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A B S T R A C T   

COVID-19 has had a detrimental impact on normal activities, public safety, and the global financial system. To 
identify the presence of this disease within communities and to commence the management of infected patients 
early, positive cases should be diagnosed as quickly as possible. New results from X-ray imaging indicate that 
images provide key information about COVID-19. Advanced deep-learning (DL) models can be applied to X-ray 
radiological images to accurately diagnose this disease and to mitigate the effects of a shortage of skilled medical 
personnel in rural areas. However, the performance of DL models strongly depends on the methodology used to 
design their architectures. Therefore, deep neuroevolution (DNE) techniques are introduced to automatically 
design DL architectures accurately. In this paper, a new paradigm is proposed for the automated diagnosis of 
COVID-19 from chest X-ray images using a novel two-stage improved DNE Algorithm. The proposed DNE 
framework is evaluated on a real-world dataset and the results demonstrate that it provides the highest classi-
fication performance in terms of different evaluation metrics.   

1. Introduction 

COVID-19 was reported for the first time in the Chinese city of 
Wuhan in December 2019 [1,2]. COVID-19’s natural composition is a 
positive-oriented, one-stream RNA shape, and because of its mutating 
characteristic, it is difficult to eradicate [3]. Globally, healthcare pro-
viders are conducting extensive work to create an appropriate cure for 
this epidemic. COVID-19 has caused thousands of mortalities in coun-
tries around the globe [4]. It is marked by a sore throat, headaches, 
nausea, throat irritation and coughing, and can cause the mortality of 
individuals with weakened immunologic systems [5,6]. COVID-19 
typically spreads through physical interaction from human to human. 
Healthy individuals can become infected from people carrying 
COVID-19 through breathing communication, touch contact, or mucosal 
touch [7]. 

In recent years, medical research has widely benefited from artificial 
intelligence (AI) methodologies [8–14]. In various applications, such as 
medical informatics [15,16,16], energy forecasting [17–25], uncer-
tainty quantification [26–28], probabilistic forecasting [29–31], and 

recommendation models [32–45], AI has been employed with powerful 
algorithms. Deep-learning approaches have been highlighted to be used 
with the diagnosis of COVID-19 in chest X-rays after appearing the 
epidemic [46–50]. Several scientific studies have been conducted to 
analyze chest X-rays taken from COVID-19 patients. In a previous study 
[51], three separate deep-learning models (a perfectly tuned model, a 
model without fine tuning, and a model trained from scratch) were 
deployed to categorize COVID-19 X-ray images. The authors sorted the 
dataset into many categories such as age and sex using the ResNet 
model. They also used the MLP neural network as a classification 
method. Yadav et al. [52] developed an Algorithm for classifying X-ray 
images using support vector machine (SVM) as a classification tool and 
VGG-16 as a deep-learning network. In their study, the dataset is divided 
into three classes: regular, bacterial, and viral COVID-19. They used an 
image enhancement method for each image in the dataset to increase the 
contrast and brightness. The best result obtained using their proposed 
classification algorithm was 96.6%. Sarker et al. [53] used DenseNet for 
COVID-19 classification. They used transfer-learning approaches to train 
the deep-learning system to alleviate the problems affected by the 
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gradient descent. They developed a web interface that takes X-ray im-
ages and creates a bounding box around the affected areas. 

A novel technique based on deep-learning was developed by Shan 
et al. [54] to automatically classify the infected lung regions. Their 
technique was assessed on a dataset containing images from 300 people 
infected with COVID-19. For the binary classification of COVID-19, 
Elasnaoui and Chawki [55] used convolutional neural network (CNN) 
models. They used pre-trained models such as Inception ResNet V2, 
VGG16, VGG19, Inception V3, Xception, MobileNet V2 and ResNet50. Li 
et al. [56] have developed a neural network for the detection of 
COVID-19 infection (COVNet) in order to extract valuable features from 
chest-CT images. Over 4357 chest-CT images of 3322 patients were used 
to train the COVNet. The final achieved accuracy of COVNet was 95%. In 
Ref. [57], Okeke Stephen et al. proposed a CNN model, which was 
developed by extracting characteristics from chest X-ray images to 
evaluate the presence of COVID-19. In Ref. [58], Hu et al. presented a 
weakly-supervised CNN framework and obtained an accuracy and the 
AUC of 96.2% and 97% respectively. Abbas et al. [59] employed a CNN 
application named Decompose, Transfer, and Compose (DeTraC) to 
classify COVID-19 through chest X-ray images. They achieved 95.12% 
accuracy, 97.91% sensitivity, and 91.87% specificity. Narin et al. [60] 
used two deeper frameworks for classifying COVID-19 and normal cases 
based on a publicly available dataset. In a hybrid model named ADOPT 
[61], a spotted hyena optimizer, a decision tree model, and deep CNN 
models are used for identifying COVID-19 pneumonia from X-ray im-
ages. In comparison with eleven different CNN algorithms, ADOPT 
demonstrated better outcomes in relation to different evaluation metrics 
such as accuracy, recall, precision, F1-score, and specificity. In another 
study conducted by Dhiman et al. [62], a model named DON was pro-
posed using emperor penguin optimizer for optimization of the CNN 
parameters to detect infected patients using X-ray COVID-19 images 
efficiently. Extensive evaluation findings demonstrate that DON out-
performs competitor approaches. 

