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ABSTRACT: Testing thousands of chemicals to identify potential
androgen receptor (AR) agonists or antagonists would cost millions of
dollars and take decades to complete using current validated methods.
High-throughput in vitro screening (HTS) and computational
toxicology approaches can more rapidly and inexpensively identify
potential androgen-active chemicals. We integrated 11 HTS ToxCast/
Tox21 in vitro assays into a computational network model to
distinguish true AR pathway activity from technology-specific assay
interference. The in vitro HTS assays probed perturbations of the AR
pathway at multiple points (receptor binding, coregulator recruitment,
gene transcription, and protein production) and multiple cell types.
Confirmatory in vitro antagonist assay data and cytotoxicity
information were used as additional flags for potential nonspecific
activity. Validating such alternative testing strategies requires high-
quality reference data. We compiled 158 putative androgen-active and -inactive chemicals from a combination of international
test method validation efforts and semiautomated systematic literature reviews. Detailed in vitro assay information and results
were compiled into a single database using a standardized ontology. Reference chemical concentrations that activated or inhibited
AR pathway activity were identified to establish a range of potencies with reproducible reference chemical results. Comparison
with existing Tier 1 AR binding data from the U.S. EPA Endocrine Disruptor Screening Program revealed that the model
identified binders at relevant test concentrations (<100 μM) and was more sensitive to antagonist activity. The AR pathway
model based on the ToxCast/Tox21 assays had balanced accuracies of 95.2% for agonist (n = 29) and 97.5% for antagonist (n =
28) reference chemicals. Out of 1855 chemicals screened in the AR pathway model, 220 chemicals demonstrated AR agonist or
antagonist activity and an additional 174 chemicals were predicted to have potential weak AR pathway activity.

■ INTRODUCTION

As many as 10,000 commercial substances in the environment
lack data on their potential androgen receptor (AR) bioactivity
with hundreds of new chemicals being added to this total each
year.1,2 Testing to provide data on AR bioactivity using currently
validated U.S. Environmental Protection Agency (EPA) and
Organization for Economic Cooperation and Development
(OECD)methods could cost millions of dollars and take decades
to complete.3 Alternative approaches, such as those developed by
the U.S. ToxCast and Tox21 programs,4−7 use high-throughput
in vitro screening (HTS) assays and computational toxicology
methods to rapidly and cost-effectively test chemicals for

biological activity across a broad range of toxicologically relevant
molecular targets and pathways. These approaches are currently
accepted by the U.S. EPA for determining estrogen receptor
(ER) bioactivity8,9 and could also be used to identify potential
AR-active chemicals. However, application of alternative testing
strategies for regulatory decision-making requires performance-
based validation against a set of reference chemicals with
reproducible responses over a range of potencies.
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Here, we describe an integrated experimental and computa-
tional approach combining data from 11 ToxCast and Tox21 in
vitro HTS assays measuring activity at multiple points along the
androgen receptor (AR) pathway including receptor-binding,
coregulator recruitment, chromatin-binding of the mature
transcription factor, and gene transcription. A certain number
of chemicals could be expected to act as true AR agonists or
antagonists, but there are also chemicals that are known to
interfere with these various assay technologies through false
signals such as autofluorescence or cytostatic mechanisms.10−14

A well-accepted method of dealing with this issue is to leverage
orthogonal assays that help distinguish nonspecific activity from
interaction with the intended target.14,15 The approach is similar
to that demonstrated for the ER pathway.16 Here, the data from

11 AR pathway assays were supplemented with an additional
antagonist confirmation assay using a higher concentration of the
activating ligand to characterize competitive binding. This
battery of in vitro AR assays was used to screen a library of
1855 chemicals. Observed patterns of assay activity included no
assays activated, all agonist assays activated, all antagonist assays
activated, specific subsets of assays across technologies activated,
and technology-specific assay activation. To navigate this
complexity in the results, we developed a computational network
model to infer whether chemicals that activate specific patterns of
in vitro assays were more likely to be AR agonists, AR
antagonists, false positives due to specific types of assay
interference, or true negatives.

Figure 1.Graphical representation of the AR pathway model workflow presented here. The internal process consisted of generating HTS data on 11 AR
assays and building a computational model of AR pathway agonist/antagonist activity. The external process involved systematic literature review for
reference data and curation of the reference chemical list based on published data. The model performance was evaluated against the reference
chemicals, and screening results from the validatedmodel on a large set of environmental chemicals are presented. AR = androgen receptor, HTS = high-
throughput screening data.

Table 1. Tox21/ToxCast In Vitro Assays Used in AR Pathway Model

ID node assay name source genea species type
associated
pathwaysb

A1 N1 NVS_NR_hAR Novascreen AR Homo sapiens receptor binding R1; R2; R3
A2 N1 NVS_NR_cAR Novascreen AR P. troglodytes receptor binding R1; R2; R3
A3 N1 NVS_NR_rAR Novascreen AR Rattus norvegicus receptor binding R1; R2; R3
A4 N2 OT_AR_ARSRC1_0480 Odyssey Thera AR; SRC Homo sapiens coregulator

recruitment
R1; R2; R4

A5 N2 OT_AR_ARSRC1_0960 Odyssey Thera AR; SRC Homo sapiens coregulator
recruitment

R1; R2; R4

A6 N3 ATG_AR_TRANS Attagene AR Homo sapiens RNA reporter gene R1; R5
A7 N4 OT_AR_ARELUC_AG_1440 Odyssey Thera AR; ARE Homo sapiens reporter gene R1; R6
A8 N4 Tox21_AR_BLA_Agonist_ratio NCATS/

NCGC
AR Homo sapiens reporter gene R1; R6

A9 N4 Tox21_AR_LUC_MDAKB2_Agonist NCATS/
NCGC

AR Homo sapiens reporter gene R1; R6

A10 N5 Tox21_AR_BLA_Antagonist_ratio NCATS/
NCGC

AR Homo sapiens reporter gene R2; R7

A11 N5 Tox21_AR_LUC_MDAKB2_Antagonist NCATS/
NCGC

AR Homo sapiens reporter gene R2; R7

A11c N5 Tox21_AR_LUC_MDAKB2_Antagonist-
confirmation

NCATS/
NCGC

AR Homo sapiens reporter gene NA

aAR = androgen receptor; ARE = androgen response element; NCGC = NIH Chemical Genomics Center, now part of National Center for
Advancing Translational Sciences (NCATS); SRC = c-Src tyrosine kinase. bActivity in these assays/nodes could be associated with one or more of
the following pathways: AR agonist (R1), AR antagonist (R2), or interference (R3−R7). Activity in individual assays could also be associated with
assay-specific interference (A1−A11). cConfirmation assay data (overly high concentration of R1881) not used in AR pathway model scores.
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Evaluating and validating the AR pathway model requires
high-quality reference data for AR agonist and antagonist activity.
Unlike the ER pathway, which has a well-characterized set of in
vitro and in vivo reference chemicals,8,16,17 the reference
chemical set for the AR pathway is much less developed.
Previous work focused on identifying chemicals that were
positive or negative for (anti)androgenicity, without a specific
emphasis on potency, and often included compounds that were
“presumed” active or inactive.18 Using a comprehensive list of
putative AR-active or -inactive chemicals from past and present
international validation studies, we performed a literature search
to compile high-quality published in vitro AR binding and
transactivation (TA) assay data. To facilitate external validation
of the AR pathway model results, no ToxCast or Tox21 assay
data were included in the literature search. We identified a set of
chemicals with reliable and reproducible in vitro results from the
literature and binned the chemicals into defined potency
categories. The list of proposed reference chemicals and the
supporting data are provided and were used to evaluate the
current computational model of AR pathway activity based on
the Tox21 and ToxCast assays.

