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Abstract

Inall eukaryotic speciesexamined,meiotic recombination,andcrossovers inparticular,occurnon-randomlyalongchromosomes.The

cause for this non-random distribution remains poorly understood but some specific DNA sequence motifs have been shown to be

enriched near crossover hotspots in a number of species. We present analyses using machine learning algorithms to investigate

whether DNA motif distribution across the genome can be used to predict crossover variation in Drosophila melanogaster, a species

without hotspots. Our study exposes a combinatorial non-linear influence of motif presence able to account for a significant fraction

of thegenome-widevariation incrossover ratesatallgenomicscales investigated, from20%at5-kbtoalmost70%at2,500-kbscale.

The models are particularly predictive for regions with the highest and lowest crossover rates and remain highly informative after

removing sub-telomeric and -centromeric regions known to have strongly reduced crossover rates. Transcriptional activity during

early meiosis and differences in motif use between autosomes and the X chromosome add to the predictive power of the models.

Moreover, we show that population-specific differences in crossover rates can be partly explained by differences in motif presence.

Our results suggest that crossover distribution in Drosophila is influenced by both meiosis-specific chromatin dynamics and very local

constitutive open chromatin associated with DNA motifs that prevent nucleosome stabilization. These findings provide new infor-

mation on the genetic factors influencing variation in recombination rates and a baseline to studyepigenetic mechanisms responsible

for plastic recombination as response to different biotic and abiotic conditions and stresses.

Key words: Key Words: recombination, double strand break, DNA motif analysis, machine-learning algorithms.

Introduction

Meiosis is a pervasive process among eukaryotes and the mei-

otic machinery is heavily conserved (Keeney 2001). Yet the

rate of meiotic recombination, and crossover in particular, ex-

hibits an astounding degree of variation across genomes as

well as between closely related species, populations of the

same species, and even among individuals of the same pop-

ulation (Neel 1941; Parsons 1988; Kim et al. 2007; Coop et al.

2008; Kulathinal et al. 2008; Mancera et al. 2008; Kong et al.

2010; Dumont et al. 2011; Fledel-Alon et al. 2011; Ross et al.

2011; Smukowski and Noor 2011; Comeron et al. 2012;

McGaugh et al. 2012; Miller et al. 2012; Singh et al. 2013;

Gossmann et al. 2014; Liu et al. 2015). Moreover, both the

overall number of crossovers and their distribution across ge-

nomes are affected by other factors such as age, temperature,

food, and stressors, indicating that a precise description of

crossover distribution requires characterizing genetic and epi-

genetic factors (Stern 1926; Neel 1941; Redfield 1966; Brooks

1988; Parsons 1988; Kong et al. 2002; Hussin et al. 2011;

Singh et al. 2015).

To gain insight into the factors involved in crossover local-

ization much attention has been given to short DNA sequence

motifs near crossovers. Computational analyses of high-reso-

lution crossover maps can identify specific motifs enriched at

hotspot regions, but analyses of motif presence are rarely pre-

dictive enough to forecast patterns of crossover variation at a

whole-genome scale. One of these cases is the 13-mer DNA

motif recognized by the histone methyltransferase PRDM9 in

humans and mice, with PRDM9 promoting histone methyla-

tion and meiotic crossover around the motif (Baudat et al.

2010; Parvanov et al. 2010; Billings et al. 2013). The

PRDM9-associated motif is very highly significantly enriched
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near human crossovers, being present in approximately

40–60% of crossover hotspots (Myers et al. 2008; Hinch,

et al. 2011). The reverse is much less often true: the presence

of the PRDM9-associated motif is not a strong predictor of

crossover distribution across the genome (Ségurel et al. 2011).

A recent analysis across the ape phylogeny supports this con-

clusion, with enrichment of putative PRDM9 binding in recom-

bination hotspot regions but no association between PRDM9

presence and local increases in recombination rates when

measured broadly across the genome (Stevison et al.

2015). An equivalent case is observed in the yeast

Schizosaccharomyces pombe where motifs enriched near

some hotspots are, nonetheless, very poor predictors of hot-

spot localization genome-wide (Fowler et al. 2014).

In Drosophila, high-resolution recombination maps have

revealed that crossover rates can vary 20- to 40-fold across

genomic regions traditionally assumed to exhibit limited vari-

ation in recombination rates (Kulathinal et al. 2008; Comeron

et al. 2012; McGaugh et al. 2012; Miller et al. 2012; Singh

et al. 2013). These studies describe peaks of crossover rates

across Drosophila genomes that are far less extreme and phys-

ically discrete than in species with more traditional hotspots,

where crossover rates are >100-fold higher than in adjacent

regions (Ségurel et al. 2011). Moreover, Drosophila species,

like other species including some placental mammals, do not

have functional PRDM9 orthologs (Oliver et al. 2009; Parvanov

et al. 2010; Muñoz-Fuentes et al. 2011; Heil and Noor 2012).

Predictably, the 13-mer motif associated with human hotspots

that is recognized by PRDM9 is not observed near crossover

events in Drosophila (Comeron et al. 2012; Heil and Noor

2012). In fact, sequence analyses in Drosophila melanogaster

have identified not one but many DNA motifs significantly

enriched near crossover events (Comeron et al. 2012; Miller

et al. 2012; Singh et al. 2013). Combined, current data sug-

gest that Drosophila has no traditional hotspots and we hy-

pothesized that crossover-associated DNA motifs could be

more evolutionary stable than in primates where hotspots

become inactive relatively young (Coop and Myers 2007).

Here, we investigated whether the genomic distribution of

specific DNA motifs has predictive power in describing cross-

over landscapes across the genome of D. melanogaster. The

motifs under study were recently identified as motifs enriched

near crossover sites through analysis of experimentally geno-

typed recombinant offspring (Comeron et al. 2012). We have

now generated genome-wide landscapes of motif presence

taking into account the probabilistic nature of motif se-

quences, background composition and a FDR-based

genome-wide motif detection approach. We have also ob-

tained genome-wide landscapes of crossover rates based on

population patterns of linkage disequilibrium (LD) in two D.

melanogaster natural populations (Chan et al. 2012).

Importantly, these LD-based landscapes of crossover rates

are completely independent from the data used to identify

the DNA motifs, thus allowing for an unbiased evaluation of

a potential association of motif distribution with crossover

landscapes.

We show that the variable presence of multiple motifs

across the genome generate non-linear quantitative models

that explain a significant fraction of the genome-wide varia-

tion in crossover rates at all genomic scales investigated, from

20% at 5-kb to almost 70% at 2,500-kb scale. Also across all

scales analyzed, the models are particularly accurate at detect-

ing the genomic regions with the highest and lowest 10%

crossover rates. Interestingly, these models remain highly pre-

dictive of crossover rate variation after removing sub-telomeric

and -centromeric regions known to have strongly reduced

crossover rates, and predict minimal levels of crossover

across the dot (fourth) chromosome, which is known to be

achiasmatic in Drosophila female meioses. Moreover, we

report that the effect of motif presence on crossover rates

differs between autosomal arms and the X chromosome,

and show that transcriptional activity during early meiosis

adds predictive power to the models thus explicitly including

a potential mechanistic explanation to the known plasticity in

recombination rates. Finally, we show that the most informa-

tive motifs predicting high crossover rates share properties

associated with highly localized genomic regions depleted of

nucleosomes.

