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Current immunotherapies are effective only in a subset of patients, likely due to several factors including defects in tumor cell
antigen presentation, decreased response to immune effectors, and molecular heterogeneity of cancers. Recent molecular
classifications enable the categorization of many tumor types. However, deregulation of major histocompatibility complex
(MHC) gene expression is poorly characterized in the context of molecular cancer subtypes. To suppress the confounding effect
of immune infiltrates on expression patterns of immunoregulators, we identified and removed genes with strong correlation to
estimated immune compartment levels in each tumor type. Next, we reanalyzed a total of 13 TCGA cancer types encompassing
5651 tumors and 485 normal adjacent tissues by performing unsupervised clustering of 14 MHC genes. Subsequently, resultant
clusters were statistically compared in terms of expression of other immune-related genes. Three MHC expression clusters were
discovered by unsupervised clustering. We identified concordantly decreased expression of MHC genes (MHC-low) in 26 out of
55 molecular subtypes. Consequently, our study underlines the urgent need for designing strategies to enhance tumor MHC
expression that could improve immune cold tumor rejection by cytotoxic T lymphocytes.

1. Introduction

Immune cells present in the tumor microenvironment
(TME) can either inhibit or enhance tumor growth. Hetero-
geneity of the TME is determined by the composition of dif-
ferent cell types in the tumor and their activation state, which
is regulated by molecular signals to which these cells are
exposed [1]. A further layer of complexity is introduced by
the remarkable molecular diversity of tumors even within a
single cancer type [2]. Tumor cells are able to exploit various
mechanisms of immune regulation to suppress activity of
immune cells within the TME, thus avoiding antitumor
immunity [3]. There is a growing interest in identifying these
mechanisms, which may be targeted using immunotherapies
(ITs) to enhance tumor rejection by cytotoxic T lymphocytes
[4]. ITs which have sparked the most interest involve anti-
bodies to inhibitory immune checkpoint molecules. Among
the immune checkpoint inhibitors, PD-1/PD-L1 and
CTLA-4 inhibitors showed promising therapeutic outcomes,

and some have been approved for certain cancer treatments
(e.g., melanoma), while others are under phase III and IV
clinical trials [5]. Despite the success of anti-CTLA-4 and
anti-PD-1/PD-L1 therapies, current ITs are only effective in
a subset of patients, likely due to the molecular heterogeneity
of cancer types.

Recent evidence suggests that major immune antitumor
responses are driven by T CD4 and T CD8 cell reactivity
against two classes of tumor-derived antigens: neoantigens
and cancer germline antigen genes (CAGs) [6]. Neoantigens
are tumor-specific mutated peptides arising from nonsynon-
ymous mutations. CAGs are genes that are normally
expressed in germ cells and aberrantly expressed in a variety
of human cancers [7]. Both classes encode highly immuno-
genic and selective tumor antigens that are now undergoing
clinical evaluation for the treatment of a number of solid
tumor malignancies by antigen-directed ITs [7].

In general, TMEs can be divided into 3 major pheno-
types: immune cold, immune altered, and immune hot [5].
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These phenotypes have their own specific mechanisms for
preventing immune responses from eradicating tumor
cells. Immune cold tumors are characterized by a shortage
of T cells in the microenvironment and a lack of suitable
T cell activation [8]. Immune altered phenotype exhibits
poor T cell infiltration (albeit not absent) due to the pres-
ence of multiple chemokines, vascular factors, and a
stromal-based barrier. In contrast, immune hot TMEs
demonstrate enhanced infiltration of multiple immune cell
subtypes and high neoantigen levels, which are counterba-
lanced by the expression of various immunoinhibitors by
tumor cells [8].

With the completion of The Cancer Genome Atlas
(TCGA) and subsequent consensus molecular classifications,
there is an opportunity for systematic analyses of the various
cancer cohorts, including comparisons and contrasts
between different disease subtypes [9]. Tumor molecular
subtypes represent a heterogeneous set of diseases with
diverse pathological and immune features [10]. For example,
much research has been conducted recently by a number of
groups in order to establish the molecular classification of
colorectal cancer [11–13]. This led to identification of four
consensus molecular subtypes (CMSs) including highly
immunogenic (CMS1), inflamed (CMS4), and two immune
cold CMSs (CMS2 and CMS3). In addition to focusing on a
single cancer type, a number of research groups have aimed
to provide pan-cancer characteristics of the tumor immune
microenvironment [14–17]. While these studies profoundly
improved the understanding of the molecular and immuno-
logical profile of a variety of cancers, much less is known
about the immunomodulators’ expression with respect to
various tumor molecular subtypes. In this study, using 13
TCGA cancer datasets, we aimed to portray major molecular
cancer subtypes by overlaying MHC expression clusters
together with expression of immunoinhibitors and CAGs,
frequencies of nonsynonymous mutations, and levels of T
CD4 and T CD8. In this study, we specifically focused on
cancer subtypes with a concordant decrease of MHC expres-
sion when compared to corresponding normal adjacent
tissue.