By reviewing the literature, it can be inferred that most of the 
research carried out by deep-learning models uses pre-trained deep- 
learning architectures to diagnose COVID-19 in X-ray radiological im-
ages. The main problem of transfer-learning architectures is the rise of 
the overfitting issue when a small number of labeled training data are 
available, and the pre-trained deep learning models (such as MobileNet 
and ResNet) have millions of parameters. Other research works use 
network architectures that are obtained via the trial-and-error process in 
deep-network hyperparameters, but this is a very time-consuming pro-
cedure. It is worth noting that the efficiency of deep neural networks is 
significantly dependent on the values of their hyperparameters. Deep 
neuroevolution (DNE) is known as a very practical and useful method in 
designing network architecture using evolutionary algorithms that both 
optimally select the best hyperparameter values and minimize the 
problem of network overfitting. 

In this paper, we propose a novel evolutionary Algorithm named the 
boosted salp swarm algorithm (BSSA) that enhances the original version 
of SSA through incorporating two strong optimization operators: 
opposition-based learning (OBL) and chaotic maps. It should be noted 
that the efficiency of evolutionary algorithms is highly dependent on 
performing the exploration and exploitation phases in an effective way. 
Therefore, in this paper, we aim to propose powerful mechanisms to 
improve the efficiency of the exploration and exploitation phases. By 
applying the two optimization operators, both the diversity of the search 
process and the exploration and exploitation of the SSA method are 
enhanced. Moreover, we apply the proposed BSSA algorithm to optimize 
the key hyperparameters of CNN models. This leads to an improvement 
in the efficiency of CNN models in classification problems. In other 
words, in contrast to previous deep neural-network-based COVID-19 
diagnosis models, the proposed method automatically obtains the 
optimal values of CNN’s hyperparameters through the optimization 
process of the proposed BSSA algorithm. The optimized CNN model is 
then used to diagnose COVID-19 cases based on X-ray images with a 

high accuracy. To improve the effectiveness of the CNN model in clas-
sifying the input images accurately, the support vector machine 
approach is applied to the outputs of the CNN model. The experimental 
results demonstrate that the proposed method can significantly 
outperform other classification models in regard to COVID-19 diagnosis. 
The main contributions of this work are:  

● A DNE framework is proposed based on a deep CNN model to classify 
the patients as COVID-19 infected or normal (i.e. non-COVID-19) by 
investigating their chest X-ray images. 

● A novel evolutionary Algorithm is proposed by improving the orig-
inal version of the salp swarm algorithm through incorporating two 
effective optimization operators including opposition-based learning 
and chaotic maps to make an acceptable balance between the 
exploration and exploitation phases in the search space. This leads to 
a reduction in the probability of falling into local optima solutions.  

● The proposed evolutionary Algorithm is used to obtain the optimal 
values of the hyperparameters of the CNN model, leading to an 
improvement in the performance of the proposed image classifica-
tion method.  

● The support vector machine approach is used in the proposed image 
classification method to generate more accurate results by applying 
this approach to the outputs obtained by the CNN model. 

● Comprehensive experiments are carried out to examine the feasi-
bility of applying the DNE Algorithm developed in this research to 
COVID-19 chest X-ray images. Since the proposed algorithm per-
forms with a high accuracy, it can help physicians to diagnose 
COVID-19. 

The rest of this paper is organized as follows: Section 2 describes the 
proposed DNE framework for X-ray images. The experimental proced-
ures are presented in Section 3. The experimental results are given and 
discussed in Section 4. Finally, concluding remarks are set out in Section 
5. 

2. Methodology 

In this section, a novel image classification method is proposed based 
on deep convolutional neural networks in order to diagnose COVID-19. 
The aim of the proposed method is to apply deep CNN to classify chest X- 
ray images in order to distinguish between COVID-19 and non-COVID- 
19 cases. To this end, an efficient evolutionary Algorithm called the 
boosted salp swarm algorithm (BSSA) is proposed to obtain the optimal 
values of the hyperparameters of the deep CNN model. The main 
advantage of the proposed evolutionary algorithm is to automatically 
configure the hyperparameters of the deep CNN model. Moreover, the 
support vector machine approach is applied to the outputs obtained by 
the CNN model to generate more accurate results leading to an 
improvement in the performance of the proposed image classification 
model. In the subsections below, an overview of the CNN, the BSSA, and 
the support vector machine is presented. The proposed model is then 
discussed in detail. 

2.1. An overview of CNN 

In contrast to task-specific techniques, deep learning belongs to a 
part of the wider range of machine-learning algorithms associated with 
data interpretation. The learning procedure can be supervised, semi- 
supervised, or unsupervised. The convolutional neural network (CNN) 
is among the most significant architectural modeling techniques for 
deep learning [63]. 

The CNN is a multilayered network with the convolutional and 
pooling layers as the core network architecture [64]. In order to achieve 
a variety of feature maps, the convolutional layer uses several convo-
lution kernels for function extraction on the input layer, while the 
pooling layer can primarily reduce the feature map dimension via a 
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pooling mechanism, prevent overfitting, and minimize the number of 
parameters as much as needed to maintain reasonable accuracy [65,66]. 