Results

Genome-Wide Landscapes of DNA Motifs

The study of almost 2,000 crossover events mapped with

high-resolution in D. melanogaster uncovered many DNA

motifs enriched within the 500-bp sequence encompassing

these crossover events (Comeron et al. 2012). These motifs,

therefore, were localized to less than 1% of the genome. To

generate landscapes of motif presence across the whole

genome, we used the position probability matrix (PPM) of

these motifs and took into account the numerous false posi-

tives expected in any large-scale genomic study as well as

background nucleotide composition (see “Methods” section

for details). Unless otherwise indicated, we focused on the 12

motifs present more than 1,000 times genome-wide once a

1% false discovery rate (FDR) correction is applied (see sup-

plementary table S1 and fig. S1, Supplementary Material

online for motif sequences). Motif presence ranges up to

over 18,000 motif hits (M5) and highlights the need for cau-

tion when interpreting the biological relevance of individual

motifs at specific genomic locations, even when FDR is set to

1%. At first glance, several motifs show variation in their dis-

tribution on a chromosome scale that visually follows the tra-

ditional distribution of crossover rate variation in D.

melanogaster (fig. 1), with motif presence reduced near cen-

tromeric and, to a lesser degree, telomeric regions (Morton

et al. 1976; Lindsley and Zimm 1992; Fiston-Lavier et al. 2010;

Comeron et al. 2012; Miller et al. 2012).
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Motif Presence Is Correlated with Crossover Rates across
the Genome

To study genome-wide associations between variation in

motif presence and crossover rates, we obtained estimates

of crossover rates that are independent of the experimental

genetic map used to find the initial motifs thus preventing any

circularity. We used LDhelmet (Chan et al. 2012), a method

that generates high-resolution population estimates of cross-

over rate (rLD) across the genome based on patterns of nu-

cleotide polymorphism and LD. LDhelmet was applied to the

D. melanogaster African Rwanda (RG) population [(Pool et al.

2012; Lack et al. 2015); see “Methods” setcion for details]

because this population shows very low levels of admixture

and is from the sub-Saharan ancestral range of D. melanoga-

ster, which minimizes the non-equilibrium effects caused by

recent expansion observed in western Africa and non-African

populations (Pool et al. 2012; Lack et al. 2015). To investigate

potential intraspecific variation in the distribution of motifs

and/or crossover rates, we applied LDhelmet to the D. mela-

nogaster African Zambia (ZI) population, which also shows

low levels of admixture (Pool et al. 2012; Lack et al. 2015).

Unless noted, analyses are reported using LD-based crossover

estimates rLD and motif distribution for the RG population at

100-kb scale.

The direct comparison of rLD and motif presence at 100-kb

scale shows positive associations for all 12 motifs analyzed

(P< 1 � 10�6), with Spearman’s rs
2 higher than 0.10 (P< 5

� 10�31) for eight motifs (fig. 2 and supplementary fig. S1,

Supplementary Material online). We also observe that some

motifs show clear differences among chromosome arms in

terms of association with rLD (fig. 2 and supplementary fig.

S2, Supplementary Material online ). Variation in M7 presence

shows a very strong association with rLD along the X chromo-

some (Spearman’s rs
2=0.24, P = 4.1 � 10�15) whereas it

shows no association along autosomal arms (P>0.1 in all

autosomal arms). A similar tendency can be seen for motifs

M11 and M12 that also contain [TA]n repeats. M2, on the

other hand, shows a positive association with rLD along all

four autosomal arms but not in the X chromosome. These

differences are unlikely to be caused by differences in statisti-

cal power alone, as M2 is more frequently observed on the X

chromosome than on autosomes (average presence per

100 kb is 16.4 and 8.5 for the X and autosomes, respectively).

Although some motifs (e.g. M1, M4, M5, and M6) show di-

verse degrees of association with rLD among autosomal arms,

the difference in potential effects of motif presence on cross-

over localization seems to be mostly influenced by a

FIG. 1.—Genomic landscape of motifs. Number of motifs per 100-kb for motif 3 (M3 in blue; [A]n) and motif 4 (M4 in red; [CA]n) across autosomal arms

2L, 2R, 3L, 3R and the X chromosome (see supplementary fig. S1 for motif sequence information). Presence shown after applying a 1% FDR (see “Methods”

section).
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FIG. 2.—Probability heatmap of correlation between presence of in-

dividual motifs and crossover rates rLD. P-values of non-parametric corre-

lation (Spearman’s rs) of motif presence and LD-based crossover rates rLD

calculated genome-wide and for each chromosome arm. Only motifs

showing correlations with P< 0.01 in genome-wide analyses are shown.

Motifs are ordered based on Spearman’s correlation across the genome,

with M5 (Spearman’s rs
2=0.237, P =1 � 10�71) showing the strongest

correlation.
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dichotomy between autosomal arms and the X chromosome

(see below).

To obtain an initial model that considers multiple motifs to

explain crossover distribution, we first performed Least

Absolute Shrinkage and Selection Operator (LASSO) regres-

sion (see “Methods” section for details) (Tibshirani 1996;

Hastie et al. 2009). LASSO regression is a technique that

favors solutions with fewer parameter values under a linear

model, simultaneously performing variable selection and sim-

plifying model interpretation. LASSO exposes six heavily

weighted motifs (in order of importance M3, M1, M7, M5,

M6, and M2; supplementary fig. S3, Supplementary Material

online), all positively associated with crossover rates rLD. With

these six motifs, LASSO fits a model of motif presence that

explains more than 20% of the variation in rLD genome-wide

(R2
LASSO = 0.234, P<2.2 � 10�16). Note, however, that non-

parametric Spearman’s correlations between motif presence

and rLD suggest that some individual motifs (e.g. M3 and M5)

explain crossover variation when analyzed independently

almost as much as the more complex linear LASSO model

that includes several motifs (fig. 2 and supplementary fig.

S1, Supplementary Material online). Easing the constraints

of LASSO (�+ 1 S.E; see “Methods” section) allows all 12

motifs under study to enter the model but this highly complex

and likely over-parameterized model exhibits little improve-

ment in overall performance (R2
LASSO= 0.252, P< 2.2 �

10�16).

Predictive Models of Variation in Crossover Rates across
the Genome Based on Motif Presence

We applied two machine learning methods to investigate

models of crossover rate variation using motif distribution as

continuous predictors. We first used Random Forests (RF)

(Breiman 2001; Lee et al. 2005; Banfield et al. 2007) as a

form of supervised learning to discriminate between genomic

regions (classes) with different crossover rates, particularly be-

tween low and high rates. We later constructed a quantitative

predictive model using Multivariate Adaptive Regression

Splines (MARS) (Friedman 1991; Friedman and Roosen

1995; Hastie et al. 2009) (see “Methods” section for details).

MARS is an approach that allows multiple interactions among

motifs and non-linear effects thus potentially capturing satu-

ration/insensitivity and cooperative action of different motifs

when describing crossover rates. Importantly, MARS allows

obtaining a final explicit and continuous model of crossover

rates based on the combined presence of multiple motifs.

