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SUMMARY
New neurons generated by the neural stem cells (NSCs) in the adult hippocampus play an important role in emotional regulation and

respond to the action of antidepressants. Depression is a common and serious side effect of interferon-a (IFN-a), which limits its use

as an antiviral and antitumor drug. However, the mechanism(s) underlying IFN-induced depression are largely unknown. Using a

comprehensive battery of behavioral tests, we found that mice subjected to IFN-a treatment exhibited a depression-like phenotype.

IFN-a directly suppressed NSC proliferation, resulting in the reduced generation of new neurons. Brain-specific mouse knockout of

the IFN-a receptor prevented IFN-a-induced depressive behavioral phenotypes and the inhibition of neurogenesis, suggesting that

IFN-a suppresses hippocampal neurogenesis and induces depression via its receptor in the brain. These findings provide insight for

understanding the neuropathology underlying IFN-a-induced depression and for developing new strategies for the prevention and treat-

ment of IFN-a-induced depressive effects.
INTRODUCTION

New neurons are continuously generated in the hippo-

campal dentate gyrus (DG) throughout life in mammals,

including rodents (Altman and Das, 1965; Kaplan and

Hinds, 1977; Kuhn et al., 1996), nonhuman primates

(Gould et al., 1999; Kornack and Rakic, 1999), and humans

(Eriksson et al., 1998; Manganas et al., 2007). In the DG,

neural stem cells (NSCs) residing in the subgranular zone

(SGZ), a thin cell layer between the granule cell layer

(GCL) and the dentate hilus, generate transit-amplifying

intermediate progenitors that give rise to new neurons

(Gage, 2002; Zhao et al., 2008). The newly generated neu-

rons then migrate into the GCL, where they differentiate

into mature granule cells to be integrated into the hippo-

campal circuitry (Mathews et al., 2010; Toni et al., 2007;

van Praag et al., 2002). Evidence suggests that neurogenesis

in this region plays a role in emotional regulation (Eisch

and Petrik, 2012; Samuels and Hen, 2011).

Decreased neurogenesis in the adult DG is implicated in

the pathophysiology of depression, a common psychiatric
disorder. Clinical imaging studies demonstrated reduced

volume and altered metabolism in the hippocampus of

depressed patients (Block et al., 2009; Campbell et al.,

2004; Gilbertson et al., 2002; Huang et al., 2010). Hippo-

campal neurogenesis is downregulated in animal models

of depression induced by exposure to chronic psychosocial

stress (Jacobs et al., 2000; Kempermann and Kronenberg,

2003). Conversely, chronic treatment with antidepressants

enhances hippocampal neurogenesis (Anacker et al., 2011;

Malberg et al., 2000; Pechnick et al., 2011), which is

required for the behavioral effects of these drugs in mice

(Santarelli et al., 2003). However, the relationship between

neurogenesis suppression and depressive symptoms re-

mains elusive (Airan et al., 2007; David et al., 2009; Lucas-

sen et al., 2010). Animal models of depression induced by a

single ligand and its receptor would be useful for investi-

gating thesemechanisms in vivo using genetic approaches.

Interferon-a (IFN-a), a proinflammatory cytokine

with potent antiviral, antiproliferative, and immunoregu-

latory effects, has been widely used to treat chronic viral

hepatitis and several types of malignancy (Deutsch and
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Figure 1. Chronic Treatment with mIFN-a Affects Neurogenesis
in the DG of Adult Mice
(A) Experimental design.
(B–E) Effect of 4-week mIFN-a treatment on SGZ proliferative
activity. The numbers of Ki67+ cells (B and C) and TBR2+ cells (D and
E) in the SGZ were significantly reduced in mIFN-a-treated groups
compared with the PBS-treated group. n = 7 mice per group.
(F and G) Effect of 4-week mIFN-a treatment on NSCs in the DG. The
number of Nestin+ (red) and GFAP+ (green) putative NSCs in the DG
(F, arrows) was significantly reduced by mIFN-a treatment (G) in a
dose-dependent manner. n = 5 mice per group.
(H and I) Effect of mIFN-a treatment on neurogenesis in the DG.
During mIFN-a treatment, BrdU was injected at the beginning of
the fifth week, six times every 8 hr. The number of BrdU+(red) and
DCX+ (green) cells (H, arrows) was significantly reduced in mIFN-
a-treated groups (I). n = 5 mice per group. *p < 0.05, **p < 0.01
versus PBS-treated group; error bars: means ± SEM; scale bars,
100 mm: (B and D), 25 mm: (F and H).
See also Figure S1.
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Hadziyannis, 2008; Papatheodoridis et al., 2008; Tagliaferri