In CNNs, input data are considered in the input layer. There are a 
variety of two-dimensional (2D) filters with weighted parameters in the 
convolution layer [67]. These filters are connected to input layer and 
generate an output in the form of feature maps. All of the filters have the 
same weighted parameters. Assume the input of the convolutional layer 
is determined by X with RA×B dimension where the size of the input data 
is denoted by A and B. The output can be given as follows for the con-
volutional layer: 

Cn = f
(∑N

c=1
Xl− 1

c ∗ Wl
m + Bl

m

)
, (1)  

where Cn is the nth convolutional layer output, n indicates the output 
number which equals to the number of the filters, the channel number is 
represented by N and the convolutional operator is denoted by *. Xc is 
the cth channel of input data for the previous layer (l − 1), Wl

m repre-
sents the mth filter weight for the current layer (l), the filter’s width and 
height are represented by W and H respectively, Bl

m indicates the mth 
bias, and f is one of the commonly known activation functions including 
Rectified Linear Unit (ReLU), sigmoid function, and hyperbolic tangent 
(tanh). ReLU function is the widely used activation function and delin-
eated as follows: 

f (x) = max(0, x) (2) 

The pooling procedure helps to minimize the computational 
complexity of the feature maps following the last convolutional layer, 
avoid overfitting appropriately, and decrease training parameters, 
ensuring that the model’s training time is decreased. The generally 
known and utilized pooling method is max-pooling, responsible for 
traversing feature maps with a flexible step size and to replace the tra-
versed regions by the optimum values. Finally, new feature maps can be 
extracted after the traversing procedure. This is how CNNs generally 
work. 

2.2. Support vector machine 

A support vector machine (SVM) is a powerful linear supervised 
learning Algorithm used for solving linear and also non-linear regression 
and classification problems. This technique uses a hyper-plane line to 
distinguish features in the data classes throughout the classification 
phase. Put simply, this technique utilizes data as input and produces an 
output with a line separating the available classes in the dataset. The 
desirable line implies a generalized machine line for all classes to be the 
most common separator. 

Softmax is a mathematical operation that transforms a vector of in-
tegers into a vector of probabilities, with the probability within each 
value related to the vector’s proportional scaling. The Softmax function 
has been commonly used as an activation function in a neural network 
model. The network is set up to output values, one for each class in the 
classification task, and the Softmax function is employed to normalize 
the outputs, transforming weighted summation values towards proba-
bilities that add up to one. Each integer in the Softmax function’s output 
is regarded as the probability of belonging to each class. We substitute 
the Softmax classifier (the top layer of the CNN model) with the SVM 
linear dropout classifier. The motivation behind this is that the utiliza-
tion of the dropout SVM can provide a better performance than Softmax 
for the deep CNN, and also reduce the overfitting problem [68,69]. 
Another advantage of SVM compared to Softmax is that SVM aims to 
find the maximum margin between data points of different classes. This 
helps to improve the accuracy of the classification model. The mathe-
matical operation functions of the SVM Algorithm are provided in Eqs. 
(3)–(5). In these equations, x and y describe the coordinate points of 
hyper-plane features, M denotes the margin width parameter, and 
parameter b represents the values for bias. 

u = M.x − b (3)  

1
2
=‖M‖

2 (4)  

yi(M.x − b) ≥ 1, ∀i (5)  

2.3. Improved evolutionary algorithm: boosted salp swarm algorithm 
(BSSA) 

The inspiration for the salp swarm Algorithm (SSA) is based on the 
foraging and navigation behavior of ocean organisms called salps. This 
evolutionary swarm intelligence algorithm was introduced by Mirjalili 
et al. [70] in 2017. Salps commonly float together in the form of a salp 
chain while foraging and navigating in seas and oceans. Similar to other 
swarm intelligence models, SSA is a population-based method 
commencing with the random initialization of a predefined number of 
search agents. In the swarm of salps, there are two components: a leader, 
and followers. The following is the mathematical model representing the 
salp chain. The position of the leader is updated using Eq. (6). 

x1
j =

{
Fj + c1

( (
ubj − lbj) c2 + lbj

)
c3 ≥ 0.5

Fj − c1
( (

ubj − lbj) c2 + lbj
)

c3 < 0.5 , (6)  

where Fj is the position of the source food, and ubj and lbj represent the 
upper and lower bound of the jth dimension, respectively. Three 
numbers, c1, c2 and c3 are computed randomly into the [0, 1] interval. c1 
is an important vector which is slowly reduced and measured over the 
iteration periods, where L and l are the maximum number of iterations 
and the current iteration, respectively. Therefore, the value of parameter 
c1 depends on the values of parameters l and L. The value of parameter l 
changes from 1 to L with step 1. Accordingly, the value of parameter c1 
will change based on the following equation: 

c1 = 2e
−

(

4l
L

)2

(7) 

The position of the follower salps is updated using Eq. (8): 

xi
j =

1
2

(
xi

j + xi− 1
j

)
, (8)  

where xi
j is the ith follower’s position on the jth dimension and i ≥ 2. 

