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Catabolic and regulatory systems
in Shewanella oneidensis MR-1
involved in electricity generation
in microbial fuel cells
Atsushi Kouzuma, Takuya Kasai, Atsumi Hirose and Kazuya Watanabe*

School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan

Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of
inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid
materials, including anodes in microbial fuel cells (MFCs), as electron acceptors, thereby
enabling electricity generation. As MFCs have the potential to generate electricity from
biomass waste and wastewater, MR-1 has been extensively studied to identify the
molecular systems that are involved in electricity generation in MFCs. These studies
have demonstrated the importance of extracellular electron-transfer (EET) pathways
that electrically connect the quinone pool in the cytoplasmic membrane to extracellular
electron acceptors. Electricity generation is also dependent on intracellular catabolic
pathways that oxidize electron donors, such as lactate, and regulatory systems that
control the expression of genes encoding the components of catabolic and electron-
transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g.,
exopolysaccharides, and secreted chemicals, which function as electron shuttles, are
also involved in electricity generation. Despite these advances in our knowledge on the
EET processes in MR-1, further efforts are necessary to fully understand the underlying
intra- and extracellular molecular systems for electricity generation in MFCs. We suggest
that investigating how MR-1 coordinates these systems to efficiently transfer electrons
to electrodes and conserve electrochemical energy for cell proliferation is important for
establishing the biological basis for MFCs.

Keywords: extracellular electron transfer, bioelectrochemical system, anaerobic respiration, transcriptional
regulation, catabolic pathways

Introduction

Microbial fuel cells (MFCs) are devices that use living microbes as catalysts for the conversion
of fuels, such as organic compounds, into electricity (Logan et al., 2006; Watanabe, 2008). In
MFCs, electrons released by the oxidative catabolism of organic substrates in bacterial cells are
transferred to extracellular electrodes, resulting in electricity generation. The natural diversity of
bacterial catabolic activities provides MFCs with a great advantage over chemical fuel cells, which
typically require purified reactive fuels, such as hydrogen. MFCs are able to generate electricity
from a variety of organic substrates, including sugars (Rabaey et al., 2003), cellulose (Ishii et al.,
2008), organic acids (Yates et al., 2012), and wastewater pollutants (Miyahara et al., 2012; Yu et al.,
2012).
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In most MFCs, bacteria, particularly those affiliated with
the phylum Proteobacteria, mediate the transfer of electrons
to anodes (Logan, 2009). These bacteria possess electron-
transfer pathways that electrically connect intracellular oxidative
catabolic reactions to extracellular electrodes. Certain species of
dissimilatory metal-reducing bacteria (DMRB), such as members
of the genus Shewanella, intrinsically possess such pathways
(termed extracellular electron-transfer (EET) pathways), and are
therefore able to use electrodes as terminal electron acceptors
for respiration (electrode respiration; Shi et al., 2007). Shewanella
species belong to the class Gammaproteobacteria and are widely
distributed in nature, including marine, freshwater, sedimentary,
and soil environments (Fredrickson et al., 2008). Members
of this genus have attracted considerable recent attention due
to their respiratory versatility and potential applicability to
biotechnological processes, such as bioremediation (Hau and
Gralnick, 2007) and MFCs (Kim et al., 1999).

Shewanella oneidensis MR-1 is the most extensively studied
strain in the genus Shewanella due to its annotated genome
sequence (Heidelberg et al., 2002), genetic accessibility,
and respiratory versatility (Myers and Nealson, 1988b).
This bacterium can respire using a wide variety of organic
and inorganic substrates as electron acceptors, including
oxygen, fumarate, nitrate, nitrite, thiosulfate, elemental sulfur,
trimethylamine N-oxide, dimethyl sulfoxide (DMSO), and
anthraquinone-2,6-disulfonate, as well as both soluble and solid
metals such as iron, manganese, uranium, chromium, cobalt,
technetium, and vanadium (Fredrickson et al., 2008). In addition,
MR-1 can transfer electrons to anodes and generate electricity in
MFCs without adding exogenous mediators (Kim et al., 1999).
For these reasons, MR-1 is a model organism for investigating
how bacteria utilize extracellular electron acceptors and generate
electricity in MFCs.

The major components of the EET pathway (Mtr pathway)
in MR-1 critical for electricity generation in MFCs have been
identified. Intracellular catabolic pathways that produce reducing
equivalents (e.g., NADH) have also been extensively studied
in this species. In addition, several studies have analyzed the
transcriptional regulatory systems that control catabolic and
electron-transfer pathways inMR-1. In this article, we summarize
the current knowledge on catabolic and regulatory systems in
S. oneidensis MR-1 that are involved in electricity generation in
MFCs. The findings from genetic and biochemical studies were
reviewed to provide a detailed view of the molecular mechanisms
that are directly or indirectly involved in electricity generation by
MR-1.