■ METHODS
Workflow. The workflow described in detail here is presented in

Figure 1. Briefly, high-throughput screening data were generated on
1855 chemicals in 11 Tox21/ToxCast assays that map to key biological

events along the AR pathway, and a computational model was used to
integrate those data for each chemical to provide overall AR pathway
activity predictions. In parallel, a systematic literature review was
performed to characterize a list of reference chemicals using previously
published work. These reference chemicals, classified based on the
existing scientific literature, were used to evaluate the performance of the
Tox21/ToxCast AR pathway model.

High-Throughput Screening Data. Data on 1855 chemicals were
generated during ToxCast Phases I and II and Tox21 screening using 11
AR-related in vitro assays (Table 1). These include three biochemical
radioligand AR binding assays (Novascreen19−21), a coactivator
recruitment assay measuring protein−protein interaction between AR
and SRC1 at two different time points (Odyssey Thera), one
transactivation assay measuring reporter RNA transcript levels
(Attagene22), three transactivation assays measuring reporter protein
level readouts (Odyssey Thera and Tox2123), and two transactivation
antagonist assays (Tox2124−26). One of the transactivation antagonist
assays, the Tox21 antagonist luciferase assay in the MDAKB2 cell line
(A11), was run as a confirmation assay with a higher concentration of
the synthetic ligand R1881 to verify chemical activity specific to the AR
pathway. Higher concentration of the ligand should shift the potency of
true competitive antagonists to higher concentrations. The chemicals
were tested in concentration−response format in all assays except for
the cell-free binding assays. The latter assays were initially tested at a
single concentration (25 μM), and if significant activity was seen, the
chemical was then tested in concentration−response mode. All
concentration−response assay data27 were analyzed using the ToxCast
data analysis pipeline, which automates the processes of baseline

Figure 2.Graphical representation of the AR pathway model based on Tox21/ToxCast assays: Circular nodes (N1−N5) represent key biological events
along the pathway, where dark gray coloring indicates key events common to agonism and antagonism, and blue and red coloring indicates key events
specific to agonism or antagonism, respectively. White stars (A1−A11) represent the in vitro assays that measure activity at the biological nodes. Colored
arrow heads (R1/R2) represent true AR agonism/antagonism, respectively, and are comprised of the nodes listed in the diagram and their associated
assays. Light gray arrow heads demonstrate examples of technology-specific interference or biological interference pathways, where individual assays or
specific groups of assays are positive due to non-AR-mediated activity. Each in vitro assay and each key event node has an assay- or biology-specific
interference pathway (defined in Table 1). Interference pathways R3−R7 correspond to nodes N1−N5, respectively, and interference pathways A1−
A11 correspond to the respective assays. Two examples of interference pathways, one that is assay-specific (A6) and one that is node-specific (R7), are
shown as light gray arrow heads. AR = androgen receptor.
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correction, normalization, curve-fitting, hit-calling, and AC50 (half-
maximal activity) determination.28 All in vitro assays except the RNA
transcript reporter assays (Attagene) were normalized to the range 0−
100% using the positive control response. RNA transcript reporter data
were normalized as a fold-change over the solvent control (0.5−1%
DMSO, which has been determined to have no effect on assay
performance) and then multiplied by a factor of 25 to yield a range of
approximately 0−100. The data from each chemical assay pair was fit to
three models: a constant model, a Hill model, and a gain-loss model, and
the model with the lowest Akaike Information Criterion29 was selected.
The pipeline also detects a variety of potential confounders, which are
annotated as “caution flags”. For computational synthesis to be
facilitated across different in vitro assays with different numbers of
tested concentrations, a set of synthetic concentration−response
activities was generated through interpolation for each chemical assay
pair at standardized concentrations using a Hill equation based on the
experimentally derived AC50, Hill slope, and Top parameters.

16 All AC50
values were in μM, and the synthetic concentrations were a 1.5-fold
dilutions series of 45 concentrations from 1 pM to 100 μM. The pipeline
and all raw and processed data and annotations are publicly available
(http://epa.gov/ncct/toxcast/data.html), and the data processing is
described in detail elsewhere.16,28

AR Pathway Model. A computational network model for AR
pathway activity (Figure 2) was built using 11 ToxCast and Tox21 in
vitro assays (Table 1) that map to key events in the biological pathway.
Figure 2 depicts the network model used to evaluate the integrated in
vitro assay responses that mirrors previously published work on the ER
pathway16 and is based on the series of molecular events that typically
occur in a nuclear receptor-mediated response.30 An AR agonist will
bind to the receptor monomer (node N1), cause the receptors to
dimerize, and translocate to the nucleus and recruit coregulators (node
N2) to form the complete, active transcription factor complex. The
transcription factor complex binds to the chromatin DNA at specific
response element sequences and initiates transcription of mRNA (node
N3) and subsequent translation to protein (nodeN4). An AR antagonist
acting through the receptor will bind to the receptor monomer (node
N1), cause the receptors to dimerize, and translocate to the nucleus and
recruit coregulators (node N2), forming a transcription factor complex
that binds to the chromatin DNA at specific response element
sequences, but is transcriptionally inactive and results in a lack of
downstream protein production (node N5). Each of these key event
nodes was assessed by one or more of the 11 in vitro assays listed in
Table 1 (represented in Figure 2 as white stars). Figure 2 shows the two
modes of the AR pathway: agonist (nodes associated with R1) and
antagonist (nodes associated with R2). The model assumes that a
chemical that interacts with the AR will bind and result in either or both
of the agonist or antagonist conformations, triggering activity in the
appropriate pathway. Each of the in vitro assays (A1−A11) is subject to
processes that can lead to nonspecific activity independent of the AR
pathway event that it is supposed to measure. These may be due to
technological interference, artifacts, or other sources of experimental
noise. Further, each group of assays that map to a key event node could
be affected by non-AR-mediated activity specific to that key biological
event (such as blocking transcription). Interference pathways R3−R7
correspond to nodes N1−N5 (detailed in Table 1). Two examples of
interference pathways, one that is assay-specific (A6) and one that is
node-specific (R7), are shown in Figure 2 as light gray arrow heads.
Mathematical Representation of the Pathway Model.

Following the ER pathway example presented in ref 16, a simple linear
additive model is used to predict the relative AR agonist or antagonist
activity of a test chemical based on data from the in vitro assays that map
to the AR pathway in Figure 2. In the mathematical representation, the
term “receptor” can refer to AR-mediated agonism, AR-mediated
antagonism, or an interference pathway (mediated via biological activity
or nontarget activity associated with a specific technology). The
“receptors” R1−R7 associated with each assay or key event node are
listed in Table 1. The model assumes that the value (the efficacy, A)
returned by an assay at a given concentration is the sum of the
contributions from the “receptors” that it measures, given as

∑=A F Ri
j

ij j
(1)

where the index i ranges over the number of assays and index j over the
number of “receptors” (where j = 1 for agonism, j = 2 for antagonism,
and j > 2 for interference). The elements of the Fmatrix are 1 if there is a
connection between a “receptor” j and an assay i and 0 otherwise. The
model seeks a set of Rj values that minimizes the difference between the
predicted assay values (Ai

pred) and the measured ones (Ai
meas) for each

chemical−concentration pair. A constrained least-squares minimization
approach is used, where the function being minimized is

∑ε = − +A A R( ) penalty( )
i

i i
2 pred meas 2

(2)

The term penalty(R) penalizes solutions that predict that many
“receptors” are being simultaneously activated by the chemical, such that

α=
+

R
x

x
penalty( )

( )
( 0.5 )

10

10 10 (3)

∑=
=

x Rwhere
j

N

j
1

receptor

(4)

The penalty term helps stabilize the solutions and is based on the
assumption that it is unlikely that most chemicals will strongly and
specifically interact with many dissimilar molecular targets.16 The model
produces a response value (between 0 and 1) for each “receptor” at each
concentration. These results are summarized as the integral across the
concentration range expressed as area under the curve (AUC), such that

∑= ×
=N

RAUC
1

sign(slope) (conc )j
i

N

j i
conc 1

conc

(5)

The biological response of greatest environmental concern is via
antagonism of the AR pathway, which is also where most chemical
activity is observed. Therefore, the AUC values were normalized to yield
a value of 1 for the antagonist positive control. We used
hydroxyflutamide, the antagonist positive control recommended by
the OECD.31 The calibration curve plotting the relationship between
AUC and activity concentration is given in Supplemental Figure S1. An
AUC value of 0.1 corresponds to activity at ∼100 μM; because this was
the top tested concentration of most assays (except the Attagene
assays), we considered an AUC of ≥0.1 to be positive. AUC values
between 0.001 and 0.1 indicate very weak potential activity and were
considered inconclusive. AUC values were rounded to 3 significant
digits, and values below 0.001 were truncated and set to zero.