The SSA has demonstrated its strong capabilities in solving various 
optimization problems [71,71–73]. However, we intend to further 
improve the performance of this evolutionary technique in order to 
achieve the best possible solutions. To do this, we apply two novel 
modifications named opposition-based learning (OBL) and three chaotic 
maps to the SSA, which leads to the higher exploration and exploitation 
of the SSA as well as higher convergence speed. In the following, we 
discuss the details of these two modifications.  

- Opposition-based learning (OBL): 

OBL is an optimization strategy used to boost the diversity of the 
initialized population solutions. The search procedure in SSA starts with 
the initial solutions using a set of randomly generated numbers. This 
leads to a slow convergence rate [73]. Thus, OBL is introduced to avoid 
such issues. 

Assume M = {x1, x2, x3,…, xJ}, which xi ∈ [ai, bi] is considered as the 
ith dimension of a search agent. Let a and b represent the bounds of 
variables and i = 1, 2, …, J. The opposite position of each salp (xi) is 
defined by xopposite

i as follows: 

xopposite
i = ai + bi − xi (9)    

- Chaotic maps: 
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As Eq. (6) shows, the key parameter c2 controls the update of the 
positions of the salps. Chaotic maps are among the powerful evolu-
tionary operators that are used to enhance the tuning of randomness 
parameters in metaheuristic algorithms. They have a similar function-
ality to randomness, with better dynamic capabilities. Among different 
chaotic maps, the piecewise chaotic map as represented in Eq. (11) 
shows its effectiveness in guaranteeing the diversity of the generated 
solutions [74,75]. Thus, we use a piecewise map to tune the c2 param-
eter as shown in Eq. (12), where the value of bt denotes the obtained 
value from the chaotic map at tth iteration. 

c2 = b (10)  

b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
l
, 0 ≤ b < l

b − l
0.5 − l

, l ≤ b < 0.5

1 − l − b
0.5 − l

, 0.5 ≤ b < 1 − l

1 − b
l

, 1 − l ≤ b < 1

(11)  

yt
i =

{
Fi + c1((ubi − lbi)bt + lbi), c3 ≥ 0
Fi − c1((ubi − lbi)bt + lbi), c3 < 0 (12)  

where, l = 0.4. 
The whole procedure of our novel boosted SSA (BSSA) is illustrated 

in Fig. 1. 

2.4. Proposed image classification approach 

In this section, we present our proposed hybrid deep neuroevolution 
method, named boosted SSA-CNN (BSSA-CNN). This method is used to 
optimize the CNN hyperparameters that helps boosting the accuracy of 
COVID-19 diagnosis. It is worth noting that in the proposed method, the 
weights of the fully connected layers in the CNN model are updated and 

fine-tuned using the gradient descent algorithms.The proposed BSSA 
Algorithm is applied in order to obtain optimal values for the CNN’s 
hyperparameters, and as a consequence, the optimal weights for the 
CNN’s connections are obtained through the gradient descent algo-
rithms. In any evolutionary optimization problem, two important issues 
- the representation of solutions and the calculation of fitness function - 
should be taken into consideration. In the proposed method, we address 
nine important hyperparameters: kernel size, number of filters, number 
of epochs, batch size, max-pooling size, dropout rate, learning rate, 
momentum rate, and number of convolutional layers to be optimized by 
the BSSA model. Thus, in BSSA, all solutions can be described as a vector 
with nine dimensions, each corresponding to one of the nine CNN 
hyperparameters. Dropout rate, learning rate, and momentum rate are 
the hyperparameters with continuous values, and their optimal values 
can be obtained by BSSA directly. Kernel size, number of filters, number 
of epochs, batch size, max-pooling size, and number of convolutional 
layers are other hyperparameters with discrete values. Since BSSA is 
continuously investigating the solution space, we need to transform the 
obtained optimum values for such hyperparameters into their respective 
discrete values. An efficient model is used to enable each real value to be 
transformed into an integer value. To this end, the continuous value of 
each hyperparameter is transferred to D = [K1, K2, …, Kn] as a discrete 
search space. The following equations are used to formulate the dis-
cretization model: 

α = 1 + n × R (13)  

β = min(⌊α⌋, n) (14)  

where R is a real value in the range of [0, 1] to explore in the continuous 
search space, α is used as a mapping from R to [1, n + 1], and β is used as 
a mapping from α to [1, 2, 3, …, n]. Then, the integer value corre-
sponding to the continuous dimension of each solution can be calculated 
as follows: 

Xij = Kβ (15) 

The proposed BSSA-CNN Algorithm randomly initializes the popu-
lation of n solutions by Eq. (6). Each solution is labeled with a nine- 
dimensional Xij, i = 1, …, n and j = 1, …, 9 vector where j is one of 
the nine CNN hyperparameters for each dimension. New solutions can 
be obtained by continuously upgrading current solutions with Eq. (8) 
following the generation of the initial population. We use OBL technique 
at initialization phase of SSA to improve its population diversity in the 
search space using Eq. (9). Then, we tune the c2 key parameter with the 
piecewise chaotic map strategy to incorporate a balance between the 
exploration and exploitation phases. The entire process continues to 
repeat until the end criterion is satisfied and the best achieved solution is 
perceived as the final outcome. The values generated in this solution can 
be employed as the optimum CNN hyperparameter values. 