EET Pathway

The respiration of solid metals and electrodes requires a distinct
molecular pathway, i.e., the EET pathway, for transferring
electrons from intracellular electron carriers (e.g., NADH and
quinones), across the inner membrane (IM) and outer membrane
(OM), to extracellularly located insoluble electron acceptors.
Genetic and biochemical studies have identified five primary
protein components, CymA, MtrA, MtrB, MtrC, and OmcA,
comprising the EET pathway in S. oneidensis MR-1 (the Mtr

FIGURE 1 | Proposed extracellular electron transfer (EET) pathways
(Mtr pathway) in S. oneidensis MR-1 involved in direct EET (A) and
mediated EET (B). OM, outer membrane; IM, inner membrane; MQH2,
reduced form of menaquinone; MQ, oxidized form of menaquinone.

pathway; Figure 1; Shi et al., 2007). In addition, recent studies
have demonstrated that the periplasmic cytochrome pool, which
mainly consists of small tetraheme cytochromes (STCs; also
referred to as CctA) and flavocytochrome c (FccA) proteins, is
also involved in the EET process (Fonseca et al., 2012; Sturm
et al., 2015). These findings indicate that the Mtr pathway serves
as the major electron conduit that links the IM quinone pool
to extracellular solid electron acceptors via a series of electron-
transfer reactions between these component proteins.

In the Mtr pathway, EET is initiated by the transfer of
electrons from the IM quinone pool to IM-anchored CymA
(SO_4591). CymA is a tetraheme c-type cytochrome belonging to
the NapC/NirT protein family and consists of a short N-terminal
region that is anchored in the IMand a longC-terminal region that
protrudes into the periplasm (Myers and Myers, 1997, 2000). The
C-terminal region contains four heme-binding sites and mediate
electron transfer to a decaheme c-type cytochrome, MtrA, as
well as to other periplasmic respiratory proteins, including those
responsible for the reduction of DMSO, fumarate, nitrate, and
nitrite (Schwalb et al., 2002, 2003; Pitts et al., 2003; Gao et al., 2009;
Schuetz et al., 2009).

MtrA (SO_1777) is regarded as a key protein for electron
transfer to OM c-type cytochromes (OM-cyts), such as MtrC
and OmcA, based on its periplasmic localization and biochemical
association with MtrB andMtrC (Hartshorne et al., 2009; Schuetz
et al., 2009). MtrB (SO_1776) is an OM-located β-barrel protein
consisting of transmembrane β-strands and is required for metal
and electrode respiration (Beliaev and Saffarini, 1998; Bretschger
et al., 2007). Evidence suggests that MtrB is required for the
proper localization and insertion of MtrC and OmcA into the
OM (Myers andMyers, 2002). It has also been reported that MtrB
forms a stable complex with MtrA and MtrC at a stoichiometry
of 1:1:1 and supports electron exchange between these c-type
cytochromes by serving as an OM-spanning sheath (Ross et al.,
2007; Hartshorne et al., 2009). Interestingly, MtrA was detected in
the periplasmic fraction of anmtrB-deletion strain, but is localized
in the OM fraction in wild-type MR-1, indicating that MtrB
supports the in vivo localization of MtrA to the OM, although
MtrA per se is a soluble protein (Hartshorne et al., 2009).
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The OM-cyts OmcA (SO_1779) and MtrC (SO_1778) contain
10 heme-binding sites and serve as the terminal reductases for
extracellular electron acceptors in the Mtr pathway (Myers and
Myers, 2003a, 2004). These OM-cyts are transported to the
OM surface by the type-II protein-secretion system (Shi et al.,
2008). Biochemical data indicate that OmcA and MtrC form a
complex with a stoichiometry of approximately 2:1 (Shi et al.,
2006). Genetic studies withMR-1 have demonstrated that current
generation in MFCs and reduction rates for insoluble minerals,
such as Mn(IV) and Fe(III) oxides, are decreased in single-
knockout mutants of mtrC and omcA and severely impaired
in a mtrC/omcA double-knockout mutant (Beliaev et al., 2001;
Myers and Myers, 2001; Bretschger et al., 2007; Newton et al.,
2009). In addition, Bretschger et al. (2007) reported that anmtrC-
overexpressing strain generated 35%more current in anMFC than
wild-type MR-1. These observations clearly indicate that OmcA
and MtrC play crucial roles in mediating EET reactions at the
OM surface. It is likely that the functions of these two OM-cyts
partially overlap, as purified MtrC and OmcA proteins are both
able to reduce solid Fe(III) oxides (Xiong et al., 2006; Lower et al.,
2007), and the overproduction of MtrC can restore the ability of
an omcA-deletion mutant to reduce MnO2 (Myers and Myers,
2003b). However, several lines of evidence indicate that functional
differences exist between these two OM-cyts. For instance, Lower
et al. (2007) reported that OmcA shows a higher affinity toward
hematite (α-Fe2O3) than MtrC. Furthermore, MtrC appears to
play a dominant role in electron-transfer reactions to electrodes,
whereas OmcA plays a preferential role in the attachment of cells
to solid surfaces (Coursolle et al., 2010; Mitchell et al., 2012).