Random Forests (RF) Categorical Modeling

We split all 100-kb regions into ten approximately equally

sized bins, from the lowest (class A) to highest (class J) 10%

rLD, and applied random forests (RF) to classify crossover clas-

ses using a 10-fold cross-validation approach (see “Methods”

section). The correctness of the RF models is measured by

accuracy (true positive rate) and the area under the curve

(AUC) that indicates the ability of the model to discriminate

between the different classes, with AUC scores ranging from

0.5 (indicating that a model has no discriminatory ability) to 1

(indicating that the model can discriminate perfectly among all

classes). Note that RF does not directly generate probability

values associated with the whole model. We, therefore, ob-

tained the statistical significance of RF models by comparing

the accuracy and AUC generated by the model and the accu-

racy and AUC generated by RF when estimates of rLD are

randomized among 100-kb regions (250,000 randomizations

per model).

Using the ten rLD classes as our class variables, we applied

RF with motif distribution across the genome as continuous

predictors to later add transcription data and chromosome

arm. Genome-wide, motif distribution allows RF to generate

a model with an accuracy of 23.1% (vs. a random expectation

of 10%, P< 3 � 10�6) and a mean AUC = 0.644 (P< 3 �

10�6). Although this RF model includes all 12 motifs with

significant effects on the model, the six more important

motifs based on information gain (M5, M4, M3, M1, M2,

and M7) can explain more than 85% of the model. Overall,

the model performs fundamentally well for the top and

bottom classes (fig. 3A), with accuracy of 78.0 and 56.3%,

respectively (more than 5-fold enriched, P< 3� 10�6, in both

cases). Enrichment based on AUC shows an equivalent pat-

tern, with AUC of 0.876 and 0.814 for the top and bottom

10% classes, respectively (P<3 � 10�6 in both cases). This

study of motif presence correctly classifies rLD class within one

step of their true class 44% of the time, indicating that when

our model fails to accurately predict a class, it often falls into

the adjacent bin.

A RF model with motif distribution and information on

transcribed genes during early meiosis (Adrian and Comeron

2013) increases the genome-wide accuracy to 24.4% and

AUC to 0.678 (P<3 � 10�6 in both cases), whereas motifs,

transcription data and chromosome arm information generate

an improved model with accuracy and AUC of 27% and

0.727, respectively (P< 3 � 10�6 in both cases). In contrast,

genomic properties such as the number of annotated genes or

proportion of exonic sequence in each window do not signif-

icantly affect model accuracy (data not shown) and these var-

iables are never within the top ten variables in term of

importance within the model. Similarly, GC content per

window is neither ranked highly by information gain criteria

nor does it have a substantial impact on classification

accuracy.

The application of RF to each chromosomal arm separately

reveals that the models are much more accurate predicting

rLD variation for the X chromosome (51.8% accuracy, a 5-fold

enrichment relative to random expectations) than for autoso-

mal arms (21.0% with accuracy, ranging between 16.5% for

2L and 24.5% for 3L) (fig. 3B). An equivalent conclusion is

obtained based on AUC, with AUC of 0.68 for the X

Adrian et al. GBE
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chromosome whereas AUC ranges between 0.51 (2L and 2R)

and 0.62 (3L) for autosomes. In agreement with our initial

analyses, RF also indicates that the influence of some motifs

on crossover distribution is not equivalent genome-wide. M5

and M7 are more important motifs in the RF model for the X

chromosome (combining 33% of the relative importance of

all motifs) than in the model for autosomes (combining 18%

of the relative importance). Conversely, M4 and M2 are

ranked lower in models for the X chromosome than in

models describing crossover across autosomes (14 and 28%

of the relative importance of all motifs, respectively). To fur-

ther test the difference between the X chromosome and au-

tosomes we applied RF using data from individual

chromosomal arms as a training set and tested the accuracy

of the model describing crossover rates along other chromo-

somal arms (see “Methods” section). The results of this anal-

ysis evidence that autosomal arms are worse at predicting rLD

along the X chromosome than along other autosomal arms

(fig. 3B). Equivalently, the use of X chromosome data as train-

ing set generates models of rLD variation along autosomes

with an average accuracy of only 14.8%.

MARS Modeling

We used the 10-fold cross-validation approach (see

“Methods” section for details) and evaluated the quality of

MARS models focusing on R2
CV scores (the MARS estimate of

how well this model would perform on new data when using

the 10-fold cross-validation approach; see “Methods” sec-

tion). The simplest model that considers only the variable pres-

ence of motifs across the genome is able to explain ~50%

(R2
CV = 0.501) of the genome-wide variation in rLD (fig. 4 and

supplementary table S2, Supplementary Material online). This

predictive model improves even further when including infor-

mation on transcription (R2
CV = 0.512) or chromosome arm

(R2
CV = 0.540).

The most complete MARS model, which includes motif pres-

ence, transcription data and chromosome arms, explains 57%

(R2
CV =0.569) of the variation in crossover genome-wide. This

most complex model identifies chromosome arm, number of

actively transcribed genes and seven motifs as significantly im-

portant within the model (M5, M3, M4, M7, M2, M12, and

M10), several of which exhibit non-linear effects on crossover

rates (fig. 4B and C). Note that MARS estimates based on less

conservative methods such as the legacy mode (R2
Legacy) would

imply an even higher influence of motif presence on rLD

(R2
Legacy values always larger than R2

CV; supplementary table

S2, Supplementary Material online) but caution should be ap-

plied to the interpretation of these high estimates due to over-

fitting (see “Methods” section).

Putative Influence of the Method to Estimate Crossover
Rates

Supplementary figure S1, Supplementary Material online

shows Spearman’s correlation between motif distribution

and crossover rates across the genome based on either pop-

ulation estimates (rLD) or from direct genotyping of offspring

[i.e., experimentally identified crossovers; (Comeron et al.

2012)]. We observe that all 12 DNA motifs show significant

correlations between presence across the genome and exper-

imentally generated crossover landscapes, with the highest

Spearman’s rs
2 of 0.176 for M3 (P = 7 � 10�52) at 100-kb

scale. Additionally, MARS modeling shows an important pre-

dictive power of motifs explaining these crossover rates

genome-wide (R2
CV ranging between 0.263 and 0.304).

These data show that the observed significant contribution

of motif distribution to variation in crossover rates across the

genome is not exclusive to using rLD. However, we also detect

that the predictive power is higher when using population

estimates rLD and motif distribution from the same population

than when using crossover rates estimated experimentally and

motifs from either RG or ZI population (or reference genome).

This difference can be interpreted as consequence of the ad-

mixed source of strains used to generate a recombination map

for the D. melanogaster species and/or the environmental

80%A
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20%

40%

60%

Crossover class

0%
A B C D E F G H I J

50%

60% A tes�ng
X tes�ng
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20%

30%
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0%
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FIG. 3.—Random Forest (RF) models. A) Accuracy (true positive rate) is

given for 10 crossover classes, from class A (regions with lowest 10%

crossover rate rLD) to class J (regions with highest 10% crossover rate

rLD). Random accuracy (uninformative model) per class is 10% (horizontal

dashed line). The model tested utilizes all 12 motifs to predict crossover

classes (see “Methods” section for details). B) Accuracy when the model is

trained with data from one autosomal arm and applied to either other

autosomal arms or to the X chromosome (left) as testing set, or trained

with data from the X chromosome and applied to either autosomal arms

or to the X chromosome (right).
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conditions when obtaining recombinants and associated epi-

genetic factors influencing crossover distribution.