We need to determine a fitness function for evaluating the effec-
tiveness of all the obtained solutions. In order to achieve this, the data 
from the input COVID-19 image dataset are split up into two separate 
training and test sets. The training set is considered to optimize the 
hyperparameters of the CNNs using BSSA, whereas the test set is 
required to examine the effectiveness of the final COVID-19 diagnosis 
model. It can be noted that the CNN model is configured using the values 
of hyperparameters achieved from each solution in the BSSA. As such, 
the fitness function can be perceived for the performance of the 
configured CNN model for COVID-19 diagnosis. To this end, the images 
in the training set are used as the inputs of the CNN model in the training 
phase. The accuracy of the CNN classifier in the classification of input 
images is used as the fitness value of the solutions in the optimization 
process. The accuracy metric refers to the number of correctly classified 
images over the total number of input images. Therefore, the value of the 
accuracy metric can be calculated as follows: 

Fig. 1. The flowchart of the proposed BSSA Algorithm.  
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Accuracy =
#  number  of  correctly  classified  images

#  total  number  of  input  images
(16) 

Obviously, a solution with a higher accuracy value has a higher 
fitness value, and vice versa. Therefore, the aim of the proposed method 

is to obtain a solution with the highest accuracy value (i.e., the highest 
fitness value) containing the optimal values of CNN hyperparameters. 
This leads to obtaining a CNN model with maximum performance in 
regard to the classification of the images in the test set. After deter-
mining the optimal values of the CNN hyperparameters using BSSA, the 
configured CNN model is used to classify the images in the test set. It 
should be noted that the SVM model is applied to the outputs obtained 
by the flattening layer of the CNN model to determine the final outputs 
of the proposed classification method. Algorithm 1 represents the 
overall steps of the proposed BSSA-CNN method. In Fig. 2, the overall 

procedure of COVID-19 diagnosis using the proposed framework is 
illustrated. 

Algorithm: 1. Pseudo-code of the proposed DNE COVID-19 diagnosis 
model (BSSA-CNN)   

3. Implementation details 

3.1. Collected COVID-19 dataset 

In order to examine the effectiveness of our proposed deep neuro-
evolution method, we use a well-known COVID-19 dataset containing 
chest X-ray images. This dataset was gathered from a Mendeley 
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repository containing augmented images for both COVID-19 and non- 
COVID-19 individuals.1 This is a balanced dataset with 912 positive 
(COVID-19) and 912 normal (non-COVID-19) cases. The samples of 
confirmed and non-confirmed COVID-19 images from the provided 
dataset can be seen in Figs. 3 and 4. As this dataset contains the X-ray 
images for two groups of cases (COVID-19 and non-COVID-19), the 
classification problem related to this dataset is a binary classification. 

For the pre-processing stage, we transformed all of the images into 
the same size 224 * 224 pixels because the data collection was not 
consistent, and the X-ray images were of varying sizes. This was 

Fig. 3. Two samples of available images in the dataset related to the patients with COVID-19.  

Fig. 4. Two samples of available images in the dataset related to normal persons.  

Table 1 
List of CNN hyperparameter symbols and their values.  

Symbol Value 

Ks [1, 30] 
Nf [1, 500] 
Ne [1, 400] 
Bs [10, 20, …, 200] 
MPs [1, 20] 
Dr [0.2, 0.25, …, 0.65] 
Lr [0.001, 0.006,.., 0.1] 
Mr [0.05, 0.1,.., 0.95] 
Nc [1, 2, …, 20]  

Fig. 2. Overall procedure of COVID-19 diagnosis using the proposed BSSA-CNN model.  

1 https://data.mendeley.com/datasets/2fxz4px6d8/4. 
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accomplished using RGB reordering, and the final input images for use 
in the proposed method are sized 224*224*3. The X-ray images were 
also rotated horizontally and vertically to considerably improve the 
dataset’s diversity. 

3.2. Implementation and parameter settings 

We evaluate the proposed evolutionary optimization Algorithm for 
CNN structures using the COVID-19 dataset. To this end, 80% of the 
dataset is devoted to training and the remaining 20% is used for test 
samples. The TensorFlow library with Python version 3.6.0 is used to 
train all deep CNN models. We also use one 1080 Ti GTI 16 GB on a 
Linux machine with Ubuntu version of 16.04 operating system. The 
training phase of CNN is conducted with the ReLU as the activation 
function, Adam as the optimizer and accuracy as the cost function. 
Training samples were required for every epoch. When the training loss 
is smaller than the loss of validation, the training procedure is stopped. 
Otherwise, a maximum number of training iterations is permitted. This 
procedure is needed to avoid overfitting and to decrease the training 
time. 