2. Materials and Methods

2.1. Data Acquisition. RNA-Seq-based gene transcription
profiles (raw counts, Illumina HiSeq) were downloaded from
NCI Genomic Data Commons (GDC) using the TCGABio-
links package [18]. Level 1 Illumina 450k data were down-
loaded from the NCI Genomic Data Commons (GDC)
using GDC Data Transfer Tool except for healthy tumor-
adjacent stomach tissues which profiles were obtained from
Gene Expression Omnibus (accession number: GSE85464).
Only primary tumor samples and normal tumor-adjacent tis-
sues were included in subsequent analysis. We included data-
sets consist of a relatively large number of tumor and normal
samples. Consequently, the 13 selected tumor types included
bladder urothelial carcinoma (BLCA), breast invasive carci-
noma (BRCA), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), head and neck squamous cell carcinoma
(HNSC), liver hepatocellular carcinoma (LIHC), lung adeno-

carcinoma (LUAD), lung squamous cell carcinoma (LUSC),
pancreatic adenocarcinoma (PAAD), prostate adenocarci-
noma (PRAD), stomach adenocarcinoma (STAD), thyroid
carcinoma (THCA), and uterine corpus endometrial carci-
noma (UCEC).

Data on the number of somatic nonsilent mutations
(gene level) per sample were calculated based on mutect calls
downloaded by TCGABiolinks [18]. Data on the number of
somatic nonsilent mutations in 31 MHC genes in MHC-
low subtypes were analyzed in the maftools package [19].
CD4 and CD8 T cell relative levels were adopted from Li
et al., with the exception of PAAD and ESCA, for which T
CD4 and CD8 levels were inferred by the EpiDISH package
using a robust partial correlations approach [20, 21]. If possi-
ble, the molecular subtype status for samples was adopted
from post-TCGA large-scale analyses (BLCA, HNSC, LUAD,
LUSC, PAAD, and PRAD); otherwise, samples were anno-
tated by molecular subtype data obtained from correspond-
ing TCGA publications (see Table 1). In order to assess
consensus molecular subtypes (CMS) for COAD samples,
we used the nearest template prediction (NTP) algorithm
implemented in the CMScaller package with default settings
using normalized data [22]. Samples with false discovery rate
adjusted p values > 0.05 were designated “not assigned” and
removed from subsequent analysis.

2.2. RNA-Seq Data Preprocessing. After filtering of lowly
expressed genes, raw counts were normalized using GC-
content effect adjustment and quantile normalization [23].
Next, data were normalized using log2 (counts permillion
+ 0:25) transformation [24]. Subsequently, we detected and
removed outlier samples by principal component analysis
[25]. Prior to supervised batch correction using the ComBat
algorithm, we removed duplicated samples or samples repre-
senting small batches (≤4 samples) by incorporating plate
numbers or tissue source sites as a batch variable [26]. Cancer
subtypes represented by less than 10 samples were excluded
from downstream analyses.

2.3. Illumina 450k Data Preprocessing. Illumina 450k raw
methylation underwent quality filtering and was subse-
quently preprocessed as described previously [2]. Prior to
supervised batch correction using the ComBat algorithm,
we removed duplicated samples or samples representing
small batches (≤4 samples) by incorporating plate numbers
as a batch variable.

2.4. Deconvolution of Bulk Tumor Methylation Profiles. We
used the EpiDISH package to infer fibroblasts and epithelial
and immune compartments fractions from corresponding
DNA methylation profiles by using a robust partial correla-
tions approach [27].

2.5. Selection of Immunomodulators and CAGs. We adopted
the list of 162 immunomodulators including 105 cancer
germline antigens (CAGs), 25 immunoinhibitors, and 32
MHC genes from Charoentong et al. and Wang et al. [17,
28]. Subsequently, in each cancer type, we identified and
removed lowly expressed immunomodulators. Next, we
removed immunomodulatory genes with strong (r ≥ 0:4)
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and significant (FDR-adjusted p value ≤ 0.05) Spearman cor-
relation with levels of immune compartment (Supplemen-
tary Table 1).

2.6. Calculation of Relative Effects (Probabilities). All contin-
uous variables were assessed for distribution (normal,
nonnormal) using the Anderson-Darling test. Due to non-
normal distribution of the majority of data, differences
between integrative subtypes were calculated by means of
permutation-based, nonparametric ANOVA-type statistics
implemented in the npmv package [29]. Resultant nonpara-
metric relative effects quantify the tendencies (probabilities)
observed in the data in terms of probabilities (0-1 scale).
Consequently, relative effects for each variable in each cancer
subtype can be described as lower (0-0.4), not changed (0.5),
and higher (0.6-1).

2.7. Correlation between Selected Immunomodulators. Spear-
man correlation together with false discovery rate- (FDR-)
adjusted p values was used to assess mutual correlation of
selected immunomodulators in each of the 13 cancer types
separately. We defined absolute correlation r ≥ 0:4 with
FDR ≤ 0:05 as strong. Subsequently, all strong negative and

positive correlations detected for each cancer type were con-
verted to -1 and 1 values and summarized to one matrix. All
calculations were performed in psych R package.

2.8. Unsupervised Clustering. To estimate the number of
MHC clusters in our data, we used as input expression prob-
abilities of MHC genes obtained for each cancer subtype by
implementing ANOVA-type statistic (see above). Expression
probabilities of 14 MHC genes in each cancer subtype were
then clustered by the use of the COMMUNAL package using
integrative analysis of three clustering algorithms (hierarchi-
cal clustering, k-means, and pam) and 14 cluster validation
measures [30]. We tested a range of clusters (K) from 2 to
5. Optimal K was defined based on rank aggregation of mul-
tiple validation scores. Results of unsupervised clustering
were visualized by a heat map [31].

3. Results

3.1. Selection of Immunomodulators and CAGs. In the pres-
ent study, we intended to portray expression profiles of
selected genes in tumor cells in order to better characterize
mechanisms of tumor escape from immune surveillance.

Table 1: Characteristics of cancer types included in this study and results of unsupervised clustering of expression probabilities of MHC
genes. TCGA cancer type abbreviations are provided in Materials and Methods.