Cytotoxicity Filter. Each antagonist assay that measured
suppression of protein production (Tox21_AR_BLA_Antagonist_ratio
and Tox21_AR_LUC_MDAKB2_Antagonist) also produced viability
readouts measuring cell death. These cytotoxicity assays were analyzed
using the ToxCast data analysis pipeline, as described above, and the
cytotoxicity AC50 was used as a threshold filter for antagonist activity in a
pairwise fashion. Any antagonist response with an AC50 greater than the
cytotoxicity AC50 for that chemical assay combination was discarded.
Additional filtering approaches that were both more permissive (no
exclusion) and more restrictive (exclusion of AC50s within 20% of the
cytotoxicity AC50) were investigated, and the corresponding results for
the AR pathway model (as well as the paired cytotoxicity data) are
included in Supplemental File 4. For ensuring removal of overtly
cytotoxic compounds while still permitting analysis of chemicals that
may show antagonist behavior at test concentrations immediately
preceding cytotoxicity and for maintaining consistency with the criteria
for the reference chemical data extracted from the literature, the
threshold approach was chosen for this analysis.

Cell Stress Flags. In a global analysis of the ToxCast data set, it was
observed that many different types of assays, both cell-based and cell-
free, showed a rapid increase in the frequency of responses at
concentrations corresponding to regions of cell stress/cytotoxicity.32

We flagged potential nonselective assay hits attributed to cell stress using
the distance between the logAC50 (assay) and the median logAC50
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(cytotox) with respect to the global cytotoxicity median of the median
absolute deviation (MAD) of the logAC50 (cytotox) distributions across
all chemicals. Details are given in ref 32. Briefly, for chemicals with two
or more positive responses in assays measuring cytotoxicity or inhibition
of proliferation, a “Z-score”was calculated for each AR pathway assay hit
as

=
−

Z(chemical, assay)
log AC50(chemical, assay) median[log AC50(chemical, cytotox)]

global cytotoxicity MAD
(6)

A large Z-score indicates an in vitro assay logAC50 at concentrations
significantly below those causing cytotoxicity or inhibiting proliferation.
Thus, a hit associated with this Z-score is unlikely to be caused by either
cell stress or cytotoxicity-related processes and is more likely to be
associated with a target-selective mechanism, e.g., interaction with the
AR pathway.
Confirmation Flags. One of the transactivation antagonist in vitro

assays, the Tox21 antagonist luciferase assay in the MDAKB2 cell line
(Figure 2, A11), was run twice with two different concentrations of the
stimulatory ligand R1881. These data were used to help confirm
whether chemical activity was specific to the AR pathway. The first time
the assay was run, the concentration of ligand R1881 was 10 nM (20×
the EC50 of R1881), which resulted in saturation of the assay and a lack
of activity for most chemicals, including known weak antagonists, based
on the inability to displace the ligand, except for potent steroid
antagonists (e.g., flutamide-like compounds). The second time the assay
was run with 0.5 nM R1881 and was sensitive to a wider range of
chemicals. This second run, with the appropriate R1881 concentration,
was included in the AR pathway model, and the data from the first run,
with the high R1881 concentration, were used in a paired fashion to
examine compound specificity. A system of flags was applied to identify
chemicals that may be activating the pathway through a nonreceptor-
mediated mechanism. For true positives, it was expected that they would
either be a hit in both runs, with a shift in the AC50 (from less to more
potent), or they would be negative in the first run (when the assay was
saturated with R1881) and a hit in the second run (weak antagonists).
The data were flagged if a chemical was active in both runs at similar
concentrations or if a potency shift was observed in the opposite
direction than would be expected. Significance of the shift between AC50
values was determined using a bootstrapping approach across chemical
replicates to define 95% confidence intervals as outlined below and in
(Watt et al. 2016, manuscript in preparation), where overlapping
confidence intervals were deemed a nonsignificant shift.
Uncertainty Quantification. All concentration−response curves

used in the AR Pathway Model were analyzed using the R package
toxboot v.0.1.0 (https://cran.r-project.org/web/packages/toxboot/
index.html). One thousand bootstrap replicates were generated for
each curve using smooth nonparametric bootstrap resampling to obtain
a distribution of fit parameters, model selections, and activity calls. Each
bootstrap sample was grouped by chemical and analyzed using the AR
Pathway Model with the same workflow as used to generate the point
estimates, resulting in a distribution of 1000 AUC values per chemical.
The inner 95% confidence interval for each chemical AUC value was
calculated on this distribution using the quantile function from the R
stats package33 with probabilities 0.025 and 0.975 for the lower and
upper thresholds of the confidence interval, respectively.
Reference Chemical Identification. We performed a targeted

literature search for quantitative data to refine previously published
reference chemical lists and provide potency characterization for AR
agonism/antagonism. We identified 158 potential reference chemicals
with AR agonist or antagonist activity (or lack of activity) from the
following international assay validation efforts run by
• Interagency Coordinating Committee on the Validation of

Alternative Methods18

• Organization for Economic Cooperation and Development31

• U.S. EPA Endocrine Disruptor Screening Program (EDSP)1

• European Union Reference Laboratory for Alternatives to Animal
Testing (EURL ECVAM, ongoing)

• Korean Center for Validation of Alternative Methods (KoCVAM,
ongoing)

We conducted semiautomated literature searches for in vitro
androgen activity data on the superset of chemicals (n = 158) using
PubMatrix (http://pubmatrix.grc.nia.nih.gov/) and Scopus (http://
www.scopus.com/). Data from in vitro AR binding and TA assays were
extracted from identified references and compiled into a single database
(Supplemental File 1). Search keywords are listed in Supplemental File
1. Using a standardized ontology, the following information was
recorded for each chemical−study combination:

• PubMed identifier, author, year
• Chemical tested, Chemical Abstracts Service Registry Number

(CASRN)
• Table or figure where results were reported
• Hit, response, response notes
• Half-maximal activity concentration (AC50 or IC50), standard error

measurement, units
• Assay type (tissue or cell culture), tissue of origin (for cell culture),

species of origin
• Receptor information, species source
• Reference androgen or antiandrogen
• Number of concentrations tested, highest concentration tested,

units, incubation time
• Binding assays only: binding affinity, dissociation constant, relative

binding affinity (RBA)
• TA assays only: agonist or antagonist mode, whether cytotoxicity

was evaluated, extent of cytotoxicity observed (i.e., at IC50)
•TA assays only: reporter type, reporter construct, whether construct

was native, transient, or stable
Reference Chemical Criteria. To establish reference chemical lists,

we examined high-quality AR binding and transactivation (TA) data
from the literature search, filtered by conditions such as use of the full
length receptor and concurrent measurement of cytotoxicity for
antagonist-mode data (detailed in Results). To determine potency
categories, we identified all quantitative AR TA assay data reported as
AC50 or IC50 that could be converted to μM units and calculated mean,
standard deviation, 95% confidence interval, and number of
observations for each chemical. Binding data were used in a
confirmatory fashion, where chemicals had to have positive binding
results in the literature to be included as candidate positive agonist and
antagonist reference chemicals. On the basis of the distribution of the
results, we defined agonist and antagonist reference chemical lists and
potency categories according to the following criteria:

Agonist. Positives: at least three TA experiments of which at least
70% yielded positive TA results and at least one positive binding result

• Strong: mean AC50 ≤ 0.1 μM
• Moderate: 0.1 μM < mean AC50 ≤ 1 μM
• Weak: 1 μM < mean AC50
Negatives: at least three TA experiments yielding negative results and

no TA experiments yielding positive results
Antagonist. Positives: at least three TA experiments of which at least

70% yielded positive results that were not due to cytotoxicity and at least
one positive binding result

• Strong: mean IC50 ≤ 0.5 μM
• Moderate: 0.5 μM < IC50 ≤ 5 μM
• Weak: 5 μM < mean IC50 ≤ 25 μM
• Very Weak: 25 μM < mean IC50
Negatives: at least two TA experiments yielding negative results and

no TA experiments yielding positive results
Chemicals with upper 95% confidence intervals that spanned potency

categories were given combined category designations such as “strong/
moderate” or “moderate/weak”.