et al., 2005). However, long-term IFN-a treatment

frequently triggers a variety of neuropsychiatric symptoms
74 Stem Cell Reports j Vol. 3 j 73–84 j July 8, 2014 j ª2014 The Authors
(Dieperink et al., 2000). Depression is the most common

and serious side effect, affecting approximately 30%–45%

of patients receiving IFN-a treatment, resulting in occa-

sional discontinuation of the therapy (Bonaccorso et al.,

2001; Lieb et al., 2006). Despite its clinical importance,

the mechanism underlying IFN-a-induced depression is

still not well understood.

We previously reported that repeated IFN-a treatment

suppresses cell proliferation in the SGZ of adult rats

(Kaneko et al., 2006). However, little is known about how

peripheral IFN-a affects brain function. Because a small

fraction of peripheral IFN-a gains access to the brain (Greig

et al., 1988; Smith et al., 1985), hippocampal neurogenesis

can be directly affected by the increased IFN-a signaling in

the brain (Wang et al., 2008). However, it is also possible

that IFN-a affects brain function via secondary effectors

such as humoral or cellular components of the peripheral

immune system (Hayley et al., 2013; Orsal et al., 2008).

Here, we analyzed the effects of IFN-a treatment on neu-

rogenesis and depressive behaviors using two types of

interferon-a receptor (IFNAR) knockout (KO) mouse lines:

a systemic KO (IFNAR�/�; Müller et al., 1994) and a condi-

tional KO in NSCs and their progenies (IFNARfl/fl:Nes-Cre;

Detje et al., 2009). Our findings suggest that peripherally

administered IFN-a directly suppresses the neurogenic

function of NSCs and increases depression-like behaviors.
RESULTS

Chronic mIFN-a Treatment Reduces Cell Proliferation

and Neurogenesis in the DG of Adult Mice

To investigate the effects of chronic mouse IFN-a (mIFN-a)

treatment on cell proliferation in the DG, mice were intra-

peritoneally injected with PBS or mIFN-a daily for 2 or

4 weeks (Figures S1A–S1E available online and Figure 1A).

The numbers of SGZ cells that were positive for the prolif-

eration marker Ki67 (Figures 1B and 1C) and the neuronal

progenitor marker TBR2 (Figures 1D and 1E) were signifi-

cantly reduced by the 4-week, but not the 2-week, mIFN-a

treatment (Figures S1A–S1C). The 4-week mIFN-a

treatment also reduced the number of cells with radial

glia-like morphology expressing the NSC markers Nestin

and GFAP (Figures 1F and 1G). To quantify neurogenesis,

the mice were injected with BrdU six times at 4 weeks of

treatment and fixed at 5 weeks of mIFN-a treatment (Fig-

ure 1A). The number of BrdU+DCX+ new neurons in the

DG was also significantly reduced in mIFN-a-treated mice

compared with PBS-treated controls (Figures 1H and 1I).

To examine the effect of mIFN-a treatment on the sur-

vival and fate of the newly generated cells in the DG, we

labeled the new neurons with bromodeoxyuridine (BrdU)

just before the treatment and quantified the number of
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BrdU+ cells that had differentiated into mature new neu-

rons (BrdU+NEUN+ cells) after the 4-week mIFN-a treat-

ment (Figure S1F). There were no significant differences in

the numbers of BrdU+ or BrdU+NEUN+ cells in the DG (Fig-

ures S1G–S1I) or in the percentage of NEUN+ cells in the

BrdU-labeled population (data not shown) between the

treatment groups. We further examined the effects of IFN

treatment on the morphological phenotypes of the new

neurons.Newneuronswere labeled by injecting a retroviral

vector-encoding DsRed (red fluorescent protein) into the

DG 1 day before 4-week mIFN-a treatment. The dendrites

of the DsRed-labeled new neurons were then analyzed.

There were no significant differences in the total length or

number of branching points of dendrites in the DsRed-

labeled new granule cells between the groups (Figures S1J–

S1L), suggesting thatmIFN-adidnot affect theneuronal dif-

ferentiation or the survival of the newly produced cells.