Although many studies have demonstrated that OmcA and the
MtrCAB complex play key roles in the Mtr pathway, it is not yet
fully understood how electrons are transferred from IM-anchored
CymAacross the periplasmic space, which has an average distance
of 23.5 nm, to the OM components of this pathway (Dohnalkova
et al., 2011). One possible explanation is that soluble electron
carrier proteins diffuse through the periplasm and mediate
electron transfer between CymA and OM-cyts. Consistent with
this hypothesis, Fonseca et al. (2012) reported that soluble
periplasmic cytochromes, STC (SO_2727) and FccA (SO_0970),
interact with both CymA and MtrA with relatively large
dissociation constants and thereby promote transient electron-
transfer reactions between CymA andMtrA. Furthermore, Sturm
et al. (2015) recently reported that the periplasmic space of MR-
1 contains abundant soluble c-type cytochromes (approximately
350,000 hemes per cell), and that a double-deletionmutant of fccA
and stc (cctA) exhibits substantial growth deficiencies on ferric
iron and other soluble electron acceptors. These observations
suggest that the periplasmic cytochrome pool, which mainly
consists of STC and FccA, plays important roles in mediating
electron transfer from CymA to OM-cyts in the Mtr pathway.

Studies have indicated that electrons are transferred from OM-
cyts to electrodes via two pathways, direct electron transfer (DET)
and mediated electron transfer (MET) pathways (Baron et al.,
2009). In DET, electrons are directly transferred from OM-cyts
to solid electron acceptors (Xiong et al., 2006; Lower et al., 2007).
In contrast, MET involves the transfer of electrons from OM-cyts
to distant solid electron acceptors via secreted electron-shuttle

compounds, such as flavins (Marsili et al., 2008; von Canstein
et al., 2008). Support for the DET process in MR-1 is based on
the fact that purified OmcA and MtrC proteins strongly bind
and transfer electrons to crystalline Fe(III) oxides and graphite
electrodes (Xiong et al., 2006; Lower et al., 2007). Evidence for
MET includes the finding that MR-1 can reduce Fe(III) oxides
located at a distance from cells and without direct contact (Lies
et al., 2005). In addition to this observation, von Canstein et al.
(2008) andMarsili et al. (2008) demonstrated that Shewanella spp.
secrete flavins, including riboflavin and flavin mononucleotide
(FMN), which function as electron shuttles for MET. Notably,
however, Coursolle et al. (2010) demonstrated that the majority
(∼90%) of electrons transferred to flavins are released fromOmcA
and MtrC, indicating that these OM-cyts are also required for
MET.

Although MR-1 appears to utilize both DET and MET
pathways, several lines of evidence indicate that soluble flavins
are indispensable for EET under physiological conditions. For
instance, Ross et al. (2009) reported that the direct reduction
of insoluble metal oxides by OmcA and MtrC proceeds too
slowly to explain the physiological rates of electron transfer, and
that the reaction rates of these OM-cyts are markedly increased
in the presence of flavins. In addition, Marsili et al. (2008)
demonstrated that the accumulation of flavins in MR-1 biofilms
increased the rate of electron transfer to an electrode by over
threefold. Furthermore, Okamoto et al. (2013) reported that one-
electron-reduced flavins bind to OM-cyts as redox cofactors,
thereby enhancing the rate of electron transfer at the cell/electrode
interface. Together, these studies demonstrate that flavins serve
crucial functions in EET via the Mtr pathway.

The X-ray crystal structures of two OM-cyts, MtrF (MtrC
homolog) and OmcA, have been resolved to date (Clarke et al.,
2011; Edwards et al., 2014), and have provided insights into
how electrons are transferred through these decaheme OM-cyts.
Clarke et al. (2011) demonstrated that the 10 hemes in MtrF
are arranged at a distance of 7 Å from each other, forming
an intramolecular electron conduit with a unique “staggered
cross” conformation. Based on the heme arrangement and
domain configuration of MtrF, four hemes (hemes 2, 5, 7,
and 10 located in domains I, II, III, and IV, respectively) that
are potentially important for exchanging electrons with other
molecules were identified (Figure 2). Heme 10 is located at
the solvent-exposed terminus of the heme chain and is likely
involved in receiving electrons from the MtrDE complex (an
electron transfer module homologous to the MtrBA complex).
In contrast, heme 5, which is located at the opposite end of
the protein, is predicted to be responsible for releasing electrons
to extracellular electron acceptors. Hemes 2 and 7, which are
located in Greek key split β-barrel domains and contain putative
FMN-binding sites (domains I and III), are regarded as possible
sites for electron exchange with electron shuttles, such as flavins.
Edwards et al. (2014) resolved the crystal structure of OmcA, and
reported that its heme arrangement and domain configuration
are similar to those of MtrF. These researchers also constructed
a model structure of MtrC based on the crystal structure of
MtrF, and speculated that the electrostatic surface surrounding
heme 7 differ between MtrC and MtrF, suggesting that these
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FIGURE 2 | Crystal structure of MtrF and proposed spatial
arrangement at the cell surface. Predicted sites for electric connections
with extracellular substances are indicated with arrows. The structure model
of MtrF was obtained from PDB (PDB ID: 3PMQ) and rendered using the Jmol
software (http://www.jmol.org/).

OM-cyts may differentially interact with substrates (Edwards
et al., 2012).