■ RESULTS

Activity in the AR Pathway Model across the ToxCast
Library. Of the 1855 chemicals tested in all 11 Tox21/ToxCast
AR assays, 1461 (78.8%) were predicted to be inactive in the AR
pathway model with both agonist (R1) and antagonist (R2)
AUC values below 0.001, whereas 220 chemicals (11.9%) were
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predicted to be either androgen agonists (n = 33) or antagonists
(n = 192) with R1 or R2 AUC values > 0.1. Five of the 220
chemicals had significant activity in both agonist (R1) and
antagonist (R2) pathways. The remaining 174 chemicals (9.4%)
had inconclusive low AR pathway model scores with R1 or R2
AUC values of 0.001 to 0.1. These chemicals were generally
weakly active in a small number of assays and were usually also
predicted by the model to be acting through interference
pathways. Of the 1461 chemicals predicted to be inactive against
the AR pathway, 1092 chemicals were inactive across all the
assays, whereas 369 chemicals demonstrated activity associated
with either assay interference or, less likely, weak activity only
picked up in one technology type. Figure 3 shows the distribution
of AR model pathway scores across the ToxCast chemical library
for 763 chemicals that were active in at least one AR pathway
assay. Chemicals were either predicted to act via AR agonism
(R1), antagonism (R2), biology-specific interference (R3-R7), or
assay-specific interference (A1−A11). Supplemental Figure S1 is
a calibration curve to help interpret AUC values in terms of
pathway activity concentration, and Supplemental File 2 contains
the results for each assay and the AR pathway model (AUC
values and associated confidence intervals for agonism,
antagonism, and interference) for all 1855 chemicals. Results
of the AR pathway model with uncertainty bounds correspond-
ing to 95% confidence intervals are plotted in Supplemental
Figure S2.
Literature Search Results.The targeted literature search for

AR in vitro reference data yielded 4,795 chemical study pairs
across 379 publications. Experimental protocol details and
chemical effects were recorded in a standardized manner in a
structured data table (Supplemental File 1). AR binding data
were identified for 111 chemicals, and the data were compiled

from 1261 experiments reported in 166 publications. Commonly
used assay platforms included cell culture, tissue preparations,
and cell-free systems (Supplemental Figure S3a). Themajority of
the binding assays used full-length receptors (Supplemental
Figure S3b). A total of 26 species were represented among all
binding assays with most using human (39%) or rat (33%)
receptors. The four most commonly used reference androgens
were methyltrienolone (R1881; 475 assays, 41%), 5α-dihydro-
testosterone (DHT; 400 assays, 34%), testosterone (203 assays,
17%), and mibolerone (84 assays, 7%). Data from all assays
returned in the literature search can be found in Supplemental
File 1.
Results from experiments using mutant receptors were

excluded. Further analyses were conducted on data from binding
assays using the full-length receptor and the ligand-binding
domain (957 experiments on 95 chemicals). Multiple positive
binding results with no negative results were reported for 38
chemicals. Atrazine, cycloheximide, and 2,4-dinitrophenol had
multiple negative binding results and no positive results. There
were 14 chemicals with only one positive binding result (and no
negatives) and six chemicals with only one negative binding
result (and no positives). The remaining 34 chemicals had both
positive and negative binding results reported, although there
was usually a clear majority of positive or negative results for each
chemical. Results for binding affinity were reported in many
different formats, the most common being RBA or log RBA
relative to a positive control. The relative binding data included
R1881 (240 results), DHT (168 results), testosterone (97
results), and mibolerone (30 results). As an example, results for
log RBA on 61 chemicals relative to the most common positive
control compound, R1881, are shown in Figure 4.

Figure 3.Distribution of model AUC values across 763 chemicals. Heatmap shows the distribution of model area under the curve (AUC) values for 763
chemicals that were active in at least one AR pathway assay. The first two columns represent predictions for agonist (R1) and antagonist (R2) activity,
and the remaining columns represent predicted assay (A1−11)- or biology (R3−7)-specific interference corresponding to the pathway diagram in
Figure 2 and the interference pathways shown in Table 1. The darker red indicates higher AUC values corresponding to more potent activity (scale:
0.001−1). Clustering was done using Ward’s method.34
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AR transactivation data were compiled for 160 chemicals
(3534 experiments from 287 papers). Although six different
reporter types were used in the experiments, the majority of
experiments used assays with a luciferase reporter (Supplemental
Figure S4a). The use of a full-length receptor was also the most
common (Supplemental Figure S4b). Many assays used a
transiently transfected AR (46%) or stably integrated AR (39%)
followed by native receptor expression (14%). Most TA assays
used the human AR (93%), but receptors from a total of 14
species were represented among all assays in the database. The
most common reference androgens were DHT (2262 assays,
64%), R1881 (703 assays, 20%), and testosterone (395 assays,
11%); the most common reference antiandrogens were
flutamide (688 assays, 41%), hydroxyflutamide (487 assays,
30%), bicalutamide (220 assays, 13%), and cyproterone acetate
(192 assays, 11%).
Further analyses were conducted on data from the TA assays

using the full-length receptor and the ligand-binding domain.
Positive and negative TA assay results were reported for 2393
experiments on 133 chemicals. Results were subdivided into
modes measuring agonist activity (1447 experiments, 60%) and
antagonist activity (946 experiments, 40%). There were 13
chemicals with multiple positive agonist results (i.e., increase in
TA) and no antagonist results, all of which also had at least one
negative result reported (i.e., no agonist or antagonist activity).
However, for most of these chemicals, the number of positive

agonist results far outnumbered the number of negative results,
which tended to occur in specific cell or receptor types and/or at
low concentrations. There were 32 chemicals with multiple
positive antagonist results (i.e., decrease in TA) and no agonist
results. All of these chemicals also had at least one negative TA
result that tended to occur in specific cell types and/or at low
concentrations. There were 17 chemicals with multiple negative
(inactive for TA) results and no positive (agonist or antagonist)
results. There were 15 chemicals with only one TA result in any
category. The remaining 56 chemicals had a mix of positive
(agonist and/or antagonist) and negative results. However, for
most chemicals, there was a clear majority of either agonist or
antagonist results.

Potency of Transactivation Agonists. Positive results for
TA agonist activity were reported in many different formats and
with many different units, the most common being lowest effect
level (LEL; 415 results, 49%) and half-maximal activity
concentration (AC50; 406 results, 48%). All TA agonist results
were converted to log μM units where possible, and the
respective agonist potencies based on AC50s for each chemical
were compared to negative results in terms of highest dose tested
(HDT). The distribution of activity for chemicals with both
positive (AC50s, colored dots) and negative (HDTs, black dots)
results is shown in Figure 5.