In the experiments, to have a fair comparison, the population size of 
BSSA and other EA benchmarks is set to 30 search agents, and the 
number of iterations and the number of runs are set to 20 and 10, 
respectively. It is worth mentioning that the parameters of SVM (e.g., 
kernel method parameters, the penalty parameter, etc.) in the proposed 
method are set based on a greedy search process to find their optimal 
values. We also optimize nine hyperparameters: kernel size (Ks), number 
of filters (Nf), number of epochs (Ne), batch size (Bs), max-pooling size 
(MPs), dropout rate (Dr), learning rate (Lr), momentum rate (Mr), and 
number of convolutional layers (Nc) by the BSSA Algorithm for evolving 
the CNN structures. These are tabulated in Table 1. The input parame-
ters of the comparison models are set according to the optimal values 
reported in their corresponding papers. A trial-and-error approach is 
used based on a greedy search process to obtain the best values of the 
parameters of these models which can be fitted with the problem 
addressed in this paper. 

3.3. Performance evaluation metrics 

We employ five different metrics namely, the accuracy, precision, 
recall, F-measure, and area under the curve (AUC) to assess the effi-
ciency of the proposed classification model and other compared 

benchmarks. These metrics are widely used in medical area and are 
formulated as follows [76,77]: 

Accuracy =
TP + TN

TP + FN + FP + TN
(17)  

Precision =
TP

TP + FP
(18)  

Recall =
TP

TP + FN
(19)  

AUC =

∫ 1

0

TP
P

d
FP
N

=
1

P.N

∫ 1

0
TP d FP (20)  

F1 =
2TP

2TP  +  FP  +  FN
(21)  

where TP, FP, TN and FN given in Eqs (17) – (21) refer to True Positive, 
False Positive, True Negative and False Negative, respectively. Given a 
test dataset and a deep learning classification Algorithm, TP represents 
the proportion of positive (i.e., COVID-19) samples that are correctly 
labeled as COVID-19 by the classification algorithm; FP represents the 
proportion of negative (i.e., non-COVID-19) samples that are mislabeled 
as positive; TN is the proportion of negative samples that are correctly 
labeled as normal and FN is the proportion of positive samples that are 
mislabeled as negative by the classification algorithm. 

4. Experimental results and discussion 

In this section, the performance evaluation of the proposed BSSA- 
CNN method and the other evolutionary-based and state-of-the-art al-
gorithms are discussed. 

4.1. Sensitivity analysis of population size on the performance of the 
proposed method 

To examine the effect of different population sizes on the overall 
performance of our proposed Algorithm, we apply the sensitivity anal-
ysis procedure on a grid of different population sizes in 10 independent 
runs. The results are shown in Fig. 5. As can be observed from this figure, 
an initial population value of 30 results in the best performance with an 
average accuracy of 0.988539 for our proposed algorithm. To this end, 

Fig. 5. The influence of different initialized population sizes on the performance of our proposed model.  
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we choose an initial population size of 30 in our experiment. 

4.2. Performance comparison based on different evolutionary algorithms 
(EAs) 

We compare the performance of different EAs in optimizing the 
hyperparameters of the CNN model. To this end, GA (genetic Algorithm) 
[78], PSO (particle swarm optimization) [79], DE (differential evolu-
tion) [80], GWO (grey wolf optimizer) [81], MFO (moth-flame optimi-
zation) [82], SSA (salp swarm algorithm) [83], OSSA (OBL version of 
SSA), and CSSA (chaotic version of SSA) are considered in comparison 
with the proposed method. Two powerful evolutionary-based deep--
learning models for COVID-19 detection, ADOPT [61], and DON [62], 
are also utilized as the competitive algorithms to show the strength of 
our proposed model. It should be noted that in the proposed method, the 
SVM model is used instead of the Softmax model to obtain better results. 
Experiments are conducted in order to compare the performance of the 
SVM model with two other models including Softmax and cross entropy 
loss. The models related to the Softmax and cross entropy loss are named 
in the experiments as BSSA-Softmax and BSSA-CEL, respectively. It is 
worth noting that we use the BSSA algorithm to optimize the hyper-
parameters of the CNN model in the proposed method. Table 2 reports 
the results of experiments based on different evaluation metrics: accu-
racy, precision, recall, F-measure, and AUC. In order to better represent 
the results, the values of the evaluation metrics are shown up to six digits 
after the decimal point. This leads to a better comparison of the results of 
different algorithms. Moreover, in this table, we report the average 
(AVG), the standard deviation (STD), the best result (Best), and the 
worst result (Worst) obtained by each algorithm for all evaluation 
metrics. These results reveal that the proposed method significantly 
outperforms other methods in terms of all evaluation metrics. Therefore, 
it can be concluded that the BSSA algorithm has a better search ability in 
comparison to other EA models. In other words, the BSSA algorithm can 
efficiently optimize the hyperparameters of the CNN model by exploring 
the search space to find optimal values. This leads to an improvement in 
the performance of the proposed classification method in regard to 
classifying COVID/non-COVID images. 

Fig. 6 shows the confusion matrix of the best and the second-best 
classification models based on their EAs. It should be noted that the 
confusion matrix can be used to calculate evaluation metrics. This ma-
trix consists of four factors: true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). In this paper, positive refers to the 
COVID-19 cases and negative refers to the non-COVID-19 cases. As can 
be concluded from Eqs.(17)-(21), the higher values of TP and TN indi-
cate the higher performance of the classifier models. Therefore, Fig. 6 
shows that the proposed method and the CSSA-CNN model are the best 
and the second-best performers, respectively. 