Transcriptional Regulation of EET-Related
Genes

In contrast to the extensive biochemical characterization of
the Mtr pathway, limited studies have examined how MR-1
regulates EET-related genes at the transcriptional level. In the
MR-1 genome, the four genes encoding the proteins comprising
OM-cyts in the Mtr pathway (omcA-mtrCAB; the mtr genes)
are organized in a cluster and oriented in the same direction
(Figure 3). Transcriptional analyses of the mtr genes have
confirmed that mtrC, mtrA, and mtrB are co-transcribed as an
operon (Beliaev et al., 2001; Kasai et al., 2015), a finding that
is consistent with the biochemical data showing that the mtr
gene products form a complex (the MtrCAB complex) at 1:1:1
stoichiometry (Ross et al., 2007). In the mtr gene cluster, two
different transcription start sites (and promoters) have been
identified in the upstream regions of omcA and mtrC (Beliaev
et al., 2001; Shao et al., 2014; Kasai et al., 2015), suggesting that
omcA and mtrC are independently regulated. Previous studies
have also demonstrated that a cyclic AMP (cAMP) receptor
protein (CRP) and adenylate cyclase (CyaC) are essential for the
transcriptional activation of the mtr genes (Saffarini et al., 2003;
Charania et al., 2009). However, upstream signal transduction
pathways involved in the cAMP/CRP-dependent transcriptional
activation of themtr genes remain to be elucidated.

In Escherichia coli, CRP is a well-known global regulator,
and functions in conjugation with cAMP, which is an effector
molecule of CRP and serves as a signaling molecule for the
expression of numerous genes, including those involved in
carbon catabolite repression (Botsford and Harman, 1992).
When complexed with cAMP, CRP binds to target DNA
sequences, resulting principally in the transcriptional activation
of downstream genes, such as those involved in sugar metabolism

FIGURE 3 | Organization and proposed transcriptional mechanisms of
the mtr genes. Two CRP-binding sites adjacent to promoters of omcA
(PomcA) and mtrC (PmtrC) are shown (Kasai et al., 2015).

(Botsford andHarman, 1992; Hollands et al., 2007). In Shewanella
spp., however, evidence suggests that CRP is mainly involved
in the regulation of anaerobic respiration (Saffarini et al., 2003;
Charania et al., 2009; Murphy et al., 2009). For example,
the cAMP/CRP-dependent regulatory system is reported to be
essential for regulating anaerobic arsenate reduction in Shewanella
sp. strain ANA-3 (Murphy et al., 2009), and studies onMR-1 have
revealed that CRP is required for the transcriptional activation
of genes involved in the reduction of many electron acceptors,
including metal oxides (mtr), fumarate (fccA), nitrate (nap), and
DMSO (dms), under anaerobic conditions (Charania et al., 2009;
Dong et al., 2012). Recently, Kasai et al. (2015) investigated
the transcriptional mechanisms for the mtr genes (omcA and
mtrCAB), and demonstrated that CRP directly regulates the
expression of these genes by binding to the upstream regions of
omcA andmtrC (Figure 3). Several studies have also demonstrated
that expression of the mtr genes is up-regulated under electron
acceptor-limited conditions (Beliaev et al., 2005; Teal et al., 2006;
Pirbadian et al., 2014; Kasai et al., 2015), suggesting that MR-1
controls the expression of these genes in response to intracellular
redox or energy status. However, the signal-sensing mechanisms
underlying the regulation of the mtr genes remain unknown, as
CRP is not considered to contain redox-sensing domains, such
as PAS (Taylor and Zhulin, 1999). As the addition of cAMP
to aerobic cultures of MR-1 results in significant induction of
fumarate–reductase activity (Saffarini et al., 2003), intracellular
cAMP concentration is likely a key determinant of the ability
of MR-1 cells to reduce anaerobic electron acceptors. However,
intracellular cAMP concentrations in Shewanella are unclear.

In addition to CRP, other transcriptional regulators may be
directly or indirectly involved in the regulation of the mtr genes.
Kasai et al. (2015) reported that the expression of omcA and
mtrC is differentially regulated under different culture conditions,
although the transcriptional promoters upstream of these genes
(PomcA and PmtrC; Figure 3) are both dependent on CRP.
Interestingly, the researchers also found that deletion of a region
upstream of the CRP-binding site of PomcA resulted in a significant
increase in promoter activity under aerobic conditions, suggesting
that a yet-unidentified regulator(s) binds to the deleted region
and negatively regulates the expression of omcA (Kasai et al.,
2015). These observations indicate thatMR-1 possesses regulatory
systems for tuning the composition of OM-cyts in response to
changes in environmental conditions, despite that the ratio of
MtrC to OmcA has been determined only under limited culture
conditions (e.g., 2:1; Shi et al., 2006).