Cancer
type

Tumor
Normal
adjacent

Molecular subtypes
Molecular

subtype source
MHC-low
subtypes

% of samples with MHC mutations in
molecular subtypes

BLCA 376 17
Ba-Sq; LumNS; LumP; LumU;

stroma-rich
[32]

LumNS
LumP
LumU

Stroma-rich

Ba‐Sq = 13; LumNS = 0; LumP = 13;
LumU = 12; stroma‐rich = 13

BRCA 1090 99
Basal; Her2; LumA; LumB;

normal-like
[33]

LumA
LumB

Basal = 7; Her2 = 8; LumA = 4; LumB = 4;
normal‐like = 0

COAD 441 33 CMS1; CMS2; CMS3; CMS4 [22]
CMS2
CMS3
CMS4

CMS1 = 63; CMS2 = 4; CMS3 = 18; CMS4
= 14

ESCA 143 5 EAC; ESCC1; ESCC2 [34] ESCC1 EAC = 18; ESCC1 = 10; ESCC2 = 6

HNSC 462 40
CIMP; HPV; non-CIMP;

NSD1; stem-like
[10]

NSD1
Stem-like

CIMP = 22; HPV = 17; non‐CIMP = 12;
NSD1 = 7; stem‐like = 9

LIHC 317 46
iCluster-1; iCluster-2; iCluster-

3
[35]

iCluster-1
iCluster-2

iCluster‐1 = 12; iCluster‐2 = 11; iCluster‐3
= 22

LUAD 474 57
AD-1; AD-2; AD-3; AD-4; AD-

5a; AD-5b
[9]

AD-5a
AD-5b

AD‐1 = 8; AD‐2 = 12; AD‐3 = 15; AD‐4 = 7
; AD‐5a = 10; AD‐5b = 0

LUSC 447 46 AD-1; SQ-1; SQ-2a; SQ-2b [9]
AD-1
SQ-2b

AD‐1 = 7; SQ‐1 = 16; SQ‐2a = 13; SQ‐2b =
7

PAAD 146 3
ADEX; immunogenic;
progenitor; squamous

[36]
ADEX

squamous
ADEX = 0; immunogenic = 0; progenitor

= 0; squamous = 0

PRAD 442 41 S1; S2; S3 [37] S3 S1 = 1; S2 = 0; S3 = 2

STAD 334 24 CIN; EBV; GS; MSI [38]
CIN
GS

CIN = 8; EBV = 9; GS = 0; MSI = 68

THCA 481 49
THCA-1; THCA-2; THCA-3;

THCA-4; THCA-5
[39]

THCA-1
THCA-3
THCA-5

THCA‐1 = 0; THCA‐2 = 0; THCA‐3 = 0;
THCA‐4 = 2; THCA‐5 = 2

UCEC 498 32
CN-HIGH; CN-LOW; MSI;

POLE
[40] CN_HIGH

CN‐HIGH = 7; CN‐LOW= 4; MSI = 40;
POLE = 79
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Therefore, we aimed to control the confounding effect of
levels of immune infiltrates on the expression of immunore-
gulators and CAGs. Consequently, we used methylation pro-
files of each tumor and deconvolution algorithm to calculate
relative proportion estimates of epithelial, fibroblast, and
immune compartment in each tumor. Finally, we decided
to discard genes with strong correlation to immune compart-
ment estimates in each tumor type. In brief, out of 162
selected genes, approximately 50% were removed from
downstream analyses due to low expression (in at least one
cancer subtype) or significant and strong positive correlation
with estimated levels of immune compartment of tumors.
Therefore, 76 immunomodulatory genes were retained for
subsequent analyses including 50 CAGs, 12 immunoinhibi-
tors, and 14 MHC genes. Immunomodulators with strong
or weak correlation with estimated levels of immune com-
partment are listed in Supplementary Table 1. In particular,
selected MHC genes included genes involved in antigen
processing (CALR, CANX, ERAP1, ERAP2, PDIA3, PSMB5,
PSMB6, PSMB7, PSMB8, and PSMB10), antigen transport
(TAPPB), and antigen presentation (HLA-C, HLA-G, and
HLA-DQA2).

3.2. Correlation between Immunomodulators. A heat map
summarizing the number of strong correlations between
immunomodulators in 13 cancer subtypes is provided in
Figure 1. We observed mutual, strong, and positive correla-
tions observed in majority of cancer types between HLA-C,
HLA-G, PSMB8, PSMB10, TAPBP, and ERAP1. We also
observed strong, positive, and mutual correlations between
PSMB5, PSMB6, and PSMB7. In addition, PSMB10 expres-
sion was positively correlated with T CD8 levels (in 7 out of
13 datasets) and TAPPB was correlated with TCD4 levels in
6 cancer datasets. Other positive correlations were much
more variable and were noted in less than 4 cancer datasets.
Negative correlations were much less repeatable than nega-
tive correlations. The most frequent one was observed
between PSMB7 and SPAG9 in 4 cancer datasets.