Potency of Transactivation Antagonists. We evaluated
AR TA antagonist potency using only data from experiments that

Figure 4. AR binding affinities relative to R1881 reference. Chemicals are listed along the x-axis; y-axis represents the log10 (RBA). The size of the dot
increases with the number of observations (range: 1−15). Relative binding affinity decreases moving from top to bottom with a total of 61 chemicals
described. AR = androgen receptor; R1881 = methyltrienolone; RBA = relative binding affinity.
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concurrently measured cytotoxicity (520 experiments [55%]
representing 105 chemicals) with clearly stated acceptance
criteria (e.g., <20% loss of viability). Positive results for
antagonist activity were reported in many different formats and
with many different units, the most common being half-maximal
inhibition activity concentration (IC50; 224 results, 64%) and

LEL (114 results, 33%). All TA antagonist results were converted
to log μM units where possible, and the respective antagonist
potencies based on IC50 were compared to the negative results in
terms of HDT. The distribution of activity for chemicals with
both positive (IC50s, colored dots) and negative (HDTs, black
dots) results is shown in Figure 6.

Figure 5.Comparing ARTransactivation Agonist Results. Chemicals are listed along the x-axes, and the log transformed doses are listed along the y-axis.
The colored dots represent positive results in log10 (AC50), and the black dots represent negative results in log10 (HDT). The size of the dot increases
with the number of observations (range: 1−79). Agonist potency decreases moving from bottom to top, with a total of 40 chemicals described. AC50 =
half-maximal activity concentration; AR = androgen receptor; HDT = highest dose tested.
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AR Pathway In Vitro Reference Chemicals. Based on the
criteria outlined in the Methods for reproducibility and
consistency of response, we identified 37 reference chemicals
for AR agonism and 28 reference chemicals for AR antagonism
(Table 2). Initial reference chemical categorizations included
strong, moderate, weak and very weak agonists and antagonists,

and negative categorizations, all of which were based exclusively
on the curated results from the published literature and did not
include any information from the ToxCast or Tox21 assays.
There were 11 chemicals that fulfilled reference criteria for both
agonism and antagonism, usually as a positive reference in one
and a negative reference in the other. Cyproterone acetate was

Figure 6. Comparing AR transactivation antagonist results. Chemicals are listed along the x-axes, and the log transformed doses are listed along the y-
axis. The colored dots represent positive results in log10 (IC50), and the black dots represent negative results in log10 (HDT). The size of the dot
increases with the number of observations (range: 1−21). Antagonist potency decreases moving from bottom to top with a total of 54 chemicals
described. AR = androgen receptor; HDT = highest dose tested; IC50 = half-maximal inhibitory concentration.
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classified as both a weak agonist and a moderate antagonist based
on multiple literature results showing selective androgen
receptor modulation with agonist and antagonist effects. Of the
54 reference chemicals classified based on data from the
literature, 46 were among the 1855 chemicals tested in

ToxCast/Tox21 and could be used for performance-based
external validation of the AR pathway model results.

AR Pathway Model Performance. The predicted activity
from the AR pathway model for the 46 reference chemicals was
compared with the reference potency categories based on

Table 2. AR Pathway In Vitro Reference Chemicals

CASRN chemical name agonist potency category antagonist potency category in ToxCast 10/2015 release

52806-53-8 hydroxyflutamide NA strong yes
90357-06-5 bicalutamide NA strong yes
122-14-5 fenitrothion NA strong yes
84371-65-3 mifepristone NA strong/moderate yes
52-01-7 spironolactone NA strong/moderate yes
63612-50-0 nilutamide negative moderate yes
427-51-0 cyproterone acetate weak moderate yes
80-05-7 bisphenol A NA moderate/weak yes
330-55-2 linuron NA moderate/weak yes
50471-44-8 vinclozolin NA moderate/weak yes
13311-84-7 flutamide negative moderate/weak yes
67747-09-5 prochloraz negative moderate/weak yes
140-66-9 4-tert-octylphenol NA weak yes
72-43-5 methoxychlor NA weak yes
72-55-9 p,p′-DDE NA weak yes
60207-90-1 propiconazole NA weak yes
17924-92-4 zearalenone NA weak yes
789-02-6 o,p′-DDT negative weak yes
32809-16-8 procymidone NA very weak yes
60168-88-9 fenarimol negative very weak yes
58-18-4 methyl testosterone strong negative yes
58-22-0 testosterone strong negative propionate form
63-05-8 4-androstenedione moderate negative yes
1912-24-9 atrazine negative negative yes
52918-63-5 deltamethrin negative negative yes
486-66-8 daidzein NA negative yes
16752-77-5 methomyl NA negative yes
122-34-9 simazine NA negative yes
10161-33-8 17b-trenbolone strong NA yes
797-63-7 levonorgestrel strong NA yes
965-93-5 methyltrienolone (R1881) strong NA no
68-22-4 norethindrone strong NA yes
51-98-9 norethindrone acetate strong NA no
76-43-7 fluoxymestrone strong/moderate NA no
434-22-0 19-nortestosterone moderate NA no
521-18-6 5a-dihydrotestosterone moderate NA yes
10418-03-8 stanozolol moderate NA no
71-58-9 medroxyprogesterone acetate moderate/weak NA no
68-23-5 norethynodrel moderate/weak NA no
57-91-0 17a-estradiol negative NA yes
68359-37-5 b-cyfluthrin negative NA yes
52315-07-8 b-cypermethrin negative NA yes
17804-35-2 benomyl negative NA yes
85-68-7 butylbenzyl phthalate negative NA yes
10605-21-7 carbendazim negative NA yes
51630-58-1 fenvalerate negative NA yes
98319-26-7 finasteride negative NA yes
129453-61-8 ICI 182,780 negative NA yes
36734-19-7 iprodione negative NA yes
50-29-3 p,p′-DDT negative NA yes
52645-53-1 permethrin negative NA yes
501-36-0 resveratrol negative NA no
10540-29-1 tamoxifen negative NA yes
7696-12-0 tetramethrin negative NA yes
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Figure 7. AR pathway model results for reference chemicals. Reference chemicals and associated potency categories (from the literature search) are
listed along the y-axes, and the AR pathway model AUC score for (a) agonism (R1) or (b) antagonism (R2) are listed along the x-axes. Green dots
represent positive reference chemicals, and red dots represent negative reference chemicals. AR pathway model scores below 0.01 were truncated at 0.01
for plotting purposes. There was one false positive for agonism (17a-estradiol), and one negative agonist reference chemical with an inconclusive model
score (tamoxifen). The initial false negative for antagonism (zearalenone) was confirmed as a potential true positive by the antagonist confirmation assay
(Tox21_AR_LUC_MDAKB2_Antagonist-confirmation). Two antagonist reference chemicals had AUC scores in the inconclusive region.
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curated published results identified in the literature review. The
results of the model predictions are shown in Figure 7a (29
agonist reference chemicals) and Figure 7b (28 antagonist
reference chemicals). An AR pathway model score greater than
0.1 (approximate activity at concentrations less than 100 μM)
was considered positive with higher model scores corresponding

to stronger potency. With respect to the AR agonist reference
chemicals, 17a-estradiol was the only false positive, and there
were no false negatives. One negative agonist reference chemical,
tamoxifen, had an inconclusive agonist AUC (R1) score of
0.0335. Following the example of Browne et al. 2015,8 we
evaluated the model performance two ways. If inconclusive

