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Abstract

Current Bayesian microarray models that pool multiple studies assume gene expression is independent of other genes.
However, in prokaryotic organisms, genes are arranged in units that are co-regulated (called operons). Here, we introduce a
new Bayesian model for pooling gene expression studies that incorporates operon information into the model. Our
Bayesian model borrows information from other genes within the same operon to improve estimation of gene expression.
The model produces the gene-specific posterior probability of differential expression, which is the basis for inference. We
found in simulations and in biological studies that incorporating co-regulation information improves upon the
independence model. We assume that each study contains two experimental conditions: a treatment and control. We
note that there exist environmental conditions for which genes that are supposed to be transcribed together lose their
operon structure, and that our model is best carried out for known operon structures.
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Introduction

The wealth of gene expression data currently being produced

has created an urgent need for new statistical methods to analyze

and pool this information. A common goal of gene expression

studies is to identify genes that are differentially expressed between

two conditions, such as wildtype versus mutant or treatment versus

control. Bayesian and empirical Bayesian models have been

developed extensively for individual microarray studies (Baldi and

Long [1]; Efron et al. [2]; Newton et al. [3], [4]; Tseng et al. [5];

Broët et al. [6]; Ibrahim et al. [7]; Lönnstedt and Speed [8];

Townsend and Hartl [9]; Gottardo et al. [10]; Ishwaran and Rao

[11], [12]; Kendziorski et al. [13]; Do et al. [14]; Lönnstedt and

Britton [15]), and several Bayesian approaches have recently been

introduced to combine multiple microarray studies (Choi et al.

[16]; Shen et al. [17]; Jung et al. [18]; Conlon et al. [19], [20];

Scharpf et al. [21]; see also Tseng et al. [22] for a comprehensive

review of meta-analysis methods). Choi et al. [16] introduced the

first Bayesian meta-analysis model to detect differentially ex-

pressed genes between two experimental conditions. This

approach combined standardized gene effects into an overall

mean effect across studies, and included an inter-study variability

parameter in the model. Shen et al. [17] implemented a Bayesian

model within each separate study to transform gene expression

measures to expression probabilities. The converted data was

pooled across studies to identify prognostic markers for disease. In

this method, Bayesian models were used for data pre-processing,

but not as a data integration procedure. Jung et al. [18]

introduced a Bayesian model-based clustering method for meta-

analysis to identify differentially-expressed genes between two

samples. This model specified a normal mixture prior distribution

for the gene effects, with the number of components unknown.

The number of components was calculated by first modeling a

large number, e.g. 10, and counting the number of non-empty

components in the observed results. Similar to Choi et al. [17],

Jung et al. [18] pooled standardized gene effect size estimates into

an overall mean effect across studies, and included a parameter of

inter-study variability in the model. Unlike these previous

methods, Conlon et al. ([19], [20]) introduced a Bayesian meta-

analysis model that treated each study separately, combining only

probabilities of differential expression without integrating expres-

sion values. In a comparative study of Bayesian meta-analysis

models, Conlon et al. [20] found that combining only probabilities

of differential expression outperformed pooling expression mea-

sures across studies, for their data sets.

The current Bayesian meta-analysis models assume that the

average expression of a gene is independent of other genes.

However, in prokaryotic species, many genes are organized in

operons, which consist of two or more genes that are next to each

other on the chromosome and commonly transcribed. Genes

within an operon tend to have similar levels of expression (Xiao

et al. [23]); this fact is commonly used in predicting operon

structure (Sabatti et al. [24]; Bockhorst et al. [25]). More

specifically, Xiao et al. [23] examined 217 microarray experi-

ments for 53 conditions of the bacterium Escherichia coli. They

found high correlation of expression among pairs of genes in

predicted operons (mean correlation 0.62), and correlation near

zero for randomly selected pairs of genes (mean correlation 0.012).

Based on these findings, Xiao et al. [23] developed a Bayesian

model for individual microarray studies that incorporated

predicted operon structure; this model borrowed information
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across genes within an operon to estimate gene expression levels.

The authors found that incorporating operon structure into the

model improved the detection of differentially expressed genes

versus an independence model for one study. Additional Bayesian

models for individual microarray studies have included operon

structure as prior information in the models (Price et al. [26]; Pin

et al. [27]). However, operon structure has not previously been

incorporated into Bayesian meta-analysis models for microarray

data. Here, we develop a new Bayesian meta-analysis model that

incorporates operon information into the model. Our Bayesian

meta-analysis operon model borrows information from genes

within the same operon; our model then produces the posterior

probability of differential expression for each gene. This posterior

probability of differential expression is the basis for inference. We

found in simulations of two and five studies that our operon model

outperformed the independence model by using three comparison

measures: the proportion of true genes discovered in meta-analysis

versus individual studies, the number of true genes discovered for

fixed levels of Bayesian false discovery, and the number of true

discoveries for a fixed top number of genes. When pooling two

Geobacter (G.) sulfurreducens microarray studies, we show that the

operon model produces higher proportions of discovered genes in

meta-analysis versus separate analyses than the independence

model. In addition, for the same thresholds of Bayesian false

discovery, we illustrate that the operon model identifies more

discoveries than the independence model for this biological data.