Alternatively, one could argue that the difference between

experimental and LD-based crossover landscapes exposes

biases in LDhelmet when generating rLD. In Drosophila,

where males do not recombine, rLD is formally equal to 2

Ne r, where Ne is the effective population size and r is the

rate of crossover per bp and generation in females (see

“Methods” section for details). Variation in rLD could then

reflect differences in Ne, additional to (or rather than) differ-

ences in r, due to demographic events or the interplay be-

tween selection and linkage (Wright 1938; Hill and

Robertson 1966; Smith and Haigh 1974; Slatkin and

Hudson 1991; Charlesworth et al. 1993; Gillespie 2000;

Sella et al. 2009; Cutter and Payseur 2013; Charlesworth

and Campos 2014; Comeron 2014). Chan et al. (2012)

showed that LDhelmet generates estimates of rLD that are

good estimators of r under several demographic and selective

conditions, although complex adaptive selective scenarios

cause more noise in the estimates of rLD and could, poten-

tially, affect rLD differentially across the genome. To investi-

gate this possibility, we focused on the ratio of rLD (2 Ne r) to

the amount of silent nucleotide polymorphism (psil), which is

also proportional to Ne (psil = 4Ne� for autosomes and 3Ne�

for the X, where � is the mutation rate per bp and genera-

tion). We show that the correlation between motif presence

and rLD/psil (which is independent of Ne) is equivalent to that

observed when using rLD, and this is the case at different

genomic scales (supplementary table S3, Supplementary

Material online). RF based on motif distribution generates

models with 22.9% accuracy (AUC of 0.638) when assigning

regions to their corresponding decile rLD/psil class, with accu-

racy for the top and bottom 10% classes of 83.2 and 55.5%,

respectively, thus with all results virtually equivalent to those

obtained when using rLD. Also equivalent is the increased

accuracy (25.1%) and AUC (0.707) when including chromo-

some arm as variable. Furthermore, MARS generates models

that explain as much of the variance in rLD/psil across the

genome as the models for rLD, with R2
CV ranging between

0.513 (models using only motifs distribution) and 0.583 (when

also including transcription and chromosome data) for analy-

ses at 100-kb scale. Combined, these data indicate that our

results and conclusions supporting a strong role of motifs in

crossover distribution are unlikely to be caused by the use of

rLD.

The Centromere-Effect

In D. melanogaster, crossover frequency is severely reduced in

euchromatic regions near centromeres and, to a lesser degree,

near telomeres [the so-called “centromere effect” (Beadle

1932)]. Crossover in these large sub-centromeric and telo-

meric regions is likely influenced by mechanisms at least par-

tially different to those acting along the central regions of
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FIG. 4.—MARS predictive models of crossover rates. (A) Estimates of

the predictive power of MARS models (R2
GCV) based on the presence of

motifs across the genome, transcription data during early meiosis, and/or

chromosome arms as predictive variables. Results shown for genome-wide

analyses (red) and for trimmed (after removing sub-telomeric and -centro-

meric regions) genome (blue). (B) Relationship between crossover rates

obtained from population genetic analyses of linkage disequilibrium

(x-axis) and those predicted based on a MARS model (y-axis) including

motif, transcription and chromosome arm data. The unit of crossover

rate is rLD (rLD = 2 Ne r), where Ne is the effective population size and r

is the rate of crossover per bp and generation in females (Chan et al.

2012). C) Examples of the linear and non-linear influence of motif pres-

ence on crossover rates. All results are shown for analyses of the RG

population at 100-kb scale.
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chromosomal arms. In agreement, RF assigns all 100-kb re-

gions correctly to their corresponding decile class (the majority

of which are class A or B), and MARS models generate pre-

dictions of rLD for these sub-centromeric and telomeric re-

gions that are significantly lower than the rest of the

euchromatic genome (Mann–Whitney U Test, P<1 �

10�16). We, then, investigated whether motif distribution is

also informative predicting variation in rLD after removing sub-

centromeric and -telomeric regions (i.e., trimmed genome)

from the study (fig. 4A; see “Methods” section for details).

RF across the trimmed genome shows 26.0% accuracy and

0.656 AUC. MARS generates models with R2
CV of 0.482 (only

motif presence) and 0.517 (motifs + chromosome arms + tran-

scription activity during early meiosis), respectively. These re-

sults evidence that variation in motif distribution maintains

significant power explaining variation in crossover rates

beyond the centromere effect.

The Achiasmate Fourth Chromosome

The fourth (or dot) chromosome in D. melanogaster repre-

sents approximately 3.5% of the genome, consists of inter-

spersed heterochromatic and euchromatic DNA (Sun et al.

2000), and does not experience crossing over (Hochman

1973). We asked whether our models based on DNA motif

presence predict low or no crossover along this chromosome

by applying RF and MARS models that were trained on

genome data that did not contain the fourth chromosome

and then tested these models with the fourth chromosome.

RF correctly classifies all thirteen 100-kb intervals of the fourth

chromosome as belonging to class A, the lowest 10% rLD

genome-wide. The application of MARS modeling using

motif presence generates predictions of rLD for these thirteen

100-kb intervals that are significantly lower than the rest of

the genome (Mann–Whitney U Test, P = 0.0022).

Influence of Genomic Scale on the Association between
Motif Presence and Crossover Rates

To investigate whether the influence of motif presence on rLD

is scale-specific, we generated data at nine different genomic

scales, from fine (5-kb) to broad (2,500-kb) non-overlapping

intervals across the whole genome. Figure 5 shows

Spearman’s rs correlations and corresponding probability

values for each of the 12 motifs analyzed at these different

scales. At the finest scale of 5-kb, all motifs show a highly

significant correlation between motif presence and rLD

(from P = 3 � 10�11 for M12 to P< 1 � 10�300 for M5),

with Spearman’s rs ranging between 0.043 (M12) and 0.31

(M5). Motifs show increasing rs with successively broader

scales (with the only exceptions of M4 and M7 at or above

1,000-kb). Note, however, that there is a reduction in statis-

tical significance with broader scales, at least in part expected

due to the smaller number of intervals investigated, and four

motifs (M7, M8, M11, and M12) show non-significant corre-

lations with crossover at 2,500-kb scale. The application of

RF and MARS at these different genomic scales shows equiv-

alent patterns (fig. 6). There is a tendency for increased pre-

dictive power (accuracy in RF and R2
CV in MARS models) with

successively broader scales between 5- and 1,000-kb, where-

as RF shows a clear reduction in accuracy above the 1,000-kb

scale evidencing the influence of larger chromosomal

properties.
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Intra-Specific Variation in Motif Presence and Crossover
Rates

In many species, including D. melanogaster, crossover rates

are known to vary among individuals of the same species in

terms of total rates as well as for crossover distribution along

chromosomes (Brooks and Marks 1986; Neumann and

Jeffreys 2006; Graffelman et al. 2007; Coop et al. 2008;

Dumont et al. 2009; Kong et al. 2010; Comeron et al.

2012; Miller et al. 2012; Bauer et al. 2013; Hunter et al.