Figure 8. Concentration response curves and AR pathway model results for selected reference chemicals. For each chemical, the left-hand panel shows
the concentration response data for the 11 in vitro assays, colored by assay group as defined in the legend. The right-hand panel shows the magnitude of
the modeled “receptor” responses, where the agonist pathway (R1) is in blue and the antagonist pathway (R2) is in red, and the other interference
pathways (R3−R7) are colored as defined in the legend. Model AUC values are displayed below the chemical name, and literature-based reference
classifications are displayed in the plot. The median cytotoxic concentration for each chemical is indicated by a vertical red line, and the cytotoxicity
region (representing 3median absolute deviations) is indicated by the gray shaded region. A green horizontal bar indicates the median AC50 of the active
assays. Similar plots for all chemicals are given in Supplemental File 3.
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scores were considered positive, the AR pathway model had a
balanced accuracy of 95.2% (100% sensitivity and 90.5%
specificity) against the agonist reference chemicals, and if
inconclusive results were excluded, the balanced accuracy was
97.5% (100% sensitivity and 95% specificity). Two of the
antagonist reference chemicals, methoxychlor (weak potency)
and fernarimol (very weak), had antagonist AUC (R2) scores in
the inconclusive range of 0.0429 and 0.0446, respectively.
Zearalenone, categorized in the literature review as a weak
antagonist, was a false negative, and there were no false positives
for antagonism. The model predicted that zearalenone was
causing assay interference through R7 (corresponding to key
event node N5 in Figure 2) because it hit both Tox21 antagonist
assays but none of the upstream assays in the antagonist pathway
(binding or coregulator recruitment). The AR pathway model
had 97.5% balanced accuracy (95% sensitivity and 100%
specificity) when predicting the antagonist reference chemicals
and counting the inconclusive results as positive or 97.2%
balanced accuracy (94.4% sensitivity and 100% specificity) if the
inconclusive chemicals were excluded. Examples of the
concentration−response curves for several reference chemicals
are shown in Figure 8.
Distinguishing Antagonism and Cell Stress. The Z-score

provides a measure of proximity (how many median absolute
deviations) for a chemical’s activity in a particular assay relative to
the median concentration for that chemical across 33 viability
and proliferation inhibition assays in the ToxCast library.32 Z-
scores for every chemical assay combination in the AR pathway
model are reported in Supplemental File 2. A chemical-assay hit
with a high Z-score (>3) indicates that AR-related activity
occurred at concentrations far below the cytotoxicity threshold
and suggests that there was no evidence of cell stress. These hits
are more likely to be associated with specific biomolecular
interactions with the intended biological target that the assays are
designed to measure. Examples of chemicals with high AUC
values for AR antagonism and high average Z-scores include
hydroxyflutamide, nilutamide, vinclozolin, linuron, spironolac-
tone, and apigenin. Hits with low Z-scores (activity concen-
trations in the cell stress/cytotoxicity region) are more likely to
be associated with an interference process than hits with high Z-
scores. However, because of the variable concentration spacing,
quantitative uncertainties in AC50 values, and differential
sensitivity among cell types, the Z-score cannot be used as a
definitive filter and is instead valuable to provide context on the
potential specificity of the results.
Antagonism Confirmation Assay Results. The confirma-

tion assay data from the Tox21_MDAKB2_Luc_Antagonist
assay with two different concentrations of stimulating ligand
(R1881) provided additional insight into chemicals that were
potentially acting via a nonreceptor-mediated mechanism (e.g.,
generalized cell stress or cytotoxicity) relative to chemicals that
appeared to be acting via the AR ligand-binding domain. When
considering these data, the one “false negative” reference
chemical, zearalenone, displayed behavior indicative of true
weak antagonist potential, where it was active in both screens and
exhibited a potency shift in the expected direction, although the
shift was flagged as not significant due to overlapping confidence
intervals around the AC50 values. It is worth noting that
zearalenone is predicted to be a fairly potent ER agonist (AUC
model score of 0.7116). There were 128 chemicals that were only
active when the assay was stimulated with the lower R1881
concentration, behavior that is consistent with the potential for
weak antagonism. There were 57 chemicals that were active in

both runs and exhibited the expected potency shift with
nonoverlapping AC50 confidence intervals. Most of these were
predicted as true antagonists by the model, including positive
antagonist reference chemicals triclosan and bisphenols A/B/AF.
Others (e.g., endosulfan sulfate, dinoseb, fenoxycarb) had
inconclusive model scores or were predicted to act via
interference pathways, such as suppression of protein production
(R7, node N5) because they did not hit the binding or
coregulator recruitment assays. There were 128 chemicals that
were active in both runs and exhibited the expected potency shift
but had overlapping AC50 confidence intervals. There were 65
chemicals that were active in both runs but exhibited a potency
shift in the opposite direction (i.e., more potent in the assay with
a higher R1881 concentration) and 22 chemicals that were only
active in the assay with a higher R1881 concentration and
inactive in the other run. These included potently cytotoxic
compounds (e.g., gentian violet), cytotostatic compounds (e.g.,
cycloheximide), organometallics, and pesticides. There were
1455 chemicals that were inactive in both runs, most of which
were also inactive against the AR pathway model. Each category
of chemical activity is designated by the corresponding “Tox21
Antagonist Confirmation Assay Flag” in Supplemental File 2.

Antagonist Activity Confidence Scoring. The AR
pathway model AUC scores, cytotoxicity information, and
confirmation flags were used to inform a simple summary
score for each chemical that translates into confidence that the
observed activity is via the AR pathway. The schema for assigning
confidence scores is shown in Table 3. The default score for

inactive chemicals was set to zero. Chemicals with high
antagonist (R2) AR pathway model AUC scores were assigned
higher confidence scores, as were those chemicals that were
active in the concentration region prior to cell stress/cytotoxicity
(high average Z-scores across the 11 assays). For potential
antagonists, those exhibiting the expected potency shift in the
confirmation assays were assigned higher confidence scores,
whereas those with data indicating that the chemical was not
acting via the receptor were assigned negative confidence scores.
The confidence scores from each source were then summed to
provide an overall confidence score to facilitate chemical
prioritization in a manner that incorporates all the contributing
data streams. The positive antagonist reference chemicals all had
positive activity confidence scores. All 192 chemicals with R2
AUC values above 0.1 also had positive activity confidence

Table 3. Schema for Antagonist Activity Confidence Scoring

source criteria
confidence score
contributiona

AR pathway model AUC.R2 > 0.1 2
0.1 > AUC.R2 > 0.001 1

cell stress/
cytotoxicity flag

average Z-score > 3 1

confirmation assay
data

true antagonist shift (hit/hit) 3

true antagonist shift (no hit/hit) 2
FLAG: true antagonist shift but
CI overlap

1

FLAG: wrong direction shift
(hit/hit)

−1

FLAG: wrong direction (hit/no
hit)

−1

aContributions from the three source categories are summed to
provide an overall antagonist activity confidence score ranging from
−1 to 6.
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scores, although there were 36 chemicals with low confidence
scores (≤2) that were flagged based on the confirmation assay
data and may be false positives. Out of the 170 chemicals with
inconclusive model antagonist AUC scores (between 0.001 and
0.1), 144 chemicals had positive confidence scores and 61 of
these had high confidence scores (≥3). There were 294
chemicals with positive confidence scores that were negative in
the AR pathway model (R2 AUC values of 0), some of which
were predicted agonists, and most of which were predicted to act
via interference receptors. Of those 294 model negative
chemicals, there were 26 chemicals with confidence scores ≥3,
which may have been missed by the model and should be
examined further for potential antagonist activity. There were
1225 chemicals with activity confidence scores ≤0, meaning that
they were either inactive, caused technology-specific interfer-
ence, or displayed activity indicative of a non-AR-mediated
response (usually cytotoxicity driven). The distribution of AR
pathway model antagonist AUC values across the different
confidence scoring bins is shown in Figure 9.
Comparison with U.S. EPA EDSP Tier 1 AR Binding