We next examined whether mIFN-a treatment affected

oligodendrocyte progenitor cells, which are widely distrib-

uted and proliferate continuously in the adult brain. There

was no significant difference in the density of OLIG2+

oligodendrocyte progenitor cells between the groups in

any of the brain areas studied (Figure S1M). Taken together,

these data suggest that chronic mIFN-a treatment reduces

the proliferation of neural stem/progenitor cells, reducing

the production of new neurons in the DG.

Treatment of Cultured Neural Stem Cells with mIFN-a

Cultured hippocampal NSCs (Gage et al., 1995) were used

to study the direct effects of mIFN-a on NSCs. Immuno-

cytochemistry revealed that both of the interferon receptor

subunits, IFNAR1 and IFNAR2, were expressed in all the

Nestin+ NSCs (IFNAR1: 100%; IFNAR2: 100%; n = 352 cells;

Figure 2A) and in most of the MAP2+ neurons (IFNAR1:

100%; IFNAR2: 99.17%; n = 121 cells; Figure 2B), GFAP+

astrocytes (IFNAR1: 99.07%; IFNAR2: 99.53%; n = 214 cells;

Figure S2), and RIP+ oligodendrocytes (IFNAR1: 98.85%;

IFNAR2: 100%; n = 87 cells; Figure S2). A 15 min treatment

withmIFN-a dose-dependently increased the phosphoryla-

tion level of STAT1 (a downstream effector of the IFN-a/

IFNAR-signaling pathway; Figure 2C), demonstrating that

hippocampal NSCs were responsive to IFN-a.

To examine mIFN-a’s effects on proliferating hippocam-

palNSCs, we incubatedNSCswith different concentrations

of mIFN-a (10–103 IU/ml). After 24 hr of treatment, there

were no significant differences in cell numbers as deter-

mined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-

nyltetrazolium bromide (MTT) assay. However, after

further expansion of NSCs at 48 and 72 hr, there was a sig-

nificant dose-dependent reduction in cell numbers of the

IFN-a treatment groups (Figure 2D). To label proliferating

cells, NSCs were incubated with BrdU during the last 4 hr

of culture with PBS or mIFN-a (Figure 2E). mIFN-a dose-
dependently reduced the number of BrdU+ proliferating

cells in the Nestin+ NSC populations of 24 hr (data not

shown) and 48 hr (Figure 2F) cultures. The percentage of

PI+ apoptotic cells in the culture was increased by mIFN-a

treatment at higher doses compared with the control (Fig-

ures 2G and 2H), but this effect only accounted for a small

part of the mIFN-a-mediated reduction in NSC expansion

(Figure 2D). These data suggested that mIFN-a directly sup-

presses hippocampal NSC proliferation.

To determine whether mIFN-a affects NSC differentia-

tion, as well as survival of the differentiated cells, the

NSCs were labeled with BrdU and allowed to differentiate

for 72 hr with or without mIFN-a (Figure 2I). mIFN-a had

no effect on the total number of differentiated cells (Fig-

ure 2J) or on the differentiation of BrdU-labeled cells into

MAP2+ neurons, GFAP+ astrocytes, or RIP+ oligodendro-

cytes (Figure 2K). These findings suggest that mIFN-a did

not alter the survival or fates of hippocampal NSCs during

their differentiation. Taken together, our in vivo and

in vitro results indicate that mIFN-a treatment specifically

and directly modulates the proliferation of NSCs.

mIFN-a Treatment Decreases the Proliferative Activity

of Neural Stem/Progenitor Cells in the V-SVZ

We further investigated the effects of mIFN-a on neural

stem/progenitor cells in the ventricular-subventricular

zone (V-SVZ), another region populated with NSCs in the

adult brain. The numbers of cells positive for Ki67 (Figures

3A and 3B) or MASH1 (Figures 3C and 3D), a marker for

transit-amplifying neuronal progenitors, were significantly

reduced in the V-SVZ of mice treated with mIFN-a for

4 weeks. Because the characteristics of the NSCs in the

V-SVZ vary according to region (Kelsch et al., 2007; Merkle

et al., 2007, 2014), we separately quantified and compared

the number of Ki67+ cells in the medial, cortical, dorsal,

lateral, and ventral V-SVZ areas (Merkle et al., 2007) of

each group. The Ki67+ cell population was significantly

decreased in the dorsal and lateral areas in the mIFN-

a-treated groups (Figure S3A).