2016). All our previous analyses focused on motif presence

calculated across the genomes of individuals of the African D.

melanogaster RG population and estimates of crossover rates

rLD for this same population. Analyses based on motif pres-

ence and estimates of rLD using the Zambia (ZI) population

generate similar conclusions (supplementary fig. S1 and Table

S2, Supplementary Material online), with variation in motif

presence across ZI genomes being able to explain a large frac-

tion of the observed intra-genomic variation in rLD. MARS, for

instance, generates models of rLD variation when studying the

ZI population with higher R2
CV than those obtained from the

study of the RG population (R2
CV>0.59 for analyses at 100-

kb scale, supplementary table S2, Supplementary Material

online).
The comparison of the RG and ZI populations reveals dif-

ferences in rLD landscapes (Spearman’s rs
2=0.52 at 100-kb

scale) as well as differences in motif distribution (Spearman’s

rs
2 ranges between 0.581 for M12 and 0.979 for M4 at 100-

kb scale). To investigate whether inter-population variation in

motif presence plays a role in the difference in crossover land-

scapes, we applied MARS using different source of motif data

and at different genomic scales (fig. 7). MARS models gener-

ate greater R2
CV predicting rLD variation in the RG population

when using motif distribution from this same RG population

than when using motif distribution across genomes of the ZI

population at all scales, most noticeably at 100-kb or finer

scales. The use of motif distribution of the D. melanogaster

reference genome shows even more reduced power forecast-

ing rLD in the RG population, which would be consistent with

its low percentage (9%) of African ancestry (Pool 2015).

Combined, these analyses show that population-specific dif-

ferences in crossover rates can be, to some degree, explained

by population-specific differences in motif presence.

Predictive Motifs, Chromatin Accessibility and
High-Resolution Crossover Rates

Nucleosome-depleted regions (NDR) in both S. pombe and

Saccharomyces cerevisiae are strongly associated with cross-

overs hotspots and local patterns of double-strand break (DSB)

distribution, evidencing an influence of chromatin accessibility

on DSBs (Ohta et al. 1994; Wu and Lichten 1994; Hirota et al.

2007; Berchowitz et al. 2009; de Castro et al. 2012; Yamada

and Ohta 2013). Importantly, however, nucleosome depletion

is not informative enough to describe DSB distribution

genome-wide in these yeast species (de Castro et al. 2012;

Fowler et al. 2014). Most of the motifs with strong influence

on crossover rates genome-wide within our RF and MARS

models contain [CA]n (M1 and M4), short poly-A/T (M3 and

M5) and [AT]n (M7) tracts. All these specific repeats have been

proposed to prevent nucleosome stabilization, potentially in-

creasing highly localized accessibility (Travers 1990; Perez-

Martin and de Lorenzo 1997; Shimizu et al. 2000; Segal

et al. 2006; Struhl and Segal 2013). We, thus, asked whether

these motifs are indeed both enriched in highly accessible

chromatin regions and show higher crossover rates at very

local scale. We argue that, contrary to transcription-associated

NDRs, accessible chromatin due to short sequences that pre-

vent nucleosome stabilization should be constitutive and, as

such, they should be a detectable component in different cells
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types, tissues and developmental stages. Therefore, we used

publicly available high-resolution open chromatin profiles gen-

erated from four D. melanogaster samples, including eye-an-

tennal imaginal discs and three different cell lines (S2, BG3 and

Kc167) [(Kharchenko et al. 2011; Thomas et al. 2011; Davie

et al. 2015); see “Methods” section for details].

We observe that there is a significant enrichment of these

five motifs in open chromatin regions compared with random

expectations in each of the four samples analyzed

(P< 1�10�53 in all cases). This enrichment is particularly ev-

ident for [CA]n-related M1 and M4 motifs (P< 1� 10�110 in

all four samples) and, to a lesser degree, for the short poly-A/T

M5 motif, which shows enrichment in three out of the four

samples (P = 3.4�10�7 in eye-antennal imaginal discs,

P = 6.2� 10� in Kc167 and P = 0.02 in S2). We then investi-

gated crossover rates at the location of these motifs based on

estimates of rLD between informative SNPs encompassing the

motif genomic position (the average distance between infor-

mative SNPs is only 43-bp thus this approach provides a very

local estimates of crossover rates). Crossover rates are signif-

icantly higher at the location of these motifs than expected by

random distribution (fig. 8), and this is the case whether the

three types of motifs ([CA]n, poly-A/T, and [AT]n) are analyzed

combined or separately (P< 1�10�190 in all cases). Finally,

we also report that not all accessible chromatin regions in the

samples investigated are associated with increased crossover

rates. In fact, only accessible regions containing [CA]n, poly-A/

T, and/or [AT]n exhibit significantly increased crossover rates

(P< 1�10�9 in all cases, fig. 8) as expected if they are asso-

ciated with constitutive NDRs and thus relevant for female

meiosis.

Discussion

In our study, we obtained FDR-corrected landscapes of motif

presence across the genome using the likelihood of each k-

mer sequence of nucleotides to correspond to a given position

probability matrix (PPM) and taking into account genome size

and nucleotide composition. The use of a FDR instead of a

direct arbitrary probability is necessary to limit the extent of

false positives and this parameter should be tuned appropri-

ately for each study. We set FDR at 1% because it generates a

FIG. 8.—Boxplots of local crossover rate (rLD) at motifs. Crossover rates estimated by LDhelmet (Chan et al. 2012) between SNPs surrounding the motif

location in the RG population. The average distance between SNPs surrounding motifs in the RG population is 41-bp. Median crossover rates are identified by

the horizontal line inside each box and the length of the box and whiskers indicate 50% and 90% CI, respectively. The horizontal dashed line indicates the

genome-wide median rLD (rLD=0.0225). Asterisks below boxes indicate the probability of having crossover rates compatible with genome-wide estimates.

For analyses of local crossover rates at accessible chromatin regions, rLD was estimated at the center of the region. The study of all accessible chromatin

regions (see “Methods” section) reveals median rLD of 0.0234 at these regions (indistinguishable from genome-wide rates, P>0.50). Asterisks above boxes

of accessible chromatin regions containing specific motifs ([CA]n, short poly-A and/or [TA]n) indicate the probability of having crossover rates compatible with

all accessible chromatin regions.
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large number of motif hits whereas still producing PPMs equiv-

alent to those obtained under the most stringent FDR of

0.1%, thus suggesting that false positives do not seriously

alter motif detection. We also confirmed that a single PPM

per motif is adequate across the whole genome by comparing

the top 50 and bottom 50 recombination-correlated regions

by residual (which followed an approximately normal distribu-

tion). We found no significant differences between PPMs re-

covered from these two classes of regions indicating that a

single PPM per motif can be used at genome-wide scale and

that motif count, rather than motif sequence or quality, is a

more important predictor of crossover in our data once FDR is

applied.

Differences among Chromosome Arms

Our study has exposed that the association between motif

presence and crossover rates differs depending on chromo-

some arm, mostly as a dichotomy between autosomal arms

and the X chromosome. Our results obtained using either rLD

or rLD/psil suggest that different genomic regions may utilize

different combinations of DNA motifs as localizing factors for

crossover formation (and potentially DSBs). Outside of differ-

ential gene expression patterns (Meisel and Connallon 2013;

Llopart 2015) or average rates of crossover in females, it is not

direct how the X chromosome and autosomes could be dif-

ferent in terms of motif utilization for meiotic DSB formation

and resolution as crossovers. At this time, we hypothesize that

such a potential mechanistic link could be associated with

differences in chromatin exposure and transcription during

early female meiosis (Adrian and Comeron 2013) and/or

spatio-temporal compartmentalization of chromosome arms

within the nucleus (Parvinen and Soderstrom 1976; Koszul

et al. 2008; Shibuya et al. 2014) during early female meiosis.