Assay.The current high-throughput AR pathwaymodel, with 11
assays covering five key events, is intended as a potential
alternative for the existing low-throughput EDSP Tier 1 AR
binding assay covering one key event. Going beyond the binding
assay, the model provides functional information, i.e., agonist
versus antagonist activity. In addition, the complementarity of
the assays helps overcome assay-specific interferences that can
yield false positive and false negative results. There are a total of
101 chemicals with data from the EDSP Tier 1 AR binding assay
and data from the current AR pathway model. Tier 1 AR binding
data came from two sources: the ICCVAM assay validation
document18 and results from the first set of test orders issued by
the U.S. EPA EDSP, referred to as “List 1”.35 The Tier 1 assay
measured binding rather than agonism or antagonism, so for
comparison, we called a chemical model positive if the maximum
of the agonist or antagonist AUC values was ≥0.1, negative if the

maximum was <0.001, and inconclusive if the maximum AUC
was between 0.001 and 0.1. For ICCVAM, RBA values were
reported (IC50R1881 × 100/IC50test chemical), and for the List 1
chemicals, both RBA and IC50 values were reported. To facilitate
comparison, we developed a calibration curve using the List 1
chemicals based on an observed linear relationship between
log(IC50) and log(RBA), which allowed us to estimate IC50
values from RBAs for ICCVAM chemicals. A linear model
(shown in Supplemental Figure S5) between the two yielded a
root-mean-square error (RMSE) of 0.25 and coefficient of
determination (R2) of 0.84 with both slope and intercept of
approximately −1. All data on these comparisons is given in
Supplemental File 5. Of the 101 chemicals, seven had equivocal
calls in the Tier 1 data and six had inconclusive AR pathway
model scores (1 chemical overlap), yielding 89 chemicals with
comparable data.
Of the 39 List 1 chemicals with both List 1 AR binding assay

data and AR model scores, two were positive in both, six were
model positive and Tier 1 negative, seven were model negative
and Tier 1 positive, and 24 were negative in both. The List 1
positive and AR model negative chemicals are 2-phenylphenol,
carbaryl, diazinon, dichlobenil, metolachlor, myclobutanil, and
phosmet. With the exception of phosmet, the IC50 values for
these chemicals are well over 100 μM, and so would be expected
to be negative in the model, as the top tested concentrations in
ToxCast and Tox21 were ≤100 μM. The IC50 for phosmet for
binding was 10 μM in Tier 1, in close agreement with the chimp
AR binding assay (A2) AC50 of 18 μM in the AR model data;
however, the human and rat binding assays did not yield positive
hit calls when tested to 40 μM. Phosmet was negative in the AR
model data transactivation assays in agreement with a previous
published report.36 Themodel positive/List 1 negative chemicals
are abamectin, captan, chlorothalonil, folpet, MGK-264, and
propargite. All of these are classified as antagonists in the model
with AUC antagonist values ranging from 0.09 to 0.48. However,
all of these chemicals are flagged as potential false positives using

Figure 9. AR pathway model antagonist AUC distribution by confidence score.
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the antagonist confirmation assay data based on either a potency
shift in the wrong direction (abamectin, chlorothalonil, folpet,
propargite) or no significant shift (captan, MGK-264). The two
chemicals called positive in both approaches are propiconazole
and tebuconazole. Both of these were classified in the model as
antagonists, and both had significant shifts in the correct
direction in the confirmation antagonist assay. In summary, the
model positive/List 1 negative chemicals are likely all false
positives in the model, but this was detected using the
confirmation assay. Themodel negative, List 1 positive chemicals
are all so weak that they would not be detected by the HTS assays
used in the model because of the upper testing concentration of
100 μM with the possible exception of phosmet for which no
clear call can be made. The model results, including uncertainty
bounds, for all the List 1 chemicals are shown in Supplemental
Figure S6.
There were 51 chemicals with data from the model and the

ICCVAM validation set for the Tier 1 AR binding assay (atrazine
was also on List 1). Of these, 22 were positive in both, 9 were
model positive and Tier 1 negative, 1 was model negative and
Tier 1 positive, and 19 were negative in both. This yields a
sensitivity and specificity of 0.96 and 0.68, respectively. The
single ICCVAM chemical that was model negative and Tier 1
positive was atrazine with an RBA of 0.0018, yielding a modeled
IC50 of 53 μM, which is near the upper limit of HTS testing.
Atrazine was also evaluated in the List 1 process using literature
data, which yielded equivocal results but an ultimate List 1 call of
inactive. The 10 model positive, Tier 1 negative chemicals are
17a-estradiol, 4-cumylphenol, apigenin, bisphenol B, clomiphene
citrate, cycloheximide, fulvestrant,meso-hexestrol, oxazepam, and
reserpine. All of these were classified as antagonists except for
17a-estradiol and oxazepam, although the former had an agonist
AUC (R1) of 0.67 and antagonist AUC (R2) of 0.09. Of these
chemicals, four had a significant shift in the correct direction in
the antagonist confirmation assay (17a-estradiol, 4-cumylphenol,
apigenin, bisphenol B), and three had a shift in the correct
direction but with overlapping confidence intervals (clomiphene
citrate, meso-hexestrol, reserpine). Cycloheximide had a shift in
the wrong direction. Fulvestrant and oxazepam also had
significant activity in interference channels and thus are likely
active due to assay interference. In summary, among these model
positive, Tier 1 negative chemicals, the model data support true
activity for 17a-estradiol (mixed agonist/antagonist) and 4-
cumylphenol, apigenin, and bisphenol B (antagonists). Note that
these are all estrogen receptor agonists. Additionally, in the
ICCVAM listing, these are noted as “presumed negative”. The
remaining six chemicals show evidence for false-positive activity
in the model. The model results, including uncertainty bounds,
for all the ICCVAM chemicals are shown in Supplemental Figure
S7.

■ DISCUSSION
Implementation of HTS inToxCast and Tox21 has generated
high-quality quantitative data on thousands of chemicals and
potential environmental pollutants. The inclusion of orthogonal
assays that query key events along a biological pathway in
multiple ways has produced novel hazard screening capabilities.
A similar mechanistic network model to the one presented here is
already being used by the U.S. EPA EDSP to identify potential
endocrine disruptors acting via estrogen agonism.9 The ER
pathway model was validated against a well-defined set of
reference chemicals,8,16 which heretofore was not possible for the
AR pathway due to the lack of a well-characterized reference

chemical set. In this study, we have reported the results from a
comprehensive literature review on potential AR reference
chemicals and used the resulting set to evaluate the performance
of the AR pathway model based on 11 Tox21/ToxCast assays.
Every assay has inherent limitations driven by technological

specifications and an applicability domain. A biological pathway-
based approach that integrates multiple assays mapping to key
upstream and downstream events provides a weight of evidence
for the true potential of a chemical to activate or repress signaling,
in this case via the AR. This type of additive model compensates
for the individual shortcomings of any one assay. For example,
there were 105 chemicals that were predicted to act through a
receptor interference pathway (A7, Figure 2) because they were
only active in the OT_AR_ARELUC_AG_1440 luciferase
reporter gene assay measuring downstream transcriptional
activation via protein production. None of these chemicals are
known to be AR agonists, so it is likely that their activity was
correctly flagged as interference and may have been a result of
nonspecific transcriptional effects. Alternatively, these specific
samples may have had cross-contamination from strong
reference chemicals during the experimental protocol. There
are also a large number of chemicals that produced hits in one or
more of the cell-free receptor binding assays and were therefore
predicted as A1−A3 or R3. Many of these chemicals are
surfactants, indicating that these chemicals may have reacted with
the proteins or otherwise caused denaturation, leading to
displacement of the radioligand and a binding-like signal.
Cytotoxicity and response specificity were further considered