Evidence also suggests that ArcA, Fnr (also referred to as EtrA),
and Fur may be involved in the transcriptional regulation of
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the mtr genes in Shewanella. ArcA is a DNA-binding response
regulator of the bacterial aerobic respiration control (Arc)
regulatory system and has been well characterized functionally
in E. coli. The E. coli Arc system consists of ArcA and the
sensor histidine kinase ArcB, which acts as an indirect oxygen
sensor by sensing the redox state of ubiquinone andmenaquinone
(Georgellis et al., 2001; Malpica et al., 2004; Bekker et al.,
2010). Studies have demonstrated that S. oneidensis MR-1 has an
atypical Arc system consisting of three components, ArcS, HptA,
and ArcA, and that the target genes of the MR-1 Arc system
substantially differs from those of E. coli (Gao et al., 2008; Lassak
et al., 2010, 2013). Gao et al. (2008) reported that the expression
of several cytochrome c genes, including cymA, omcA, and mtrC,
is significantly decreased in an arcA-deletion mutant of MR-1.
Despite this finding, the regulation of the mtr genes by ArcA
appears to be indirect, as consensus binding sequences for this
regulator are not found in the upstream regions of omcA andmtrC
(Gao et al., 2008).

Fumarate nitrate-reduction regulator (Fnr) is another
transcriptional regulator that is reported to influence the
expression of the mtr genes. In E. coli, Fnr functions as a sensory
protein for environmental oxygen levels by directly reacting with
oxygen through a 4Fe–4S cluster (Crack et al., 2004). Cruz-García
et al. (2011) reported that the expression levels of omcA-mtrCAB
and cymA, as well as other anaerobic respiratory genes, such
as nap, fccA, and dms, are decreased in a fnr-deletion mutant
of MR-1, suggesting that Fnr acts as a global regulator of many
anaerobic catabolic processes in MR-1. However, the authors
reported that the deletion of fnr did not significantly affect the
reduction rates of Fe(III) and Mn(IV) oxides, indicating that,
unlike CRP, Fnr only plays a minor role in regulation of the Mtr
pathway.

Evidence also suggests that f erric uptake regulator (Fur)
and intracellular iron levels affect expression of the mtr genes
and the EET activity of Shewanella spp. Fur acts as a sensor
for intracellular iron levels in many Gram-negative bacteria,
including E. coli and Shewanella (Hantke, 2001; Wan et al.,
2004). Fur complexes with ferrous iron (Fe2+) and regulates the
transcription ofmany genes, including those related to iron uptake
and homeostasis (Griggs and Konisky, 1989; Andrews et al.,
2003). Considering that large amounts of iron are required for
the synthesis of decaheme OM-cyts, it is reasonable to speculate
that expression of themtr genes is responsive to intracellular iron
concentrations. In support of this assumption, a previous study
reported thatmtr-gene expressionwas repressed by iron depletion
and induced by iron repletion (Yang et al., 2009). In addition,
Kouzuma et al. (2012) also demonstrated that iron uptake
supported by siderophore synthesis enhances transcription of the
mtr genes under Mn(IV)-reducing conditions, suggesting that
the intracellular iron concentration is a key determinant of the
expression levels of themtr genes. Furthermore, Yang et al. (2013)
reported that Fur is involved in the regulation ofmtr homologs in
S. piezotolerans WP3 by directly binding to the upstream region
of an omcA homolog (swp3277). In MR-1, the deletion of the fur
gene decreases mtr-gene expression, and a putative Fur-binding
site is located upstream of omcA (Wan et al., 2004). However, a
subsequent study indicated that regulation of the mtr genes in

MR-1 is iron responsive but Fur independent, as the transcription
of these genes is repressed by iron depletion, even in a fur-deletion
mutant (Yang et al., 2008). Thus, additional studies are required
for elucidating the signal-transduction mechanisms underlying
the iron-responsive transcription of themtr genes in MR-1.

The above-mentioned studies indicate that, although the
cAMP/CRP-dependent regulatory system plays a direct role in
mtr-gene regulation, the transcription of these genes is also
affected by other regulatory systems. However, it remains to be
elucidated how these regulatory systems conjunctively influence
the regulation of the Mtr pathway. Gao et al. (2010) have reported
in MR-1 that ArcA represses fnr and its own transcription and
that Fnr also represses arcA transcription, indicating that these
two regulatory genes are interactively controlled. In addition,
the authors have also found that the expression of crp is
independent of ArcA and Fnr, although it is currently unclear
how crp is regulated in Shewanella. Further investigation is
therefore necessary to identify and fully understand the complex
environmental-sensing and regulatory networks that regulate the
Mtr pathway in MR-1.

Extracellular EET Components

The synthesis and secretion of electron shuttles, such as riboflavin
and FMN, are important for EET by Shewanella cells. Previous
studies have demonstrated that riboflavin and FMN are secreted
at concentrations between 250 nM and 1 µM in cultures of MR-
1 and other Shewanella strains (Marsili et al., 2008; von Canstein
et al., 2008; Coursolle et al., 2010), and it is reasonable to speculate
that Shewanella possesses specific molecular mechanisms for
extracellular secretion of flavins. Covington et al. (2010) isolated
a MR-1 mutant with decreased ability to secrete riboflavin and
FMN, and found that the disruption of ushA, which encodes a
putative 5′-nucleotidase, resulted in the accumulation of flavin
adenine dinucleotide (FAD) in the culture supernatant, along
with decreased levels of FMN and riboflavin. Since UshA was
located to the periplasmic space and was shown to catalyze the
hydrolysis of FAD to FMN (Covington et al., 2010), MR-1 appears
to secrete FAD into the periplasm, where it is then hydrolyzed to
FMN by UshA. The synthesized FMN likely diffuses through OM
pores into the extracellular space and mediates electron-transfer
reactions between OM-cyts and extracellular electron acceptors.
Riboflavin appears to be produced by the spontaneous hydrolysis
of FMN (Covington et al., 2010), and may also contribute to EET
reactions.

