minutes

(mean 10 minutes), tail beat declined and stabilised, remaining similar throughout the camera

operation period. To achieve minimum burden of animal-borne cameras, a trade-off exists

with device size, and battery life and/or storage. Several methods have been designed to extend

the deployment duration and likelihood of capturing behaviours of interest such as sampling

triggered by other sensors (such as depth recorders [100] and accelerometers [19], or selecting

sampling rates that are biologically relevant to the tagged species. Hooker et al. [100] suggested

that when the temporal quantification of a behaviour is important, the sampling rate must be

more frequent than the duration of the event, while if investigating the frequency of a behav-

iour, duty-cycling must take place at intervals shorter than the duration of the behaviour. Bask-

ing sharks are slow swimming (mean speed 1 km.h-1 [59]) filter feeders with behaviours such

as interactions with conspecifics and foraging lasting several minutes to hours. In the present

study, camera tags were duty-cycled, sampling 30 seconds every 5 minutes, which enabled the

recordings to be extended by about 100% compared with continuous filming (mean 2018 con-

tinuous video data 12.6 h ± 4.2, compared to mean 2019 video data 28.3 h ± 15.2). Sub-sam-

pling the 2018 continuous data to match the duty-cycled 2019 footage revealed little variation

in habitat association and suggested that duty cycling meant only few incidents were missed.

Events such as feeding, defecation, breaching or short-lived interactions between conspecifics

were sufficiently sporadic that they would likely only be captured if recording frequency was

sufficiently long. While the duty-cycled video data highlighted a similar frequency of common

behaviours to the continuous video data, the sampling frequency and interval chosen here are

unlikely to be suitable for more dynamic species, such as ambush predators with burst behav-

iours, low prey encounter rates and short handling times, like the great white shark. Future

deployments of cameras with other sensors, such as accelerometers or oceanographic sensors,

would also provide important visual context to tracking data. Cameras could also be used to

investigate anthropogenic effects in the marine environment on animals at liberty, by directly

identifying threats as well as subsequent behavioural responses, which may not be obvious

from other types of biologging sensors [101].

Supporting information

S1 Fig. Comparison of habitat association by basking sharks. Proportion of time sharks 1–3

spent swimming over different habitat types characterised by their European Nature Informa-

tion System (EUNIS) code (A3.125 mixed kelp with opportunistic red seaweed on sand-cov-

ered infralittoral rock, A3.212 Laminaria hyperborea on tide-swept infralittoral rock, A3.215

Dense foliose red seaweeds on silty moderately exposed infralittoral rock, A4.21 Echinoderms

and crustose communities on circalittoral rock, A5.13 Infralittoral coarse sediment, A5.23

Infralittoral fine sand, A5.52 Kelp and seaweed communities on sublittoral sediment) derived

from duty-cycled data (A-C) and continuous data (D-F). Includes proportion of time sharks

spent in the water column (No Vis. Seabed), or when habitat could not be characterised owing

to poor light conditions from deep diving (Blackout Day) or recording at night (Blackout

Night).

(TIF)
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S1 Table. Summary table of the European Nature Information System (EUNIS) habitat

codes used to classify the habitat types used by the basking sharks.

(DOCX)

S2 Table. Summary information on deployment of towed camera tags (2018 and 2019),

including locations of deployment, tag detachment and retrieval times, attachment and

data duration and camera performance. Statistics for sharks 1 to 3 are derived from sub-sam-

pled video data to match the format of duty cycled tags deployed in 2019.

(DOCX)
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