At a more practical level, our results also indicate that analyses

of motif occurrence based on a single genomic region or chro-

mosome may not be necessarily applicable genome-wide,

thus explaining differences in motif detection among studies.

Crossover Localization across the Genome

Based on the knowledge obtained from this study and others,

a general model is emerging where crossover distribution is

determined by a combination of factors acting hierarchically at

different physical scales, including motifs, transcription, and

chromatin structures (Petes 2001; Kleckner 2006; Pan and

Keeney 2007; Pan et al. 2011; Adrian and Comeron 2013;

Borde and de Massy 2013; Smukowski Heil et al. 2015). In D.

melanogaster, the centromere effect describes variation in

crossover distribution at the largest scale (hundreds of kb),

with a severe reduction in crossover rates at sub-centro-

meric/telomeric regions (Beadle 1932). We observe that re-

gions proximal to telomeric and centromeric regions have

fewer motifs positively associated with crossovers. Because

crossovers near centromeres increase the probability of non-

disjunction events at the second meiotic division (Koehler et al.

1996), it is tempting to speculate that natural selection may

have played a role in the observed paucity of recombinogenic

motifs in such genomic regions. Combined, our results indi-

cate that the centromere-effect observed today in D. melano-

gaster may be the consequence of both direct mechanistic

explanations as well as long-term evolutionary forces that

have reduced the presence of crossover-associated motifs in

these regions.

High-resolution crossover maps in a number of species (in-

cluding D. melanogaster, S. cerevisiae, S. pombe, Plasmodium

falciparum or Apis mellifera) have exposed multiple motifs sig-

nificantly enriched near crossovers (Gerton et al. 2000; Cromie

et al. 2007; Steiner et al. 2009; Jiang et al. 2011; Bessoltane

et al. 2012; Comeron et al. 2012; Singh et al. 2013; Liu et al.

2015). Here, we have showed that variation in the presence of

several motifs is in fact predictive of a significant fraction of

the observed variation in crossover distribution across the

genome of D. melanogaster, where traditional hotspots

have not been detected, even after removing regions near

centromeres and telomeres. Moreover, our study suggests

that the difference in motif landscapes between populations

may be associated with the observed difference in crossover

landscapes between these populations, therefore exposing an

important genetic component responsible for (or associated

with) variation and evolution of recombination landscapes.

Additionally, we observe that this influence of motif distribu-

tion on differences in crossover rates between populations is

most evident at small scale (�250-kb), thus potentially being

an unappreciated aspect of the dichotomy between evolu-

tionary conservation of recombination landscapes at very

broad genomic scales and highly variable crossover rates at

finer scales (Myers et al. 2005; Coop and Przeworski 2007;

Coop et al. 2008; Smukowski and Noor 2011; Comeron et al.

2012; Smukowski Heil et al. 2015).

Individually, the motifs with the strongest effect could ex-

plain up to 24% (figs. 2 and 5 and supplementary fig. S1,

Supplementary Material online) of the variance in crossover

rates genome-wide when analyzing the RG population at the

100-kb scale (30% for the ZI population). Standard multiple

linear and the more complex LASSO linear regression analyses

generate models with little or no additional advantages when

describing the observed variance in crossover rates across the

genome. The application of more advanced techniques, how-

ever, exposes increased predictive power to describe crossover

distribution when multiple motif variables are considered

without the constraints of linear models. Our study shows

that RF modeling is particularly accurate at predicting regions

with the highest and lowest 10% crossover rates, and reliably

predicts minimal crossover across the fourth chromosome

based on motif distribution alone. The continuous models

generated by MARS, on the other hand, are able to account

for a large fraction of the variance in crossover rates across the

D. melanogaster genome and identify significant interactions
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among motifs. We also show that variables describing tran-

scriptional activity across the genome during early meiosis

and, more unexpectedly, chromosome arm add to the predic-

tive power of the models. Notably, the influence of motif

distribution on crossover rates is detected at all genomic

scales analyzed (from 5- to 2,500-kb) although it is most sig-

nificant at or below the 1,000-kb scale.

Open Chromatin Sites

Several of the motifs with the strongest association with cross-

over rates share an enrichment of [CA]n, short poly-A/T and

[AT]n tracts. Gel-mobility and X-ray crystallographic studies

have shown that repeated instances of A/T tracts produce a

non-canonical bend in the DNA helix axis, with the in-phase

repetition of these elements contributing to larger overall

bends (Travers 1990; Dlakic and Harrington 1998; Hizver

et al. 2001). Such unusual DNA conformation of poly-A/T

tracts and other AA/TT/AT repeats is a significant factor alter-

ing protein-DNA binding specificities, prevents nucleosome

formation and stabilization and can, ultimately, increase ac-

cessibility (Travers 1990; Perez-Martin and de Lorenzo 1997;

Shimizu et al. 2000; Segal et al. 2006; Struhl and Segal 2013).

The signal associated with [CA]n motifs across the D. melano-

gaster genome is also interesting because these motifs are

markers for Z-DNA regions which are not easily wrapped

into nucleosomes (Garner and Felsenfeld 1987; Herbert and

Rich 1996).

In this study, we have showed that in D. melanogaster

[CA]n, short poly-A/T tracts and [TA]n motifs are both en-

riched in open chromatin regions and show higher crossover

rates than expected. Our results in Drosophila at a genome-

wide scale, therefore, parallel those in yeast hotspots, where

short poly-A/T and [CA]n tracts are also significantly enriched

(Treco and Arnheim 1986; Mancera et al. 2008; Fowler et al.

2014). Worth mentioning, the association between A/T rich

motifs and crossovers is motif-specific and not a consequence

of variation in large-scale nucleotide composition because

there is only a nominal and negative effect of overall nucleo-

tide A + T content on the distribution of crossover rates

[Spearman’s rs =�0.057 (P = 0.006) at 100-kb scale

(Comeron et al. 2012)]. Combined, our data strongly suggest

that meiotic crossover localization in Drosophila is influenced

by both chromatin dynamics associated with transcription and

DNA motifs that cause constitutive open chromatin through

unusual secondary and tertiary DNA structures at least partly

independent of transcription, in qualitative agreement with

data from S. cerevisiae (Berchowitz et al. 2009).

Nevertheless, additional work is required in Drosophila to char-

acterize nucleosome dynamics and/or higher-order chromatin

domains specific to female early meiosis stages to fully ascer-

tain similarities and differences between species (Ohta et al.

1994; Wu and Lichten 1994; Fan and Petes 1996; Mirouze

et al. 2012; Yelina et al. 2012; Adrian and Comeron 2013;

Soriano et al. 2013; Aymard et al. 2014).