Studies on MR-1 have also revealed the involvement of other
extracellular components in the transfer of electrons to solid
metals and electrodes. For example, Gorby et al. (2006) and El-
Naggar et al. (2010) reported that, under O2-limited conditions,
MR-1 produces conductive pilus-like structures (referred to as
nanowires) that appear to be involved in the reduction of solid
Fe(III) oxides and electricity generation in MFCs. MtrC and
OmcA were also shown to be required for not only the EET
activity of MR-1 cells, but also for the conductivity of nanowires
(Gorby et al., 2006; El-Naggar et al., 2010). Consistent with
these observations, Pirbadian et al. (2014) recently demonstrated
that MR-1 nanowires are not pilus-based structures, but rather,
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extensions of the OM and periplasm that include OM-cyts.
Interestingly, these authors also provided evidence suggesting that
nanowire filaments are formed from chains of membrane vesicles
released fromMR-1 cells (Pirbadian et al., 2014).

Cell-surface polysaccharides (CSPs) and other biofilm-related
components are also reported to influence the EET activity
of MR-1. For example, Kouzuma et al. (2010) reported that a
mutant deficient in a CSP biosynthesis gene, SO_3177, generated
1.5-fold higher current than wild-type MR-1 in an MFC. In
addition, the SO_3177-deficientmutant (∆SO_3177) also formed
larger colonies with a rough surface and exhibited an enhanced
ability to adhere to graphite electrodes. Notably, the surface of
∆SO_3177 cells was more hydrophobic than that of wild-type
MR-1 cells, suggesting that cell surface hydrophobicity influences
the adhesiveness of MR-1 cells to graphite electrodes and current
generation in MFCs (Kouzuma et al., 2010). Altered current
generation has also been observed for several transposon- (Tn-
) insertion mutants of MR-1, including those with Tn insertion
in a putative pilus biosynthesis gene (SO_3350) and a gene with
unknown function (SO_4704; Tajima et al., 2011). More recently,
Kouzuma et al. (2014) identified a Tn-insertion mutant of MR-
1 with distinct colony morphology and high current-generating
ability. DNA-microarray analyses of this mutant revealed that a
number of genes, including those involved in CPS biosynthesis
and biofilm formation, were differentially expressed compared to
wild-type MR-1, also suggesting the importance of cell-surface
structures for current generation by MR-1.

Lactate and Pyruvate Metabolism

Carbon catabolism is comprised a series of enzymatic reactions, in
which reducing equivalents, such as NADH, formate, and reduced
quinones, are produced from the oxidation of organic matter. The
generated reducing equivalents must be removed from the cell
for the catabolic reactions to proceed. In MR-1, these reducing
equivalents are utilized for the transfer electrons to extracellular
electron acceptors via the EET pathway. As can be seen from the
main catabolic pathways in MR-1 (Figure 4), this strain prefers to
catabolize low-molecular-weight organic acids, including lactate
and pyruvate (Myers and Nealson, 1988a,b; Scott and Nealson,
1994; Serres and Riley, 2006). MR-1 is able to utilize either -
or -lactate stereoisomers under both aerobic and anaerobic
conditions (Pinchuk et al., 2009). In many aerobic bacteria,
the oxidation of lactate to pyruvate is catalyzed by membrane-
bound respiratory - and -lactate dehydrogenases (- and
-LDH) that use oxidized quinones as electron acceptors (Kohn
and Kaback, 1973; Futai and Kimura, 1977; Ma et al., 2007).
Although no homologs of previously characterized bacterial
respiratory - and -LDHs are present in the MR-1 genome or
any other sequenced genome of Shewanella spp., a study using
a comparative genomic approach identified a MR-1 gene cluster
(SO_1522 to SO_1588) consisting of a putative lactate permease
gene [lldP (SO_1522)] and candidate LDH genes for oxidative
lactate utilization (Pinchuk et al., 2009). The putative D-LDH
gene [dld-II (SO_1521)] is a distant homolog of FAD-dependent
LDH in yeast, whereas -LDH is predicted to be comprised three
subunits encoded by lldEGF (SO_1520 to SO_1518). Genetic and

FIGURE 4 | Carbon-catabolic pathways in S. oneidensis MR-1. The
pathways are depicted based on findings reported in the literature (Scott and
Nealson, 1994; Yang et al., 2006; Tang et al., 2007a,b; Pinchuk et al., 2009;
Choi et al., 2014). Intrinsic catabolic pathways are shown in shaded boxes,
while an engineered pathway is depicted in a white box. Q, oxidized form of
ubiquinone or menaquinone; QH2, reduced form of ubiquinone or
menaquinone.