and flagged based on chemical patterns across viability assays
(i.e., Z-score) and confirmation assay data. An important point
about theZ-score is that, in practice, it is more useful as a flag than
an absolute cutoff. In the ToxCast data analysis pipeline, there are
additional types of flags, e.g., to indicate noisy data or hits due to a
single point crossing the statistical threshold for activity. These
do not change the hit call but provide the user a set of cautions or
warnings when evaluating data for a particular chemical assay
pair.27 Similarly, the analysis of the confirmation assay data
produces a set of flags that instills more or less confidence in true
AR antagonist behavior. The initial Tox21_MDAKB2_Luc_An-
tagonist assay run with a stimulatory R1881 concentration of 10
nM (∼20× EC50) identified predominately only the strong
antagonists, i.e., steroid pharmaceuticals, that could compete
with the high agonist concentration, and many of the weak
environmental antiandrogens were inactive. The assay run with
0.5 nM of R1881 (∼EC50) identified many more of the weak
antagonists. The shift in potency between the two conditions was
useful for identifying indirect inhibitors of the assay signal.
Chemicals that had high model scores for antagonism (R2 AUC
> 0.1) but were flagged for a lack of a potency shift in the
confirmation results may not actually be acting through the AR
but rather through generalized cell stress or technology
interference. Examples of chemicals in this group include the
dyes basic blue 7, rhodamine 6G, and FD&C green No. 3l, the
organometallics tributyltin methacrylate and zinc pyrithione, and
the pesticides abamectin and propargite. Conversely, chemicals
that were missed by the binding (A1−A3) and coregulator
recruitment (A4 and A5) assays, but exhibited a potency shift in
the confirmation data, may have been incorrectly predicted by
the model as acting through interference pathways (e.g., R7,
corresponding to activity in only A10 and A11). It is also possible
that some antagonists may bind outside the ligand binding
domain, otherwise block dimerization, or act on some later step
in the pathway. For example, a group of seven conazoles were
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classified as antagonists by the AR pathway model, had activity in
both runs of the Tox21_MDAKB2_Luc_Antagonist assay, and a
corresponding significant potency shift. Another six had a shift in
the correct direction but the confidence intervals for the two
AC50s overlapped. A clear shift in the confirmation assay data
may be sufficient evidence of AR-mediated activity, regardless of
model score. Chemicals with this type of response that may have
been missed by the model were identified and prioritized by the
activity confidence scoring system.
Having 11 diverse orthogonal assays along the AR pathway

protects against spurious results being driven by one particular
technology type. This is evident when considering the excellent
performance of the AR pathway model (>95% for both agonism
and antagonism) against the reference chemicals. An interesting
exception is the putative reference chemical 17a-estradiol, which
was classified negative for AR agonism based on multiple
literature results; however, the literature HDTs were ≤10 μM.
All 11 Tox21/ToxCast AR assays were activated by 17a-estradiol
(AC50/IC50 range 0.1−10 μM), resulting in amodel prediction of
both agonist and antagonist activity. These results could be
indicative of true selective AR modulation by this chemical or
heightened sensitivity of the HTS assays to strong steroid
pharmaceuticals. With the publication of these analyses, and the
availability of the ToxCast and Tox21 data (https://www.epa.
gov/chemical-research/toxicity-forecasting), the reference
chemical list can be updated to reflect the contribution of
these assays to the body of published literature. We refrained
from doing so here to provide an external validation for the
current AR pathway model, but future work could incorporate
the ToxCast, Tox21, and other assays into an expanded reference
chemicals list. In that case, the contradictory results between the
literature analysis and the ToxCast/Tox21 data would suggest
removal of 17a-estradiol from future negative reference
classifications if the source of crosstalk, whether it is biological
or technological, can be determined. Another potential lesson
learned from validating the AR pathway model against the
reference chemicals concerns the threshold for positive activity.
Two of the weak/very weak antagonist reference chemicals had
AUC values in the inconclusive range, around 0.04, due to lack of
activity in the binding assays. A limitation of the binding assays
specifically is that chemicals were only tested in concentration
response if they were active in a single high-concentration screen.
Both of these chemicals (fenarimol and methoxychlor) had
similar profiles against the remainder of the pathway with activity
at 30−40 μM in one of the coregulator recruitment assays (A5)
and both of the Tox21 antagonist assays (A10 and A11).
Depending on the application and the desire to minimize false
negatives in a regulatory setting, the threshold could be adjusted
to consider all nonzero model values; chemicals with both
inconclusive and positive AR pathway activity would then be
prioritized for further testing.
Here, we presented a comparison of the AR pathway model

integrating 11 HTS assays and the existing in vitro AR binding
assay in the U.S. EPA EDSP Tier 1 battery. The overall summary
of the comparison between the model and the Tier 1 AR binding
assay is that the model correctly identifies binders with potency
in the tested range (IC50 under 100 μM) but yields a significant
number of false positives, especially as putative antagonists.
However, most of these are identified as false positives using a
combination of the antagonist confirmation assay and examina-
tion of assay interference channels. Finally, the model provides
evidence in contradiction to the ICCVAM designations for at
least four chemicals (17a-estradiol, 4-cumylphenol, apigenin, and

bisphenol B), which should prompt further investigation. Further
comparison with U.S. EPA EDSP Tier 1 results, including the in
vivo Hershberger assay37 for AR agonists and antagonists, may
help in understanding the relative performance of the AR
pathway model based on ToxCast and Tox21 assays. Like the ER
model,8 it appears the AR pathway model is more sensitive and
also more quantitative than the EDSP Tier 1 assays based on the
diversity of the 11 HTS assays and the computational network
that integrates those data. The model and associated assays cover
a broader range of biological processes than the Tier 1 binding
assay and therefore yield a stronger weight of evidence for true
AR agonist or antagonist activity.
Limitations of this model, and most HTS-based approaches,

include the lack of or limited metabolic capacity of the systems
and the restriction to chemicals that are DMSO soluble. There is
a current challenge for the scientific community to tackle the
issue of incorporat ing metabol i sm (http://www.
transformtoxtesting.com/), and structure-based models are
under development to identify chemicals predicted to undergo
transformation to more bioactive metabolites. Future plans also
include expanding chemical testing to a water-soluble library.
Further, although the HTS results and computational model
predictions have demonstrated the ability to effectively prioritize
environmental compounds for endocrine disrupting potential,
they should be integrated with exposure estimates for decision
making in a risk assessment framework.9,38,39

For ultimately interpreting AR pathway activity and other
mechanistic events in a biological framework that includes
potentially adverse in vivo outcomes, efforts are underway to
establish reference chemicals for additional end points and map
these to adverse outcome pathways. It is important to note that
the reference chemicals presented here are for agonist or
antagonist behavior mediated through the AR, and some
chemicals may have other endocrine relevant effects via pathways
such as steroidogenesis. Following the example of the
uterotrophic database,17 work is ongoing to compile in vivo
androgen and antiandrogen data from the U.S. EPA EDSP Tier 1
Hershberger assay.37 Experimental reverse toxicokinetic meas-
urements are being used to parametrize models for in vitro-to-in
vivo extrapolation to facilitate a direct comparison to
demonstrated effects in vivo and administered doses.40−44

These efforts can be used to validate additional high-throughput
in vitro assays, and for some chemical classes, integration of HTS
assays and computational models may be adequate to predict
more apical developmental and reproductive effects.

■ CONCLUSIONS
We have compiled a database of literature results that includes a
wide array of AR binding and transactivation data and used it to
characterize a range of potential AR agonist and antagonist
reference chemicals. The proposed reference chemical lists and
associated potency categories can be used for current and future
test method evaluations and will be submitted to OECD via the
Validation Management Group−Non-Animal to facilitate
international harmonization. The AR pathway model based on
results from 11 Tox21/ToxCast HTS assays was validated
against this independently curated set of reference chemicals and
shown to be over 95% accurate for predicting both AR agonism
and antagonism. The Tox21 confirmation assay data assisted in
identifying chemicals that exhibited a shift in potency indicative
of a true AR antagonist response and can be combined with
cytotoxicity information to contextualize the AR pathway model
results. A number of environmental chemicals were identified as
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potential AR antagonists, with varying degrees of confidence, and
should be examined in the context of human and environmental
exposures, metabolism, and persistence to characterize the risk of
endocrine disruption and adverse outcomes in humans or
wildlife.
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