Conclusions

Our results show that the presence of specific DNA motifs that

prevent nucleosome stabilization add an important layer of

information when considering genomic landscapes of cross-

over in Drosophila, likely through very local constitutive open

chromatin. Additionally, we show that the distribution of

these motifs varies between populations and likely play a

role in the observed intra-specific differences in crossover land-

scapes. Beyond the presence of these specific motifs and the

large-scale centromere-effect, we identify the additional influ-

ence of transcription activity during early meiosis that creates a

mechanistic link between local recombination rates and epi-

genetic features in a manner similar to yeast hotspots (Petes

2001). We propose that our study provides a baseline for

future analyses in Drosophila designed to characterize the ge-

netic causes of intra- and interspecific variation in crossover

rates and the epigenetic mechanisms responsible for the

known variability in crossover rates as response to different

biotic and abiotic conditions and stresses.

Methods

Motif Landscape Generation

We used the position probability matrix (PPM) of 20 DNA

motifs identified as enriched near crossover events from

(Comeron, et al. 2012) (see supplementary fig. S1 and table

S4, Supplementary Material online). To generate motif fre-

quency estimates across chromosomes (motif landscapes),

we developed a suite of custom python scripts designed to

take PPM generated by MEME (Bailey et al. 2009) as input,

apply a sliding-windows approach to estimate the likelihood

of each stretch of DNA of containing the motif, and finally

apply a FDR-based threshold to classify a sequence as belong-

ing to a motif or not. In more detail, and for each motif, we

applied a genomic scan to assign a likelihood L to every k-mer

sequence across the genome to fit the PPM (with k indicating

the length of the motif). Li at position i is estimated as the

log10-transformed product of individual probabilities of the

observed nucleotide j (j = A, G, C, T) at position x in the k-

mer being at the same position x in the PPM (1� x� k).

Nucleotide probabilities of 0 within the PPM were replaced

by 1 � 10�10. We then generated a genome-wide null distri-

bution of Li (RLi) based on random shuffling of nucleotide and

dinucleotide composition using an equivalent approach.

Finally, we used the complete null distribution of RLi to

obtain a threshold for observed Li that would represent a de-

sired false discovery rate (FDR) or LFDR. We call a motif to be

present at position i only when Li>LFDR. This approach allows

applying any arbitrary FDR and, importantly, takes into ac-

count the number of sites under study. We chose to use a
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conservative FDR of 1% as it maximizes dynamic range and

allows recovering sequence motifs nearly indistinguishable

from those produced using an FDR<1%, all while restricting

the fraction of false positives to an acceptable threshold.

We generated motif landscapes with 1% FDR for the D.

melanogaster reference genome 5.47 (dm3 assembly; http://

flybase.org/) and for the RG and ZI populations [(Pool et al.

2012; Lack et al. 2015); see below] separately. Supplementary

table S4, Supplementary Material online details the PPM for all

motifs investigated in this study when applied to the RG pop-

ulation. The set of FDR-corrected motifs generate PPMs that

are similar but not an exact match to the initial set of seed

PPMs, which is not unexpected due to the limited number and

genomic distribution of the original set of sequences analyzed.

Some of the motifs reported to be enriched near crossover

sites in Comeron et al. (2012) show very limited presence once

the 1% FDR-correction is applied and, as consequence, motifs

M13-M20 in supplementary table S4, Supplementary Material

online, with fewer than 1,000 counts genome-wide, show no

significant correlation with rLD and were not included in the

analyses. Unless noted, all 12 motifs present more than 1,000

times genome-wide (M1–M12) were used in the analyses

(supplementary tables S1 and S4, Supplementary Material

online), and the RG population was used to estimate motif

distribution and rLD (see below). Analyses towards investigat-

ing rLD for the ZI population used motif landscapes along

chromosomes from the ZI population.

Using positional information of each motif location, we

generated sliding-window estimates of FDR-corrected motif

presence for non-overlapping regions at different genomic

scales across the genome, including 5-, 10-, 25-, 50- 100-,

250-, 500-, 1,000-, and 2,500-kb. Chromosome positions and

gene annotations were based on the D. melanogaster dm3

assembly and annotation release 5.47 (http://flybase.org/).

Sequence logos were generated using WebLogo 3 [http://

weblogo.threeplusone.com (Crooks et al. 2004)].

LD-Based High-Resolution Crossover Maps

We calculated the population-scaled recombination rate for

two African populations of D. melanogaster using the program

LDhelmet (Chan et al. 2012). LDhelmet is a statistical method

that allows estimating fine-scale recombination rates across ge-

nomes based on patterns of linkage disequilibrium, where the

parameter estimated is the population-scaled crossover rate per

bp and generation (rLD); rLD =2Ner, where Ne is the effective

population size of the population and r is the rate of crossover

per bp and generation in females. Note, therefore, that esti-

mates of rLD by LDhelmet represent historic averages of esti-

mates of crossover for the population or species under analysis.

Following Chan et al. (2012), we applied a block penalty of 50

and used the RG matrix. We applied effective mutation rates

estimated from the RG and ZI sequences: 0.008 and 0.0071 for

autosomes and the X chromosome, respectively, for the RG

population, and 0.011 and 0.0087 for autosomes and the X

chromosome, respectively, for the ZI population. The data was

divided into overlapping blocks of 4400 SNPs, with 200 SNPs of

overlap. For each block we ran LDhelmet for 3,000,000 itera-

tions after 300,000 iterations of burn-in. Recombination maps

for each chromosomal arm were analyzed as non-overlapping

adjacent windows at nine different genomic scales (5-, 10-, 25-

, 50-, 100-, 250-, 500-, 1,000, and 2,500-kb). To remove sub-

centromeric and –telomeric regions with strongly reduced

crossover rates, we classified a sub-centromeric region by start-

ing at the centromere and moving into the chromosome arm

until a minimum of 3 consecutive 100-kb windows showed

rLD>0.02, and sub-telomeric regions were assigned in an

equivalent manner [see (Comeron et al. 2012)].

We analyzed the Rwanda (RG) and Zambia (ZI) populations

because both show very limited levels of admixture and allow

analyzing a relatively large sample of strains with no chromo-

somal inversions (Pool et al. 2012; Lack et al. 2015). We ob-

tained the genomic sequences from the Drosophila Genome

Nexus [http://www.johnpool.net/genomes.html; (Lack et al.

2015)] and analyzed strains with no evidence of chromosomal

inversions in any chromosomal arm. In total our analysis in-

cluded 19 RG sequences (RG10, RG13N, RG15, RG19, RG22,

RG24, RG28, RG2, RG32N, RG33, RG34, RG35, RG38N,

RG39, RG4N, RG6N, RG7, and RG8) and 20 ZI sequences

(ZI184, ZI250, ZI252, ZI271, ZI311N, ZI320, ZI324, ZI332,

ZI344, ZI378, ZI386, ZI398, ZI402, ZI418N, ZI420, ZI455N,

ZI457, ZI477, ZI517, and ZI85). Unless noted, our analyses

use the RG population because the low levels of admixture

have been well characterized (Pool et al. 2012) and we

masked admixture regions following (Pool et al. 2012; Lack

et al. 2015). At 100kb-scale, rLD estimated across the se-

quences of the RG and ZI populations show a Spearman’s rs
of 0.76 (P<1 � 10�16).