biochemical characterization confirmed that dld-II and lldEFG
encode functional - and -LDHs, respectively (Pinchuk et al.,
2009). Although these enzymes represent novel types of bacterial
LDHs, the results from comparative genomic analysis suggest
that homologs of Dld-II and LldEFG are present not only in
Shewanella and its close relatives, but also in diverse bacteria,
includingmembers ofAlphaproteobacteria andBetaproteobacteria
(Pinchuk et al., 2009). Notably, although MR-1 utilizes both -
and -lactate as energy sources, Brutinel andGralnick (2012) have
reported that this strain preferentially utilizes -lactate, likely due
to the inhibition of -lactate utilization by -lactate. However, the
molecular mechanisms underlying this inhibitory effect remain
to be elucidated. These researchers also demonstrated that LlpR
(-lactate-positive regulator, SO_3460) is required for -lactate
utilization by MR-1, although the regulatory mechanisms,
including the role of LlpR, in the transcription of LDH genes have
not yet been determined.

The end products from lactate metabolism in MR-1 are
determined by the growth conditions (Scott and Nealson, 1994;
Tang et al., 2007a,b). Under fully aerobic conditions,MR-1 utilizes
the complete TCA cycle and therefore does not produce any
metabolites from lactate other than CO2, because the pyruvate
produced from lactate is completely oxidized into CO2 (Tang
et al., 2007a). In contrast, under anaerobic conditions, including
electricity-generating conditions, MR-1 produces acetate as the
main metabolite from lactate (Tang et al., 2007a; Lanthier
et al., 2008), mainly due to the decreased activity of enzymes
involved in acetate oxidation and the TCA cycle (Scott and

Frontiers in Microbiology | www.frontiersin.org June 2015 | Volume 6 | Article 6096

http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Kouzuma et al. Molecular systems for microbial electricity generation

Nealson, 1994). Under these conditions, MR-1 appears to obtain
a substantial portion of ATP by substrate-level phosphorylation
in the phosphotransacetylase-acetate kinase (Pta-AckA) pathway
(Scott and Nealson, 1994; Tang et al., 2007a; Hunt et al., 2010;
Figure 4). In this pathway, pyruvate is oxidized by the pyruvate
dehydrogenase (PDH) complex [aceEFG (SO_0424 to SO_0426)]
and/or pyruvate formate-lyase [pflB (SO_2912)], resulting in
the formation of acetyl-CoA and CO2 or formate, respectively
(Pinchuk et al., 2011). The conversion of acetyl-CoA to acetate is
catalyzed by acetyltransferase [pta (SO_2916)] and acetate kinase
[ackA (SO_2915)], where ATP is synthesized by substrate-level
phosphorylation (Scott and Nealson, 1994; Tang et al., 2007a).
As ack- and pta-deletion mutants of MR-1 are unable to grow on
lactate as the sole electron donor and fumarate or Fe(III) citrate as
the electron acceptor (Hunt et al., 2010), the Pta-AckA pathway
appears to have a crucial role in anaerobic lactate utilization by
MR-1.

Sugar Metabolism

Although glucose is an important source of carbon and energy
for diverse heterotrophs, and is often used as a growth substrate
in various biotechnology processes, including bioelectrochemical
systems (Pham et al., 2003; Logan and Regan, 2006), S. oneidensis
MR-1 lacks a complete glycolytic pathway and is therefore unable
to grow on glucose (Myers and Nealson, 1988a; Serres and
Riley, 2006; Rodionov et al., 2010). Of the two main pathways
for bacterial glucose catabolism, the Embden–Meyerhof–Parnas
(EMP) and Entner–Doudoroff (ED) pathways (Figure 4), the
genome of MR-1 has been shown to code for all of the enzymes
needed to reconstruct the EDpathway (Rodionov et al., 2010). The
EMPpathway ofMR-1 is incomplete, as the genome lacks the gene
encoding 6-phosphofructokinase, a key enzyme in this pathway
(Figure 4; Serres and Riley, 2006; Rodionov et al., 2010), and a
glucose/galactose transporter (GluP, SO_2214) is not functional
as a result of a frameshift mutation (Romine et al., 2008; Rodionov
et al., 2010). In addition, because a glucokinase gene (glk) is
also not encoded in the genome, MR-1 is unable to catabolize
glucose. Although MR-1 has a complete set of genes encoding the
phosphoenolpyruvate (PEP):glucose phosphotransferase system
(PTSGlc; ptsHI-crr and ptsG), it is known that this system does not
support growth on glucose via the ED pathway, as this glycolytic
pathway cannot produce a sufficient amount of PEP for the
phosphotransferase reaction (Rodionov et al., 2010). However,
MR-1 is capable of growing on N-acetylglucosamine using the
NAG and ED pathways under aerobic and electrode-respiring
conditions (Figure 4; Yang et al., 2006; Rodionov et al., 2010).