The results of experiments are shown in Fig. 7 as the box plots of 
different DNEs based on the accuracy metric. As we can see from these 
results, the proposed method is the best performer among all compared 
models, obtaining the best average accuracy value. Fig. 8 shows the 
convergence curves of different DNEs based on the accuracy metric. This 
analysis can help to compare the exploration ability of EAs in finding the 
optimal solution at high speed. As can be seen from Fig. 8, the proposed 
method achieves a better accuracy value when it is converged. The 
OSSA-CNN model is the second-best performer as it obtains a lower 
accuracy value than the proposed method. Therefore, it can be 
concluded that the proposed method can effectively explore the search 
space to find the optimal values of the CNN’s hyperparameters leading 
to improved outcomes for the image classification problem. 

4.3. Performance comparison with other image classification approaches 

In this section, experiments are conducted to compare the proposed 
method with other image classification approaches. To this end, several 
image classification approaches (MobileNet, DenseNet121, Ta
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Fig. 6. Confusion matrices of the best (proposed model) and the second-best (CSSA-CNN) algorithms based on the accuracy metric.  
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Fig. 7. Box plots of different DNEs for the accuracy metric.  
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InceptionV3, ResNet50, VGGNet16, ResNet50V2 and ResNet152V2) are 
utilized to evaluate the performance of the proposed method. Two 
recent COVID-19 diagnosis research approaches (nCOVnet [84] and 
CTnet-10 [85]) are also considered as the competitive benchmark al-
gorithms in order to compare with our proposed model. Experimental 
results based on different evaluation metrics are reported in Table 3 in 
terms of the average, best, and worst obtained results for the different 
approaches. The standard deviations of the results are also reported in 
this table. These results reveal that the proposed method significantly 
outperforms other models in terms of all evaluation metrics. The pro-
posed method achieves an accuracy of 0.988 while the accuracy of the 
ResNet152V2 model, the second-best performer, is 0.908. Therefore, the 
proposed method improves classification accuracy by about 8% in 
comparison to the second-best model. Moreover, the best and worst 
results obtained by the proposed method are better than other models in 
terms of different evaluation metrics. The standard deviation of the re-
sults is known as a negative factor. For example, the lower the standard 
deviation, the better the performance of the model being evaluated. As 

the results show, the proposed method has a lower standard deviation 
for all evaluation metrics than the other classification models. 

Fig. 9 shows the confusion matrix of the best and the second-best 
classification approaches. These results help to show how well the 
classifiers classify the input images in regard to both COVID-19 and non- 
COVID-19 cases. Obviously, the performance of the classification 
models depends on the number of COVID-19 and non-COVID-19 images 
that are truly classified. It can be seen from these results that the pro-
posed method has a better confusion matrix than the ResNet152V2 
model, which is the second-best classification model, because the 
number of COVID-19 and non-COVID-19 cases that are truly classified 
by the proposed method is higher than the ResNet152V2 model. The box 
plots of different classification models based on the accuracy metric are 
shown in Fig. 10. As these results show, the proposed method is the best 
performer among other models according to the average accuracy. 
Moreover, the standard deviation of the accuracy metric for the pro-
posed method is lower than the other classification models. Therefore, 
the proposed method is the best performer according to the standard 
deviation of the accuracy metric. 

In order to demonstrate the significance of our proposed model in 
comparison to other EA-based and pre-trained deep-learning models, we 
perform the Wilcoxon paired signed-rank test on the COVID-19 dataset 
with confidence intervals of 95%. As can be observed from Tables 4 and 
5, there is a significant difference between our model and the other 21 
competitors. Also, it should be mentioned that the closest competitor – 
the ADOPT model, with a value of 4.495E-4 – is one of the EA-based 
deep-learning models. 

4.4. Run-time analysis of different algorithms 

In this section, we analyze the time spent on the execution of the 
proposed Algorithm and other competitive algorithms for the binary 
COVID-19 dataset. Table 6 demonstrates the time consumed by each 
algorithm in seconds. It should be noted that we report the run-time 
values in terms of optimization time, training time, and test time. As 
some of the compared algorithms do not undergo the optimization 
process, their optimization times are not reported. As can be seen from 
this table, the optimization time of our proposed algorithm is less than 
other methods that have used optimization models. Furthermore, in 
terms of training time and test time, our proposed algorithm takes less 
time than all the benchmark algorithms. This demonstrates the 
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Fig. 8. Convergence curves of different DNEs based on the accuracy metric.  

Table 3 
Quantitative performance results of evaluation metrics for state-of-the-art algorithms for the binary COVID-19 dataset. The best results among different classifiers are 
shown by bold black fonts.  