To examine the effect of mIFN-a on the V-SVZ-derived

NSCs, a neurosphere assay was conducted. The number

of primary neurospheres generated from the V-SVZ of adult

wild-type mice was significantly reduced when the V-SVZ-

derived cells were cultured with 103 IU/ml mIFN-a (Figures

3E and S3B). Moreover, the number of secondary neuro-

spheres formed by dissociated single primary neurospheres

was significantly reduced bymIFN-a (Figure 3F). These data

suggest that mIFN-a inhibited the proliferation and self-

renewal of the V-SVZ NSCs. Notably, sphere formation

from the V-SVZ of IFNAR�/� mice was not affected by

mIFN-a treatment (Figure 3E), indicating that the suppres-

sive effects of mIFN-a were mediated by the IFNAR ex-

pressed onNSCs.We also examined the differentiating cells
Stem Cell Reports j Vol. 3 j 73–84 j July 8, 2014 j ª2014 The Authors 75



Figure 2. Treatment of Adult Hippo-
campal NSC Cultures with mIFN-a
(A–C) Interferon receptor expression and
STAT1 phosphorylation in cultured adult
hippocampal NSCs. All Nestin+ (A) and
MAP2+ (B) cells (blue) in the culture ex-
pressed both interferon receptor subunits,
IFNAR1 (red) and IFNAR2 (green). A 15 min
incubation with mIFN-a resulted in dose-
dependent increases in STAT1 phosphory-
lation (p-STAT1), as detected by western
blotting, whereas total STAT1 levels were
unchanged (C).
(D–H) Effects of mIFN-a on survival and
proliferation of hippocampal NSCs. The
numbers of live cells quantified by the
MTT assay were significantly reduced in
the mIFN-a-treated groups, compared with
the control groups, at 48 and 72 hr, but not
24 hr (D; n = 3 or 4 wells). The proliferating
NSCs were labeled with BrdU during the last
4 hr of incubation with mIFN-a (E and F).
After 48 hr of incubation with mIFN-a, the
percentage of Nestin+ cells (E, green) that
were BrdU+ (E, red) was reduced in a dose-
dependent manner (F; n = 3 wells). The
percentage of PI+ apoptotic cells (G, red;
Hoechst, blue) was significantly increased
after the 48 hr incubation with mIFN-a (H;
n = 3 wells).
(I–K) Effects of mIFN-a on NSC differentia-
tion. The NSCs labeled with BrdU were
allowed to differentiate for 72 hr with or
without mIFN-a (I). There were no signifi-
cant differences in the number of differen-
tiated cells as quantified by MTT assay (J; n =
3 wells) or the percentage of BrdU-labeled
cells that differentiated into neurons
(MAP2+), astrocytes (GFAP+), or oligoden-
drocytes (RIP+; K; n = 6 wells) among the
groups. *p < 0.05, **p < 0.01 versus PBS-
treated group; error bars: means ± SEM;
scale bars, 25 mm: (A, B, E, G, and I).
See also Figure S2.
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dissociated from the primary neurospheres from wild-type

mice. mIFN-a did not affect the survival (Figure 3G) or

neuronal differentiation of these cells (data not shown).

Taken together, these results suggest that mIFN-a directly

suppresses proliferation/self-renewal of the NSCs in the

V-SVZ as well as in the SGZ.
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Chronic mIFN-a Treatment Induces Depressive

Behavioral Phenotypes and Decreases Social

Interactions in Mice

Wenext studied the effects of chronicmIFN-a treatment on

mouse behavior (Figures 4A–4G and S4A–S4L). Mice were

injectedwith PBS ormIFN-a for 4 weeks and then subjected



Figure 3. Effects of mIFN-a Treatment
on NSCs and Neuronal Progenitor Cells
in the Adult V-SVZ
(A–D) Effect of 4-week mIFN-a treatment
on V-SVZ proliferative activity. Following
mIFN-a treatment, the numbers of Ki67+

cells (A and B) and MASH1+ cells (C and D)
in the V-SVZ were significantly reduced in
the mIFN-a-treated group compared with
the PBS-treated group. n = 7 mice per
group.
(E–G) Effects of mIFN-a treatment on
V-SVZ-derived NSC cultures. The number of
primary neurospheres formed by the disso-
ciated V-SVZ cells from wild-type mice
cultured for 7 days was significantly
reduced with 103 IU/ml of mIFN-a. This
effect was not observed with V-SVZ-derived
cells from IFNAR�/� mice (E; n = 4 mice per
group). The number of secondary neuro-
spheres formed by the cells dissociated
from single wild-type primary neurospheres
treated with 103 IU/ml of mIFN-a was
significantly reduced compared with un-
treated control cells (F; n = 12 mice per
group). When dissociated cells derived from
primary neurospheres were cultured with
103 IU/ml mIFN-a for 4 days after induction
of differentiation, there was no significant
difference in the number of cells compared
with the control group, as quantified by the

ATP luminescence assay (G; n = 4 cultures). *p < 0.05, **p < 0.01 versus no treatment group; error bars: means ± SEM. The scale bars
represent 100 mm. CNT, control; NS, neurosphere; WT, wild-type.
See also Figure S3.
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to a comprehensive battery of behavioral tests. Raw data

and a summary of these tests are shown in the Mouse

Phenotype Database (http://www.mouse-phenotype.org/).