An interesting feature of S. oneidensisMR-1 is that spontaneous
mutants able to grow on glucose relatively easily arise, after culture
media are supplemented with glucose under aerobic conditions.
Biffinger et al. (2008, 2009) showed that glucose was utilized
for current generation by S. oneidensis after a relatively long
adaptation period, when oxygen was supplied to MFCs. Howard
et al. (2012) reported that, when exposed to glucose under aerobic
conditions, MR-1 gained relatively frequently the ability to utilize
glucose. Unfortunately, it remains not to be identified how these
mutants gained the ability to catabolize glucose. On the other

hand, it is also shown that the introduction of glucose facilitator
(glf ) and glucokinase (glk) genes of Zymomonas mobilis allowed
MR-1 to generate current using glucose as the electron donor in
MFC (the engineered glucose pathway in Figure 4) (Choi et al.,
2014).

TCA Cycle and its Regulation

The metal-reducing and current-generating bacteria identified
to date preferentially utilize low-molecular-weight organic acids,
such as lactate and acetate, as carbon and energy sources. As these
organic acids are catabolized via the TCA cycle, the metabolic
activity of this pathway is an important factor determining the
EET activity of current-generating bacteria. Geobacter spp. are
capable of completely oxidizing acetate to CO2 under metal-
reducing and current-generating conditions (Lovley and Phillips,
1988; Bond and Lovley, 2003). In contrast, MR-1 does not appear
to utilize the complete TCA cycle during anaerobic respiration
and current generation, as several key genes involved in the TCA
cycle, including those encoding the 2-oxoglutarate dehydrogenase
complex (sucAB), are not sufficiently expressed under anaerobic
conditions (Scott and Nealson, 1994; Beliaev et al., 2005; Tang
et al., 2007a). When MR-1 catabolizes one lactate molecule
without utilizing the TCA cycle, one NADH and one formate
are released through the partial oxidation of lactate to acetyl-
CoA (Figure 4). These metabolites correspond to a total of
four electrons, which are one third of the electrons released by
the complete oxidation of lactate via the TCA cycle. The low
Coulombic efficiencies that are observed in lactate-fed Shewanella
MFCs are likely attributable to this low recovery of electrons.
Newton et al. (2009) reported that the Coulombic efficiencies
of lactate-fed air-cathode MFCs inoculated with S. loihica PV-
4 and S. oneidensis MR-1 were 26% and 16%, respectively, as
calculated based on the total coulombs produced by the complete
oxidation of lactate to CO2. In addition, substantial amounts of
organic acids, predominantly acetate, were accumulated in the
electrolyte of both the PV-4 and MR-1 MFCs, suggesting that the
TCA cycle is only partially functional in the Shewanella MFCs.
However, Matsuda et al. (2013) found that the TCA-cycle activity
in S. loihicaPV-4 cells could bemodified by changing the electrode
potential of the electrochemical cells. Grobbler et al. (2015) also
reported the electrode potential-dependent induction of TCA
cycle enzymes in electrochemically active biofilms ofMR-1. Taken
together, these findings suggest that both the extracellular and
intracellular redox states are key determinants controlling the
TCA-cycle activity in Shewanella cells, although the underlying
molecular mechanisms remain to be elucidated.

Several studies have indicated that the regulatory systems for
the TCA cycle genes of Shewanella are distinct from those of E.
coli. In E. coli, many genes involved in the TCA cycle are regulated
by the Arc two-component regulatory system (Liu and De Wulf,
2004). Under anaerobic conditions, the kinase activity of sensor
kinaseArcB is activated by reduced quinones, and phosphorylated
ArcA represses target TCA cycle genes, including those
encoding citrate synthase (gltA), isocitrate dehydrogenase (icdA),
succinate dehydrogenase (sdhABCD), and malate dehydrogenase
(mdh, Liu and De Wulf, 2004). However, transcriptome
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analyses of MR-1 have revealed that these TCA cycle genes are
not regulated by the Arc system (Gao et al., 2008). It has also been
reported that although a few TCA cycle genes in E. coli, including
acnA and sdhABCD, are regulated by Fur and the related small
RNA, RyhB (Massé and Gottesman, 2002), the corresponding
genes in MR-1 are not under the control of the Fur/RyhB-
dependent regulatory system (Yang et al., 2010). Further studies
are therefore needed to elucidate the regulatory mechanisms for
TCA cycle genes in MR-1.

Conclusion

MR-1 is an extensively studiedmodel organism for understanding
the genetics and biochemistry of bacterial EET and electricity
generation in MFCs. Current knowledge on the mechanisms
by which bacteria generate electricity in MFCs has largely been
obtained from studies performed on MR-1. As described in this
article, studies have revealed that many cellular components that
are directly and/or indirectly involved in bacterial electricity
generation have been identified. However, relatively limited
information is available concerning how these components

cooperatively work for efficiently generating electricity and
conserving energy. As available evidence suggests that the EET
pathway is regulated by the level of cAMP, which is an indicator
of the cellular energetic states (Charania et al., 2009; Kasai
et al., 2015), the EET activity appears to be linked to energy
conservation. However, further studies are necessary to determine
how cAMP levels are controlled inMR-1 cells. As the intracellular
energetic and redox states are two major parameters influencing
the global regulation of various cellular activities, future studies
addressing how global regulatory systems operate in MR-1 to
coordinate catabolic and electron-transfer pathways are needed.
As MR-1 is a representative environmental bacterium that thrives
in changing environments, such studies are expected to provide
useful insights into understanding bacterial lifestyles in the
natural environment.
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