Metric  MobileNet DesnseNet121 InceptionV3 ResNet50 VGG16 ResNet50V2 ResNet152V2 nCOVnet CTnet-10 Proposed 

ACC AVG 0.888252 0.882521 0.902579 0.836676 0.885387 0.785111 0.908309 0.896731 0.886574 0.988539 
STD 0.008435 0.009437 0.007891 0.040947 0.018467 0.047282 0.056214 0.043103 0.032791 0.006189 
Best 0.901883 0.903922 0.913226 0.893533 0.905344 0.826711 0.948979 0.936001 0.924471 0.990218 
Worst 0.865554 0.869047 0.879011 0.803216 0.827056 0.748022 0.853432 0.842854 0.832498 0.983337 

Precision AVG 0.852459 0.950355 0.848958 0.930233 0.890244 0.854962 0.914634 0.904323 0.894084 0.988095 
STD 0.046995 0.009899 0.042101 0.030749 0.033152 0.042653 0.110804 0.100705 0.090687 0.002934 
Best 0.883007 0.965652 0.858922 0.954767 0.915038 0.884578 0.937876 0.927388 0.917053 0.989778 
Worst 0.815561 0.937689 0.803574 0.874521 0.854538 0.821366 0.794022 0.782444 0.770778 0.984971 

Recall AVG 0.928571 0.797619 0.970238 0.714286 0.869048 0.666667 0.892857 0.881279 0.869121 0.988095 
STD 0.009231 0.073547 0.000213 0.086395 0.027655 0.069103 0.090967 0.078957 0.066918 0.010117 
Best 0.928895 0.814423 0.978845 0.786454 0.891044 0.736754 0.952612 0.943496 0.933685 0.991309 
Worst 0.897554 0.730567 0.966328 0.659113 0.837529 0.608932 0.811042 0.797931 0.785092 0.985677 

F-measure AVG 0.888889 0.867314 0.905556 0.808081 0.879518 0.749164 0.903614 0.892503 0.880941 0.988095 
STD 0.015655 0.027781 0.008944 0.053299 0.037424 0.061454 0.046513 0.037597 0.028482 0.006526 
Best 0.900767 0.893563 0.922155 0.846568 0.899045 0.795423 0.939082 0.929966 0.920728 0.993044 
Worst 0.841911 0.789022 0.899294 0.748989 0.845652 0.681921 0.857939 0.847628 0.837406 0.979663 

AUC AVG 0.889711 0.879473 0.905009 0.832281 0.884836 0.780847 0.907755 0.896839 0.885949 0.988523 
STD 0.010494 0.011373 0.009879 0.042439 0.035194 0.048984 0.053612 0.043531 0.031866 0.006332 
Best 0.910898 0.893315 0.921883 0.868494 0.908935 0.834326 0.943089 0.925978 0.908786 0.989446 
Worst 0.875497 0.869454 0.883533 0.773545 0.867435 0.738782 0.854025 0.841809 0.828476 0.981088  
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Fig. 9. Confusion matrices of the best (proposed model) and the second-best (ResNet152V2) classification algorithms based on the accuracy metric.  
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Fig. 10. Box plots of different classifiers based on the accuracy metric.  
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effectiveness of this algorithm in the calculations related to the classi-
fication of X-ray COVID-19 images in the benchmark dataset. It should 
be noted that the optimization and training phases of the proposed 
method can be performed once in offline mode. Then, the trained model 
can be applied frequently to diagnose COVID-19 cases in online mode. 
Therefore, the test time is an important criterion for real-time applica-
tions which need to be executed in a hard-deadline scenario. As the 
proposed method needs the shortest test time among the compared 
classification models, it can be concluded that the proposed method is 
more applicable than other models for real-time applications. 

5. Conclusion 

This paper has proposed a method based on a deep neuroevolution 
model for classifying COVID-19 cases from X-ray images. To this end, the 
CNN model is employed as a classifier model to diagnose COVID-19 
cases based on chest X-ray images. To enhance the performance of the 
CNN model in the classification of the input images, an evolutionary 
Algorithm named BSSA is used to obtain the optimal values of the 
hyperparameters of the CNN model. Experimental results on a real- 
world dataset show that the proposed image classification model per-
forms efficiently and accurately in classifying COVID-19 cases. It is 
worth noting that the diagnosis of COVID-19 cases is a critical issue in 
controlling the spread of COVID-19 disease. Therefore, the proposed 
model can be employed in many real applications related to COVID-19. 
Moreover, the proposed method is a general image classification model 
which can be applied to any image classification problem. For instance, 
skin cancer classification is a real application that can be addressed by 
the proposed method in future work. Although it is shown that the 
proposed method has significant advantages in accurately diagnosing 

COVID-19 cases, this method has also some limitations and drawbacks. 
In particular, the proposed method only uses one deep neural network 
model in the classification process. Considering a set of deep neural 
networks in the classification process to make an ensemble classifier 
may increase the effectiveness of the proposed method. Moreover, the 
performance of the proposed method strongly depends on the values of 
the hyperparameters of the CNN model, which are determined by the 
proposed evolutionary algorithm. Therefore, if the proposed evolu-
tionary algorithm fails to determine the optimal values of these hyper-
parameters, it will lead to a decline in the effectiveness of the proposed 
method. Therefore, other evolutionary algorithms should also be tested 
for a specific image classification problem to compare their performance 
with the proposed evolutionary algorithm. In future work, other deep 
neural network models and evolutionary algorithms can be used to 
improve the performance of the proposed image classification model. 
Moreover, advanced data pre-processing models can be applied on the 
input images to improve the quality of these images leading to enhanced 
classifier performance. 
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