General health, muscular strength (Figures S4A–S4D),

sensorimotor function (Figures 4A, pain sensitivity, and

4B, motor coordination), and locomotor activity (Fig-

ure 4C) were not affected by mIFN-a treatment.

To evaluate anxiety in these mice, we performed

the light/dark transition test (Figures S4E–S4H) and

the elevated plus maze test (Figures S4I–S4L). We also

measured the time spent in the center in the open field

test (Figure 4C, middle). mIFN-a treatment significantly

decreased the distance traveled in the elevated plus maze

test (Figure S4K), but did not affect performance in the

other tests, suggesting that the mIFN-a-treated mice

exhibited a slightly increased sensitivity to stressful envi-

ronmental changes.

Depression-like behaviors in these mice were examined

using the tail suspension test (Steru et al., 1985) and the

Porsolt forced swimming test (Porsolt et al., 1977). In these
tests, depression levels are determined based on immobility

times, which can be elongated by decreased escape-

oriented behaviors. In both tests, the immobility times

were not altered by a 2-week mIFN-a treatment (Figures

S1D and S1E) but were significantly increased by a 5-week

treatment (Figures 4F and 4G), indicating that chronic

mIFN-a treatment induced depressive behavioral pheno-

types, consistent with previous reports (Fahey et al.,

2007; Felger et al., 2007).

To further characterize the IFN-a-induced depression, we

used Crawley’s three-chamber social approach test, which

consists of a sociability test and a social novelty preference

test. This test is useful for monitoring social withdrawal,

one of the typical symptoms of depression, relatively inde-

pendent of their changes in locomotor activity in mice

(Moy et al., 2004). In the sociability test, whereas one

cage was empty, another cage contained a mouse stranger

to the experimental animal (stranger side 1). PBS-treated

mice, placed in the central compartment between these

two cages, spent more time near the cage with the stranger
Stem Cell Reports j Vol. 3 j 73–84 j July 8, 2014 j ª2014 The Authors 77
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Figure 4. Effects of Chronic mIFN-a
Treatment on Mouse Behavioral Profiles
(A–C) Sensorimotor function tests and the
open field test. There were no significant
differences in mouse responses to the hot
plate test (A), the rotarod test (B), or the
open field test (C) between mIFN-a- and
PBS-treated groups. n = 20 to 21 mice per
group.
(D and E) Crawley’s social interaction test.
The time spent near the cage with an un-
familiar (stranger 1) mouse in the socia-
bility test (D, left) or near the cage with a
second unfamiliar (stranger 2) mouse in the
social novelty preference test (E, left) was
significantly longer than the time spent
near an empty cage or the cage containing a
familiar mouse in the PBS-treated group,
but not in the mIFN-a treated group. The
total distance traveled during both tests
was significantly reduced in the mIFN-
a-treated groups compared with the con-
trols (D and E, right). n = 20 to 21 mice per
group; #p < 0.05, ##p < 0.01 stranger side
versus empty (D) or familiar (E) side,
paired-t test; **p < 0.01 versus PBS-treated
group.
(F and G) Tail suspension test (TST) and
forced swimming test (FST). Immobility
times were significantly increased in mIFN-
a-treated groups in both the TST (F) and FST
(G), compared with the PBS-treated groups.
n = 10 mice per group; *p < 0.05, **p < 0.01
versus PBS-treated group. Error bars repre-
sent means ± SEM.
See also Figure S4.
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mouse than the empty cage (Figure 4D, left). Next, in the

social novelty preference test, the same animal that had

been a stranger in the sociability test was used as the

familiar one (familiar side), and a new mouse was intro-

duced into the other cage as a stranger (stranger side 2).