3.3. Unsupervised Clustering Uncovers Cancer Subtypes with
Low MHC Expression. In the present study, the 5651 tumor
samples representing 13 cancer types were assigned to 55
molecular cancer subtypes and corresponding normal adja-
cent tissues (Table 1). Subsequently, in each cancer type,
the gene expression of selected immunomodulatory genes,
frequencies of nonsynonymous mutations, and levels of T
CD4 and T CD8 were compared between subtypes and nor-
mal adjacent tissues by means of multivariate, nonparametric
ANOVA-type statistics [29]. Resultant probabilities of each
selected variable in each subtype being highly or lowly
expressed were collected. Subsequently, expression probabil-
ities of MHC genes in each cancer subtype were subjected to
unsupervised clustering using aggregation of 3 major cluster-
ing algorithms and 14 validity measures (see Materials and
Methods) [30]. Three MHC clusters were proposed as an
optimal clustering solution. Consequently, tumor subtypes
were classified into three MHC subgroups (Figure 2,
Table 1, Supplementary Figure 1): (i) with clearly elevated
expression of MHC (MHC-high) in 8 cancer subtypes, (ii)

with intermediate elevation of MHC expression (MHC-
intermediate) in 21 cancer subtypes, and (iii) with clearly
decreased expression of MHC (MHC-low) in 26 cancer
subtypes.

3.4. Immunoregulatory Correlates of Cancer Subtypes with
respect to MHC Expression. We investigated whether MHC
subtypes display dependencies that may help to guide per-
sonalized immunotherapies. We focused on expression of
CAGs, immunoinhibitors, CD4 and CD8 T cell levels, and
the number of somatic nonsilent mutations (Figure 1). Sup-
plementary Figures 2–4 depict expression probabilities of
each immunomodulator averaged over the three MHC
clusters. In general, MHC-high was clearly outstanding in
terms of high expression of immunoinhibitors and a higher
number of somatic nonsilent mutations and enrichment
with CD4 or CD8 T cells (Supplementary Figure 4).
Differences between MHC-intermediate and MHC-low
were much less pronounced except of significantly lower
expression of the majority of MHC genes (Supplementary
Figure 1). Expression levels of the majority of
immunoinhibitors in MHC-intermediate and MHC-low
subgroups were at probability equal to 0.5 indicating lack of
change when compared to normal tissue (Supplementary
Figure 2). In general, we observed consistent expression of
CAGs across 3 MHC subgroups. With few exceptions, most
of CAGs were at a similar or lower level of expression when
compared to normal tissue. LEMD1 displayed high
expression probabilities in MHC-high. In addition,
expression probabilities of KIF20B, PBK, OIP5, and KNL1
were clearly above neutral threshold (0.5) in MHC-high
and MHC-intermediate. TSGA10 was predominantly
elevated in some MHC-low tumors (THCA-1, LUSC-AD1,
COAD-CMS3, BLCA-LumU, BLCA-LumP, and COAD-
CMS2) (Figure 1, Supplementary Figure 3). MHC-
intermediate displayed higher levels of CD8 T cell levels
and the number of somatic nonsilent mutations when
compared to MHC-low (Figure 1, Supplementary Figure 4).
However, there were a few exceptions in the MHC-low
subgroup from this trend. For example, BLCA-LumU,
LUAD AD-1, and HNSC NSD1 subtypes displayed a high
number of nonsilent mutations (Figure 1).

3.5. Somatic Mutations of MHC Genes in MHC-Low
Subtypes. We investigated the possibility that MHC defi-
ciency in MHC-low subtypes is due to the accumulation of
nonsynonymous somatic mutations in MHC genes. We
found that the mutation frequency in 31 MHC genes ranges
from 0% to 18% depending on cancer subtype (Table 1).

4. Discussion

Recently, rapid growth of knowledge has occurred regarding
genetic, epigenetic, and proteomic alterations associated with
various cancers. This has led to the conclusion that cancer is a
heterogeneous disease with molecular alterations often dic-
tating tumor evolution, response to treatment, and outcome
[41]. In addition, complex interplay of tumor cells with com-
ponents of the TME has emerged as a critical aspect of tumor
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biology and was strongly associated with the host ability to
control growth and respond to ITs [42]. Consequently, a
number of studies focused on immune subtyping of tumors.
For example, Rooney et al. based on pan-cancer analysis of 18
cancer types proposed an RNA-based metric of immune
“cytolytic activity” and defined several factors that enable
tumors to resist immune attack including mutations in anti-
gen presentation machinery [16]. Recently, pan-cancer anal-
ysis by Charoentong et al. characterizing immune infiltrates
across 20 cancer types provided a multigene predictor
(“immunophenoscore”) of patient response to checkpoint
blockade (CTLA-4 and PD-1 blockers) [17]. Finally, Thors-
son et al. in 2018 identified six immune pan-cancer subtypes
that are hypothesized to define immune response patterns
impacting patient prognosis. This study suggested that cer-
tain therapeutic approaches may be considered regardless of
tumor location or histology [43]. However, individual tumor
types varied substantially in their proportion of immune sub-
types and in their prognostic impact [44]. Thorsson et al. also
emphasized the importance of CAGs in stimulating T cell
responses directed against this antigen class [43].

In parallel to immune subtyping, promising strategies
rely on molecular subtyping of tumors, which extends the
portfolio of possible effective treatments by characterizing
specific biological pathways altered in tumor subtypes. Colo-
rectal cancer with the four subtypes identified (CMS1-CMS4)
exemplifies the most robustly characterized cancer type in
terms of TME composition and intrinsic pathway alterations
[41]. While our analysis is unique in terms of depicting
immune landscape of tumor cells in the multiple cancer
molecular subtypes, there are several reports characterizing
expression of immune-related genes in molecular subtypes
of selected tumors [45]. For example, Becht et al. and Kar-
pinski et al. provided independently immune characteristics
of consensus molecular subtypes in CRC. In agreement with
current analysis, CMS2 and CMS3 were defined as immune
cold subtypes with low expression of MHC genes [46, 47].
It has to be noted, however, that in contrast to previous anal-
yses we removed genes strongly correlated with immune
compartment of tumor. This was done to depict expression
of immune regulators in tumor cell fraction rather than in
lymphatic infiltrate. Consequently, some tumor subtypes
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known for their relatively high levels of immune infiltration
were classified as MHC-low (CRC CMS4) or MHC-
intermediate (HNSC HPV or PAAD immunogenic).