To investigate whether the main trends observed in this

study were driven by estimates of the population parameter

rLD that, at least partially, reflect differences in Ne rather

than in recombination rate r, we normalized rLD by estimates

of silent nucleotide diversity (psil; psil = 4Ne� in autosomes

and 3Ne� in the X chromosome, where � is the mutation

rate per bp and generation). To obtain psil, we estimated

pairwise nucleotide variation per site at intergenic se-

quences, introns and 4-fold degenerate sites in coding re-

gions from sequences of the RG population. Finally, we

studied the influence of variable motif presence across the

genome on the ratio rLD/psil, which should be independent

of Ne when both rLD and psil are estimated from the same

population and at the same genomic scale.

Open Chromatin Profiles and Transcriptional Activity in
Early Female Meiosis

We used high-resolution open chromatin profiles in D. mela-

nogaster from four differences samples and with two different
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methods. High-magnitude DNase I hypersensitive sites (DHS)

from three different cell lines were obtained from http://

compbio.hms.harvard.edu/kharchenko-et-al-nature-2011

(Kharchenko et al. 2011; Thomas et al. 2011). The three

cell lines investigated are: S2 (S2-DRSC; derived from late

male embryonic tissues, stages 16–17), BG3 (ML-DmBG3-

c2; derived from the central nervous system of male third

instar larvae), and Kc167 (derived from disaggregated

young embryos 8–12 h old). We also obtained information

on accessible chromatin regions in the eye-antennal imag-

inal disc generated using the recently developed ATAC

methodology [(Davie et al. 2015); NCBI GEO samples

GSM1426254- GSM1426256]. ATAC [Assay for Transposase

Accessible Chromatin; (Buenrostro et al. 2015; Sos et al. 2016)]

is more sensitive and robust than DNase-seq for identifying

sites of high chromatin accessibility and thus can provide in-

formation more relevant for in vivo DSB (Davie et al. 2015).

Transcriptome information during early female meiosis in D.

melanogaster was generated by Adrian and Comeron (2013)

and RNA-seq data are available at NCBI SRA SRP032523.

Analyses, Model Generation and Attribute Selection

We applied LASSO (Tibshirani 1996; Hastie et al. 2009) as

implemented in the WEKA v3.6.1 software package [(Hall

et al. 2009); http://www.cs.waikato.ac.nz/ml/weka/]. LASSO

is a data mining technique that favors solutions with fewer

parameter values under a linear model, simultaneously per-

forming variable selection and simplifying model interpreta-

tion. The intensity of regularization (or shrinkage) within

LASSO is controlled by the regularization/shrinkage parameter

(�). Unless noted, we used a � that minimizes the cross vali-

dated mean squared error plus 0.5 standard error. Cross-val-

idation (CV), which we used within LASSO, RF, and MARS

analyses (see below), simulates the process of separately de-

veloping a model on one set of data and predicting for a test

set of data not used in developing the model, with all aspects

of the model development process repeated for each loop of

the cross-validation.

We also utilized the WEKA implementation of Random

Forests (RF) for classification. RF is a non-parametric approach

useful for detecting associations when there are large num-

bers of predictor variables with the possibility that each vari-

able has relatively weak effects (Breiman 2001; Banfield et al.

2007). Briefly, RF classification constructs a collection of many

independent decision trees, sampling both the data and at-

tributes randomly with replacement. The remaining, unused

data is classified using the collection of trees, with the classi-

fication of each item being based upon the result mode of the

RF. Here, we generated 1,000 trees of unrestricted depth with

Log2(Attribute Number) +1 random attributes in each individ-

ual tree. RF models were evaluated using 10-fold cross valida-

tion (CV), which involves splitting the complete dataset into

ten equal sets and training on nine sets while testing on the

remaining set—this process is then repeated ten times to

obtain an average accuracy for each class. An exception to

the 10-CV evaluation method was applied when studying

how a model trained with data from an individual chromo-

somal arm performed when applied to other chromosomal

arms, in which cases we used the full data from the chromo-

some used as training set and the full data from the chromo-

some used to test the model.

Each model was tested versus a ZeroR null model which

classifies all instances solely based on the majority (mode)

class. In all cases, the RF model performed significantly

better at classification (two-tailed t-test, P< 0.05) than the

null model unless otherwise noted. In order to select the

best features for use in model generation, we ranked all fea-

tures by the information gain criterion implemented in WEKA.

Information gain is the measure of the contribution of a par-

ticular feature to the model. When calculating probabilities for

RF models, we performed 250,000 whole-genome randomi-

zations per model. For each randomization (replicate), RF

modeling was limited to 150 trees using 10-fold cross valida-

tion in order to speedup computation at the expense of in-

creased variance, and therefore generates conservative

estimates. Conversely, when testing RF on the fourth chromo-

some, we used the complete genomic data from 2L, 2R, 3L,

3R, and the X for training and tested on the whole chromo-

some as well as on the thirteen adjacent 100-kb regions of this

small chromosome. Tests on the fourth chromosome were

repeated 20,000 times with 150 trees on random seeds in

order to evaluate reliability.

We applied multivariate adaptive regression splines (MARS)

(Friedman 1991; Friedman and Roosen 1995; Hastie et al.

2009) using the software suite Salford Predictive Modeler

(v.7) from Salford Systems (http://www.salford-systems.

com). MARS is a form of regression analysis that splits predic-

tive variables into several intervals, allows potential non-linear

relationships over different intervals (basis functions) and com-

bines individual models as a final quantitative and predictive

model. Importantly, MARS allows for any degree of interac-

tion between variables. The quality of MARS models can be

ascertained using the generalized cross-validation (GCV) crite-

rion, with small GCV scores being indicative of superior model

fit (Craven and Wahba 1979). Because the number of data

points is not very large (n = 1,191 non-overlapping 100-kb

regions), we avoided portioning the data into training and

test samples and, instead, we initially applied cross-validation

and the MARS legacy modes to estimate the optimal model

and its performance (Friedman 1991). Note, however, that

under the legacy mode MARS builds a sequence of models

using all available data and can overestimate the performance

of the model. We, thus, show MARS results based on 10-fold

cross-validation to train and test classifiers unless specifically

noted. We use the notation R2
CV to describe the MARS esti-

mate of how well this model would perform on new data

when using the 10-fold cross validation mode. In all cases, a

Crossover Variation across the Drosophila Genome GBE

Genome Biol. Evol. 8(8):2597–2612. doi:10.1093/gbe/evw181 Advance Access publication August 4, 2016 2609

http://compbio.hms.harvard.edu/kharchenko-et-al-nature-
http://compbio.hms.harvard.edu/kharchenko-et-al-nature-
Deleted Text:  to 
Deleted Text: m
Deleted Text: g
Deleted Text: a
Deleted Text: s
Deleted Text:  (Least Absolute Shrinkage and Selection Operator)
http://www.cs.waikato.ac.nz/ml/weka/
http://www.salford-systems.com
http://www.salford-systems.com


10-fold cross-validation mode generates smaller (more con-

servative) R2
CV than when a legacy mode is applied

(R2
Legacy>R2

CV). Alternative estimates of model quality such

standard R2 using the whole dataset can be subject to sub-

stantial overfitting and are not reported (we obtained

R2>R2
CV in all cases). Finally, variable importance under

MARS was measured by the Gini index (Breiman et al. 1984).

Supplementary Material

Supplementary tables S1–S4 and figures S1–S3 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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