PBS-treated mice also spent a significantly longer time

near the cage with the stranger than with the familiar

mouse (Figure 4E, left), because normal mice show more

interest and interaction with novel conspecific mice. In

contrast, mIFN-a-treatedmice did not show this preference

in either test (Figures 4D and 4E, left), suggesting that

mIFN-a treatment impaired the social affiliation/motiva-

tion and social novelty of these mice. In addition, the

decrease in total distance traveled by the mIFN-a-treated

mice compared with the PBS-treated mice (Figures 4D

and 4E, right) may reflect increased anxiety during socially

stressful conditions. We conclude that chronic mIFN-a

treatment of mice induced depressive behaviors and
78 Stem Cell Reports j Vol. 3 j 73–84 j July 8, 2014 j ª2014 The Authors
impaired social interactions without affecting general

health or sensorimotor functions.

mIFN-a Increases Depression-like Behavior and

Reduces Neurogenesis via IFN Receptor Expressed in

the CNS

The direct effects of IFN-a on cultured NSCs (Figures 2

and 3) suggested that receptors for IFN-a expressed in the

brain are involved in suppressing hippocampal neurogene-

sis and inducing depressive behaviors. To test this possibil-

ity, we used two types of knockout mice targeting IFNAR1,

an IFN receptor subunit essential for IFN-a signal transduc-

tion (Müller et al., 1994): conditional CNS-specific

knockout mice (IFNARfl/fl:Nes-Cre; Detje et al., 2009) and

conventional knockout mice (IFNAR�/�; Müller et al.,

1994). These mice were treated with mIFN-a for 5 weeks

and injected with BrdU six times at 8 hr intervals after

4 weeks of treatment using the same protocol as described



Figure 5. Effects of Chronic mIFN-a
Treatment on Hippocampal Neurogenesis
and Behaviors in IFNAR Knockout Mice
(A–F) Effects of 5-week mIFN-a treatment
on neurogenic activity in the DG of
IFNARfl/fl, IFNARfl/fl:Nes-Cre, and IFNAR�/�

mice. The numbers of Ki67+ proliferating
cells (A and B), TBR2+ neuronal progenitor
cells (C and D), and BrdU+DCX+ newly
generated neurons (E and F) were signifi-
cantly reduced in the mIFN-a-treated group
compared with the PBS-treated group in
IFNARfl/fl mice, but not in IFNARfl/fl:Nes-Cre
or IFNAR�/� mice. n = 5 mice per group.
(G and H) Effects of mIFN-a treatment on
the TST and FST. The immobility times in the
TST (G) and FST (H) were significantly
increased in the mIFN-a-treated groups
compared with PBS-treated groups in
IFNARfl/fl mice, but not in IFNARfl/fl:Nes-Cre
or IFNAR�/� mice. n = 10–13 mice per
group. *p < 0.05, **p < 0.01 versus PBS-
treated group. The error bars represent
means ± SEM. The scale bars represent
100 mm (A and C) and 25 mm (E).
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above (Figure 1A). After mIFN-a treatment, the mice were

subjected to the tail suspension test and the Porsolt forced

swimming test and then sacrificed, and the neural progen-

itor cells were analyzed (Figures 5A–5F). Although the

TBR2+ cell population in the PBS-treated groups tended

to be smaller in IFNAR�/� and IFNARfl/fl:Nes-Cre mice

compared with IFNARfl/fl mice having normal IFNAR

expression, these differences were not statistically signifi-

cant (Figure 5D). In contrast, chronic mIFN-a treatment

significantly decreased the numbers of Ki67+ (Figures 5A

and 5B), TBR2+ (Figures 5C and 5D), and BrdU+DCX+ (Fig-

ures 5E and 5F) cells in the DG of IFNARfl/fl mice, similar to

the effect in wild-type mice (Figure 1). These effects were

not observed in the IFNAR�/� or IFNARfl/fl:Nes-Cre mice
(Figures 5A–5F). Similarly, mIFN-a treatment significantly

increased the immobility times in the tail suspension test

and the Porsolt forced swimming test in IFNARfl/fl, but

not IFNARfl/fl:Nes-Cre or IFNAR�/� mice (Figures 5G and

5H). Therefore, IFN-a induced hippocampal neurogenesis

suppression and depression-like behavioral changes via

IFNAR expressed in the CNS.
DISCUSSION

Depression is one of the most common and serious side

effects of IFN, which can limit its success as an antiviral

or antitumor therapy. In this study, we used a simple
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depression model with definitive molecular targets, IFN-a