Due to improved survival and an increased response rate
to checkpoint inhibitors, much attention has been paid to
cancer subtypes with the immune hot phenotype [8]. How-
ever, tumor subtypes representing immune cold phenotypes
are much less characterized in terms of possible immuno-
therapeutic strategies [8]. In this context, the purpose of
our study was to specifically depict cancer molecular sub-
types using MHC-derived expression clusters and the expres-
sion profile of immunomodulators, to indicate possible
therapeutic strategies in subtypes displaying the immune
cold (MHC-low) phenotype. As mentioned before, we
focused on genes which expression was independent from
immune infiltration. More than half of selected MHC genes
displayed concordant, positive correlation across majority
of cancer types. These genes are involved in all critical steps
from antigen processing and transport to antigen presenta-
tion, thus suggesting existence of biologically important rela-
tionships independent of cancer type. Our approach has
allowed us to identify a group of 26 tumor subtypes with a
concordant decrease of MHC expression when compared to

other subtypes and corresponding normal adjacent tissues,
which suggests neoantigen processing and presentation dys-
function as a route to escape from T cell-mediated immuno-
surveillance in these subtypes [48]. Furthermore, all MHC-
low subtypes displayed comparable levels of most of immu-
noinhibitors to normal tissue. This suggests that MHC-low
subtypes are unlikely to respond to the majority of current
anticancer immunotherapies and trials, including immune
checkpoint inhibitors, CAG-based vaccines, and immune-
cell engineering [49, 50]. However, low levels of immunoin-
hibitors also suggest that MHC-low subtypes are unlikely to
be infiltrated by anergic and hyperexhausted cytotoxic T cells
[51]. Furthermore, elevated expression of some CAGs
observed in MHC-low (e.g., TSGA10) suggests a weak spot
that could be utilized to reactivate T cell-mediated cytotoxic-
ity on condition that the antigen processing and presentation
machinery is restored. If we consider the altered pattern of
neoantigen (CAGs) expression and infiltration by nondys-
functional cytotoxic T cells observed in most MHC-low sub-
types, we find that reconstitution of MHC expression in
MHC-low tumors could make them more susceptible to
immune elimination. Moreover, the elevated load of somatic
mutations observed in BLCA-LumU, LUAD AD-1, and
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of immunoinhibitors and CAGs, frequencies of nonsynonymous mutations (other/MUTsum), and levels of T CD4 and T CD8
(other/TCD4 and TCD8). Expression probability for each variable in each cancer subtype can be described as lower (0-0.4), not changed
(0.5), and higher (0.6-1).
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HNSC NSD1 subtypes will make them even more vulnerable
to unleashing the preexisting immunity when compared to
other MHC-low subtypes [52]. In summary, restoration of
MHC gene expression might be very effective in the induc-
tion of antitumor immune response in MHC-low tumor
subtypes.

It did not escape our attention that MHC-intermediate
subtypes defined in this study were relatively similar (in
terms of analyzed variables) to MHC-low, except for more
elevated expression of MHC genes, expression of four CAGs,
and increased incidence of high mutational burden and T
CD8 levels. At this stage, we are not able to provide definite
interpretation, whether MHC-intermediate tumors will
require different therapeutic approach than MHC-low. Fur-
ther studies including much more variables (for example,
miRNA and/or lncRNA expression) are necessary to exam-
ine differences between MHC-low and MHC-intermediate
subtypes.

Currently, therapeutic approaches against immune cold
tumors are very limited. Consequently, immune cold tumors
are most challenging to treat and are associated with poor
prognosis [8]. In principle, effective treatment of immune
cold subtypes will require combinatorial therapies including
intratumoral gene therapy (for instance, transfection of the
missing MHC using viral vectors) and vaccination to
enhance T cell responses [49]. Other promising strategies
include bypassing the limitation of HLA-restricted antigen
recognition [53]. For example, T cells recruiting bispecific
antibodies enable simultaneous binding of a tumor cell sur-
face antigen and the CD3 domain of the TCR complex. Con-
sequently, this recruits the T cells to targeted tumor cells [53].
In numerous preclinical studies, radiotherapy has proven to
induce MHC expression at the surface of cancer cells. How-
ever, there is still a lack of optimal radiotherapy regimen
(in terms of dose, fractionation, sequencing, and timing) to
treat immune cold cases [8].

A deeper knowledge on the molecular mechanisms
responsible for MHC downregulation in MHC-low subtypes
needs to be gained to carefully develop an efficient approach
to restoreMHC expression [54]. In this study, we did not find
evidence that nonsynonymous somatic mutations are
responsible for MHC dysfunction in MHC-low subtypes.
Therefore, future studies should focus on other potential
mechanisms responsible for MHC downregulation.

5. Study Limitations

There are potential limitations to this study that should be
considered. First, by preforming pan-cancer analysis, we
attempted to find general mechanism(s) shared between
many cancer types. This leads to the removal of variables that
are specific to certain cancer types; therefore, future studies
on MHC expression focused on a single cancer type may cer-
tainly provide valuable and important insights. Second, our
study relies on transcriptomic profiles derived from bulk
tumor samples; therefore, intrasample cellular heterogeneity
presents important factor that confounds the analysis. For
example, we demonstrated that ~50% of selected immuno-
modulators are likely to be expressed by immune fraction

of tumors. Therefore, further studies are necessary to pre-
cisely establish MHC gene expression in epithelial fraction
of the tumors in each cancer subtype. Consequently, immu-
nohistochemistry measurements to quantify the MHC pro-
tein expression are necessary to validate results obtained in
this study.
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Supplementary figure 1. Box plots depicting expression prob-
abilities of MHC genes averaged across different cancer sub-
types that were assigned to 3 MHC clusters (MHC-high,
MHC-intermediate and MHC-low). Y-axis defines expres-
sion probability for each variable in each cancer subtype
can be described as lower (0-0.4), not changed (0.5) and
higher (0.6-1). Supplementary figure 2. Box plots depicting
expression probabilities of immunoinhibitors averaged
across different cancer subtypes that were assigned to 3
MHC clusters (MHC-high, MHC-intermediate and MHC-
low). Y-axis defines expression probability for each variable
in each cancer subtype can be described as lower (0-0.4),
not changed (0.5) and higher (0.6-1). Supplementary figure
3. Box plots depicting expression probabilities of CAGs aver-
aged across different cancer subtypes that were assigned to 3
MHC clusters (MHC-high, MHC-intermediate and MHC-
low). Y-axis defines expression probability for each variable
in each cancer subtype can be described as lower (0-0.4),
not changed (0.5) and higher (0.6-1). Supplementary figure
4. Box plots depicting probabilities of sum of mutations and
estimated levels of TCD4 and TCD8 cells averaged across
different cancer subtypes that were assigned to 3 MHC clus-
ters (MHC-high, MHC-intermediate and MHC-low). Y-axis
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defines expression probability for each variable in each can-
cer subtype can be described as lower (0-0.4), not changed
(0.5) and higher (0.6-1). Supplementary table 1. Correlation
between expression of immune-related genes and estimated
levels of tumor cellular compartments (epithelial, fibroblasts
and immune cells). Strong and significant correlation (Yes)
was defined as absolute correlation r ≥ 0.4 with FDR ≤ 0.05.
(Supplementary materials)

References

[1] C. Shembrey, N. D. Huntington, and F. Hollande, “Impact of
Tumor and Immunological Heterogeneity on the Anti-Cancer
Immune Response,” Cancers, vol. 11, no. 9, p. 1217, 2019.

[2] P. Karpinski, A. V. Patai, W. Hap, W. Kielan, I. Laczmanska,
and M. M. Sasiadek, “Multilevel omic data clustering reveals
variable contribution of methylator phenotype to integrative
cancer subtypes,” Epigenomics, vol. 10, no. 10, pp. 1289–
1299, 2018.

[3] G. L. Beatty and W. L. Gladney, “Immune escape mechanisms
as a guide for cancer immunotherapy,” Clinical Cancer
Research, vol. 21, no. 4, pp. 687–692, 2015.

[4] M. Sambi, L. Bagheri, and M. R. Szewczuk, “Current chal-
lenges in cancer immunotherapy: multimodal approaches to
improve efficacy and patient response rates,” Journal of Oncol-
ogy, vol. 2019, Article ID 4508794, 12 pages, 2019.

[5] P. Darvin, S. M. Toor, V. Sasidharan Nair, and E. Elkord,
“Immune checkpoint inhibitors: recent progress and potential
biomarkers,” Experimental & Molecular Medicine, vol. 50,
no. 12, pp. 1–11, 2018.

[6] D. Ostroumov, N. Fekete-Drimusz, M. Saborowski, F. Kühnel,
and N. Woller, “CD4 and CD8 T lymphocyte interplay in con-
trolling tumor growth,” Cellular and Molecular Life Sciences,
vol. 75, no. 4, pp. 689–713, 2018.

[7] S. N. Akers, K. Odunsi, and A. R. Karpf, “Regulation of cancer
germline antigen gene expression: implications for cancer
immunotherapy,” Future Oncology, vol. 6, no. 5, pp. 717–
732, 2010.

[8] J. Galon and D. Bruni, “Approaches to treat immune hot,
altered and cold tumours with combination immunother-
apies,” Nature Reviews. Drug Discovery, vol. 18, no. 3,
pp. 197–218, 2019.

[9] F. Chen, Y. Zhang, E. Parra et al., “Multiplatform-based
molecular subtypes of non-small-cell lung cancer,” Oncogene,
vol. 36, no. 10, pp. 1384–1393, 2017.

[10] K. Brennan, J. L. Koenig, A. J. Gentles, J. B. Sunwoo, and
O. Gevaert, “Identification of an atypical etiological head and
neck squamous carcinoma subtype featuring the CpG island
methylator phenotype,” eBioMedicine, vol. 17, pp. 223–236,
2017.

[11] J. Guinney, R. Dienstmann, X. Wang et al., “The consensus
molecular subtypes of colorectal cancer,” Nature Medicine,
vol. 21, no. 11, pp. 1350–1356, 2015.

[12] R. Dienstmann, L. Vermeulen, J. Guinney, S. Kopetz, S. Tejpar,
and J. Tabernero, “Consensus molecular subtypes and the evo-
lution of precision medicine in colorectal cancer,” Nature
Reviews. Cancer, vol. 17, no. 2, pp. 79–92, 2017.