and IFNAR. Rodents treated with mIFN-a were reported

to show depressive behaviors and/or increased anxiety

(Fahey et al., 2007; Makino et al., 1998, 2000b; Yamano

et al., 2000), although several groups failed to reproduce

those behavioral alterations (De La Garza et al., 2005; Loftis

et al., 2006). This discrepancy might result from variations

in experimental paradigms, including the types of IFN-a

used, animal species or lines employed, treatment regi-

mens, and behavioral tests performed. Because the interac-

tion of IFN with IFNAR is highly species specific (Wang

et al., 2008), we chose mouse IFN-a for our animal experi-

ments. Clinical studies showed that patients frequently

develop depressive symptoms after several weeks of IFN-a

administration, but not within the first few weeks (Hauser

et al., 2002; Raison et al., 2005). Similarly, 2-week mIFN-a

treatments did not induce behavioral changes in our

mice (Figure S1). Therefore, we used mice treated with

mIFN-a for over a month to evaluate behavioral changes.

Systemic IFN treatment could affect various brain

functions other than emotional regulation, which might

influence performance in tests assessing depressive-like

behaviors. However, no studies have comprehensively

investigated neurological and/or psychological alterations

of IFN-treated animals. Using a battery of behavioral tests,

we assessed a variety of brain functions. Whereas contin-

uousmIFN-a treatment had no significant effect on general

health or sensorimotor functions within the first 8 weeks,

we noticed a gradual loss of body weight beginning in

the ninth week (data not shown). Therefore, we included

only the data obtained within the first 8 weeks in this

report (Figures 4 and S4) and performed the depression-

like behavioral tests (the tail-suspension test and the

Porsolt forced swimming test) separately from the other

tests, using mice immediately after the 5-week mIFN-a

treatment. As a result, we found that mIFN-a treatment

increased depression-like behaviors and impaired social

interactions (Figures 4 and S4), consistent with the clinical

symptoms of depression and independent of somatic con-

ditions or sensorimotor functions. Taken together, we

conclude that the IFN-a-treated mice are a reliable model

for patients with IFN-induced depression, which is useful

for analyzing the relationship between IFN-a’s effects on

neural stem/progenitor cell function and on the induction

of depressive behaviors.

IFN-a is reported to induce depression via upregulation

of the hypothalamic-pituitary-adrenal (HPA) axis, alter-

ation of monoamine neurotransmission, and induction

of proinflammatory cytokines (Reyes-Vázquez et al.,

2012; Schaefer et al., 2002). IFN-a can directly interact

with opioid receptors (Jiang et al., 2000), which are also

implicated in the induction of depressive behaviors

(Makino et al., 2000a). Several proinflammatory cytokines,
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including interleukin (IL)-1 and IL-6, have been shown to

modify the neurogenic behavior of NSCs (Gonzalez-Perez

et al., 2012; Kohman and Rhodes, 2013). We previously

found that IFN-a treatment suppresses cell proliferation

in the hippocampal neurogenic region (Kaneko et al.,

2006), which might mediate depression. Here, close exam-

ination revealed that chronic IFN-a treatment reduced the

number of NSCs by nearly 40%, but not that of oligoden-

drocyte progenitors, another population that proliferates

continuously in the adult brain (Figures 1 and S1M). Addi-

tionally, in vitro experiments showed that IFN-a signifi-

cantly inhibited NSC proliferation, but did not affect their

survival or neuronal differentiation, despite the presence of

IFNAR on differentiated neurons, astrocytes, and oligoden-

drocytes (Figures 2, 3, and S2). Taken together, our findings

indicate that NSCs in the adult brain may be a primary

target of IFN-a. Indeed, the neurogenesis inhibition and

depressive-behavior induction by chronic mIFN-a treat-

ment were completely abrogated by CNS-specific and sys-

temic IFNAR knockouts (Figure 5), suggesting that IFNAR

in the brain mediates both of these effects of IFN-a.

Although the IFN-a molecule is large, a small fraction of

systemically administered IFN-a penetrates the brain in

areas where the blood brain barrier is more permeable (Bid-

dle, 2006; Pan et al., 1997). In addition, IFN-a treatment

increased the expression of endogenous IFN-a in the hip-

pocampus (data not shown). Therefore, both exogenously

administered and locally produced IFN-a can be involved

in activating IFNAR signaling in the brain.