[13] M. Angelova, P. Charoentong, H. Hackl et al., “Characterization
of the immunophenotypes and antigenomes of colorectal can-
cers reveals distinct tumor escape mechanisms and novel targets
for immunotherapy,” Genome Biology, vol. 16, no. 1, 2015.

[14] V. Thorsson, D. L. Gibbs, S. D. Brown et al., “The immune
landscape of cancer,” Immunity, vol. 48, no. 4, pp. 812–
830.e14, 2018.

[15] M. Manoharan, N. Mandloi, S. Priyadarshini et al., “A compu-
tational approach identifies immunogenic features of progno-
sis in human cancers,” Frontiers in Immunology, vol. 9,
p. 3017, 2018.

[16] M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, and N. Hacohen,
“Molecular and genetic properties of tumors associated with
local immune cytolytic activity,” Cell, vol. 160, no. 1-2,
pp. 48–61, 2015.

[17] P. Charoentong, F. Finotello, M. Angelova et al., “Pan-cancer
immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint block-
ade,” Cell Reports, vol. 18, no. 1, pp. 248–262, 2017.

[18] M. Mounir, M. Lucchetta, T. C. Silva et al., “New functionali-
ties in the TCGAbiolinks package for the study and integration
of cancer data from GDC and GTEx,” PLoS Computational
Biology, vol. 15, no. 3, 2019.

[19] A. Mayakonda, D. C. Lin, Y. Assenov, C. Plass, and H. P. Koef-
fler, “Maftools: efficient and comprehensive analysis of
somatic variants in cancer,” Genome Research, vol. 28,
no. 11, pp. 1747–1756, 2018.

[20] B. Li, E. Severson, J. C. Pignon et al., “Comprehensive analyses
of tumor immunity: implications for cancer immunotherapy,”
Genome Biology, vol. 17, no. 1, p. 174, 2016.

[21] A. E. Teschendorff, C. E. Breeze, S. C. Zheng, and S. Beck, “A
comparison of reference-based algorithms for correcting cell-
type heterogeneity in epigenome-wide association studies,”
BMC Bioinformatics, vol. 18, no. 1, p. 105, 2017.

[22] P. W. Eide, J. Bruun, R. A. Lothe, and A. Sveen, “CMScaller: an
R package for consensus molecular subtyping of colorectal
cancer pre-clinical models,” Scientific Reports, vol. 7, no. 1,
p. 16618, 2017.

[23] A. Colaprico, T. C. Silva, C. Olsen et al., “TCGAbiolinks: an
R/Bioconductor package for integrative analysis of TCGA
data,” Nucleic Acids Research, vol. 44, no. 8, 2016.

[24] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a
Bioconductor package for differential expression analysis of
digital gene expression data,” Bioinformatics, vol. 26, no. 1,
pp. 139-140, 2009.

[25] A. D. Shieh and Y. S. Hung, “Detecting Outlier Samples in
Microarray Data,” Statistical Applications in Genetics and
Molecular Biology, vol. 8, no. 1, pp. 1–24, 2009.

[26] M. Lauss, I. Visne, A. Kriegner, M. Ringnér, G. Jönsson, and
M. Höglund, “Monitoring of technical variation in quantita-
tive high-throughput datasets,” Cancer Inform, vol. 12,
pp. 193–201, 2013.

[27] S. C. Zheng, C. E. Breeze, S. Beck, and A. E. Teschendorff,
“Identification of differentially methylated cell types in
epigenome-wide association studies,” Nature Methods,
vol. 15, no. 12, pp. 1059–1066, 2018.

[28] S.Wang, Z. He, X.Wang, H. Li, and X. S. Liu, “Antigen presen-
tation and tumor immunogenicity in cancer immunotherapy
response prediction,” eLife, vol. 8, 2019.

[29] W. W. Burchett, A. R. Ellis, S. W. Harrar, and A. C. Bathke,
“Nonparametric Inference for Multivariate Data: TheRPack-
agenpmv,” Journal of Statistical Software, vol. 76, no. 4,
2017.

[30] T. E. Sweeney, A. C. Chen, and O. Gevaert, “Combined Map-
ping of Multiple clUsteriNg ALgorithms (COMMUNAL): A

8 Journal of Immunology Research

http://downloads.hindawi.com/journals/jir/2020/8758090.f1.pdf


Robust Method for Selection of Cluster Number, K,” Scientific
Reports, vol. 5, no. 1, 2015.

[31] Z. Gu, R. Eils, and M. Schlesner, “Complex heatmaps reveal
patterns and correlations in multidimensional genomic data,”
Bioinformatics, vol. 32, no. 18, pp. 2847–2849, 2016.

[32] A. Kamoun, A. de Reyniès, Y. Allory et al., “A consensus
molecular classification of muscle-invasive bladder cancer,”
European Urology, vol. 77, no. 4, pp. 420–433, 2020.

[33] The Cancer Genome Atlas Network, “Comprehensive molecu-
lar portraits of human breast tumours,” Nature, vol. 490,
no. 7418, pp. 61–70, 2012.

[34] The Cancer Genome Atlas Research Network, “Integrated
genomic characterization of oesophageal carcinoma,” Nature,
vol. 541, no. 7636, pp. 169–175, 2017.

[35] The Cancer Genome Atlas Research Network, “Comprehen-
sive and integrative genomic characterization of hepatocellular
carcinoma,” Cell, vol. 169, pp. 1327–1341.e1323, 2017.

[36] E. A. Collisson, P. Bailey, D. K. Chang, and A. V. Biankin,
“Molecular subtypes of pancreatic cancer,” Nature Reviews.
Gastroenterology & Hepatology, vol. 16, no. 4, pp. 207–220,
2019.

[37] A. Kamoun, G. Cancel-Tassin, G. Fromont et al., “Compre-
hensive molecular classification of localized prostate adenocar-
cinoma reveals a tumour subtype predictive of non-aggressive
disease,” Annals of Oncology, vol. 29, no. 8, pp. 1814–1821,
2018.

[38] The Cancer Genome Atlas Research Network, “Comprehen-
sive molecular characterization of gastric adenocarcinoma,”
Nature, vol. 513, no. 7517, pp. 202–209, 2014.

[39] C. G. A. R. Network, “Integrated genomic characterization of
papillary thyroid carcinoma,” Cell, vol. 159, pp. 676–690,
2014.

[40] D. A. Levine and The Cancer Genome Atlas Research Net-
work, “Integrated genomic characterization of endometrial
carcinoma,” Nature, vol. 497, no. 7447, pp. 67–73, 2013.

[41] D. G. Menter, J. S. Davis, B. M. Broom, M. J. Overman,
J. Morris, and S. Kopetz, “Back to the colorectal cancer consen-
sus molecular subtype future,” Current Gastroenterology
Reports, vol. 21, no. 2, p. 5, 2019.

[42] C. Walker, E. Mojares, and A. Del Río Hernández, “Role of
extracellular matrix in development and cancer progression,”
International Journal of Molecular Sciences, vol. 19, no. 10,
p. 3028, 2018.

[43] V. Thorsson, D. L. Gibbs, S. D. Brown et al., “The immune
landscape of cancer,” Immunity, vol. 51, no. 2, pp. 411-412,
2019.

[44] B. Soldevilla, C. Carretero-Puche, G. Gomez-Lopez et al., “The
correlation between immune subtypes and consensus molecu-
lar subtypes in colorectal cancer identifies novel tumour
microenvironment profiles, with prognostic and therapeutic
implications,” European Journal of Cancer, vol. 123, pp. 118–
129, 2019.

[45] Y. Bareche, L. Buisseret, T. Gruosso et al., “Unraveling triple-
negative breast cancer tumor microenvironment heterogene-
ity: towards an optimized treatment approach,” Journal of
the National Cancer Institute, vol. 112, no. 7, pp. 708–719,
2020.

[46] E. Becht, A. de Reyniès, N. A. Giraldo et al., “Immune and stro-
mal classification of colorectal cancer is associated with molec-
ular subtypes and relevant for precision immunotherapy,”
Clinical Cancer Research, vol. 22, no. 16, pp. 4057–4066, 2016.

[47] P. Karpinski, J. Rossowska, and M. M. Sasiadek, “Immunolog-
ical landscape of consensus clusters in colorectal cancer,”
Oncotarget, vol. 8, no. 62, pp. 105299–105311, 2017.

[48] M. Y. Lee, J. W. Jeon, C. Sievers, and C. T. Allen, “Antigen pro-
cessing and presentation in cancer immunotherapy,” Journal
for Immunotherapy of Cancer, vol. 8, no. 2, p. e001111, 2020.

[49] M. de Charette, A. Marabelle, and R. Houot, “Turning tumour
cells into antigen presenting cells: the next step to improve
cancer immunotherapy?,” European Journal of Cancer,
vol. 68, pp. 134–147, 2016.

[50] J. G. Egen, W. Ouyang, and L. C. Wu, “Human anti-tumor
immunity: insights from immunotherapy clinical trials,”
Immunity, vol. 52, no. 1, pp. 36–54, 2020.

[51] K. Catakovic, E. Klieser, D. Neureiter, and R. Geisberger, “T
cell exhaustion: from pathophysiological basics to tumor
immunotherapy,” Cell Communication and Signaling: CCS,
vol. 15, no. 1, p. 1, 2017.

[52] L. P. Richman, R. H. Vonderheide, and A. J. Rech, “Neoantigen
Dissimilarity to the Self-Proteome Predicts Immunogenicity
and Response to Immune Checkpoint Blockade,” Cell Systems,
vol. 9, no. 4, pp. 375–382.e4, 2019.

[53] P. Bonaventura, T. Shekarian, V. Alcazer et al., “Cold tumors: a
therapeutic challenge for immunotherapy,” Frontiers in
Immunology, vol. 10, p. 168, 2019.

[54] I. Romero, C. Garrido, I. Algarra et al., “MHC intratumoral
heterogeneity may predict cancer progression and response
to immunotherapy,” Frontiers in Immunology, vol. 9, p. 102,
2018.

9Journal of Immunology Research


	Major Histocompatibility Complex Genes as Therapeutic Opportunity for Immune Cold Molecular Cancer Subtypes
	1. Introduction
	2. Materials and Methods
	2.1. Data Acquisition
	2.2. RNA-Seq Data Preprocessing
	2.3. Illumina 450k Data Preprocessing
	2.4. Deconvolution of Bulk Tumor Methylation Profiles
	2.5. Selection of Immunomodulators and CAGs
	2.6. Calculation of Relative Effects (Probabilities)
	2.7. Correlation between Selected Immunomodulators
	2.8. Unsupervised Clustering

	3. Results
	3.1. Selection of Immunomodulators and CAGs
	3.2. Correlation between Immunomodulators
	3.3. Unsupervised Clustering Uncovers Cancer Subtypes with Low MHC Expression
	3.4. Immunoregulatory Correlates of Cancer Subtypes with respect to MHC Expression
	3.5. Somatic Mutations of MHC Genes in MHC-Low Subtypes

	4. Discussion
	5. Study Limitations
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