Although IFN-a treatment inhibited hippocampal neuro-

genesis and caused depressive behaviors, it is still unclear

whether decreased neurogenesis directly affects mood

and emotional regulation. New neurons have electrophys-

iological features that are distinct from those of mature

granule cells and play a critical role in the plasticity of hip-

pocampal circuitry (Nakashiba et al., 2012; Schmidt-Hieber

et al., 2004), which is considered to be important for adap-

tation to environmental changes and stress coping (Eisch

and Petrik, 2012). However, because ablation of hippo-

campal neurogenesis does not always cause depressive-

like symptoms (Jayatissa et al., 2010), it is controversial

whether new neurons participate in mood or emotional

control (Eisch and Petrik, 2012). Impaired social behavior

coincides with depression-like behaviors in some mouse

lines, such as heat shock factor 1 knockout (Uchida et al.,

2011) and RGS2 mutant (Lifschytz et al., 2012) mice. How-

ever, little is known about the neuronal circuits responsible

for depression-like and/or social behaviors. Further studies

are needed to understand how IFN treatment affects

sociability.

Some proinflammatory cytokines, including IL-1 and

IL-6, induce the secretion of glucocorticoid (Dunn, 2000),

a negative regulator of adult hippocampal neurogenesis.
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IFN-a also induces glucocorticoid secretion by stimulating

the release of corticotropin-releasing hormone in the hypo-

thalamus, followed by activation of the HPA axis (Gis-

slinger et al., 1993). Moreover, hippocampal neurogenesis

negatively regulates the HPA axis, thereby reducing stress

responses (Snyder et al., 2011). Because excessive activa-

tion of the HPA axis is thought to play a role in depression

(Nestler et al., 2002), it is possible that the decreased neuro-

genesis caused by IFN-a (Figures 1 and 5) leads to depres-

sion via HPA axis dysregulation. Thus, although the precise

relationships among depression, neurogenesis, and the

HPA axis remain unclear, their interactions could amplify

the depression-promoting effects of IFN-a.

In conclusion, we demonstrated that chronic peripheral

administration of mIFN-a inhibited neurogenesis and

induced depressive behavioral phenotypes via IFNAR ex-

pressed in the brain. The NSCs were remarkably responsive

to IFN stimulation, exhibiting reduced proliferation and

survival. Althoughmore comprehensive studies are needed

to elucidate the mechanism, these findings improve our

understanding of the neuropathology of IFN-a-induced

effects and may lead to new strategies targeting NSCs

and/or neurogenesis for the prevention and treatment of

IFN-a-induced depression. Furthermore, our simple phar-

macologically induced depression model may be useful

for analyzing the molecular mechanisms of neurogenesis-

dependent mood and emotional regulation.
EXPERIMENTAL PROCEDURES

Animals
Male 8-week-old C57BL/6J mice were purchased from SLC.

IFNAR�/� (Müller et al., 1994), IFNARfl/fl (Detje et al., 2009), and

IFNARfl/fl:Nes-Cre mice (Detje et al., 2009; Tronche et al., 1999; at

least 10-fold backcrossed to the C57BL/6J background) were

described previously. All experiments using live animals were per-

formed in accordance with the guidelines and regulations of

Nagoya City University and National Institute for Physiological

Sciences.

mIFN-a Treatment and BrdU Labeling
PBS ormouse IFN-a (mIFN-a; 13 105 or 43 105 IU/kg) dilutedwith

PBS was intraperitoneally injected into mice once a day for 2, 4, or

5 weeks. BrdU was intraperitoneally injected (50 mg/kg) six times

at 8 hr intervals during the first 2 days of the fifth week or just prior

to mIFN-a treatment. The fixed brains were processed to generate

50-mm-thick floating sections as previously described (Kaneko

et al., 2010).

Neural Stem Cell Culture
Adult rat hippocampalNSCswere kindly provided byDr. FredGage

(Salk Institute). Neurosphere cultures were prepared as previously

described (Hitoshi et al., 2002). For details, see Supplemental

Information.
Behavioral Testing
A comprehensive battery of behavioral tests was performed as pre-

viously described (Miyakawa et al., 2003; Takao et al., 2010) using

mice that had received a 4-weekmIFN-a (43 105 IU/kg) treatment.

For details, see Supplemental Information.
Statistical Analysis
All data were expressed as the mean ± SEM. Differences between

means were determined by two-tailed Student’s t test, one-way

ANOVA, or two-way repeated-measures ANOVA followed by

Tukey-Kramer multiple comparison tests, unless specified other-

wise. A p value of <0.05 was considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and four figures and can be found with this article

online at http://dx.doi.org/10.1016/j.stemcr.2014.05.015.
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