We note that there exist environmental conditions for which genes

that are supposed to be transcribed together lose their operon

structure, and that our model is best carried out for known operon

structures.

Methods

Bayesian Meta-analysis Independence Model
Biologists frequently carry out independent microarray studies

for the same biological system or pathway; often using different

technologies. For example, Methé et al. [28] used spotted DNA

microarrays to examine nitrogen fixation in G. sulfurreducens.

Alternatively, Postier et al. [29] studied this same pathway using

CombiMatrix short oligonucleotide arrays (for further details of

the biological data, see Appendix S1: Biological data). By

combining the two studies, we increase the sample size and more

precisely identify true target genes. More broadly, data typically

consists of multiple independent studies for one biological system,

with two conditions: a treatment and control; Bayesian meta-

analysis models integrate this information in a systematic way. The

following model combines studies from two different platforms,

spotted and oligonucleotide arrays, and assumes that the average

expression of a gene is independent of other genes. It is similar to

the model introduced by Conlon et al. [19]; the spotted array

study consists of replicate slides within repeated experiments, and

the oligonucleotide array study contains multiple probes, slides

and experiments. We specify Model (1) as follows.

For spotted array (SA) studies:

yjgseDmjge*N(mjge,t2
jg), j~1,:::,JSA; g~1,:::,G; s~1,:::,Se;

e~1,:::,E

mjgeDhjg*N(hjg,s2
jg), j~1,:::,JSA; g~1,:::,G; e~1,:::,E

For oligonucleotide array studies:

yjgbseDvjgse*N(vjgse,w2
j ), j~(JSAz1),:::,J; g~1,:::,G;

b~1,:::,Bg; s~1,:::,Se; e~1,:::,E

vjgseDmjge*N(mjge,t2
jg), j~(JSAz1),:::,J; g~1,:::,G;

s~1,:::,Se; e~1,:::,E

mjgeDhjg*N(hjg,s2
jg), j~(JSAz1),:::,J; g~1,:::,G; e~1,:::,E

For all studies:

hjg DIg~0*N(0,g2
jg0), j~1, . . . ,J

hjg DIg~1*N(0,cj|g2
jg0), j~1, . . . ,J

Ig*Bernoulli(p)

p*Uniform(0,1)

ð1Þ

For the spotted array studies, the yjgse are the observed data, and

are the normalized log-expression ratios for study j, gene g, slide s,

and experiment e. These are the log-ratios of fluorescent intensity

levels for the mRNA of the control and treatment samples, which

are labelled green and red (Cy3 and Cy5). The yjgse values are

standardized so that each slide had zero mean and unit standard

deviation (see also Shen et al. [17]; Conlon et al. [19], [20]). This

model takes into account that the yjgse are influenced by slide and

experiment variance. Within each study, yjgse is modeled as a

sample from a normal distribution of gene-specific slide values

within an experiment, denoted as yjgse*N(mjge,t2
jg). Here mjge is

the gene-specific average of all slide values in an experiment, and

t2
jg represents the slide variability. In turn, the within-experiment

mean mjge is modeled as a sample from a normal distribution of

experiment values, denoted as mjge*N(hjg,s2
jg). Here, hjg is the

average log-expression ratio of gene g for study j, and s2
jg indicates

the experiment variance.

For the oligonucleotide microarrays, termed in-situ synthesized

oligonucleotide (ISO) arrays, each gene is characterized by up to

four probes on each array (further detail is provided in Appendix

S1: Biological data). For Model (1), the yjgbse are the normalized

log-ratios of expression for study j, gene g, probe b, slide s, and

experiment e. These are again the ratio of fluorescent intensity

levels for the treatment and control mRNA samples, labelled red

and green (Cy5 and Cy3), standardized so that each slide had zero

mean and unit standard deviation. Here, the yjgbse are influenced

by the probe, slide and experiment variance. For each study, the

yjgbse are modeled as gene-specific samplings from normal

distributions of probe values within each slide. This is denoted

as yjgbse*N(vjgse,w2
j ), where vjgse is the mean among all probe

values for a slide for each gene, and w2
j represents the variability

across probes. A common probe variance w2
j is assumed; this value

is calculated from the data, similar to other approaches (e.g. Xiao

et al. [23]). The within-slide mean vjgse denotes a sampling from a

normal distribution of slide values; this is modeled as

vjgse*N(mjge,t2
jg). Here, mjge is again the gene-specific average

for all slide values of an experiment, and t2
jg again measures the

slide variability. The remaining parameters are as described

previously for spotted arrays.

Bayesian Model for Pooling Gene Expression Studies

PLOS ONE | www.plosone.org 2 December 2012 | Volume 7 | Issue 12 | e52137



The hjg values are modeled as a normal distribution with mean

zero and small variance for non-expressed genes, and with large

variance for differentially expressed genes. Note that Model (1)

specifies each study individually, and does not pool the mean

expression values for each study into an overall mean. In addition,

only the yjgse and yjgbse values are observed; the remaining model

parameters are unobserved.

We define Ig , Bernoulli(p) as the gene-specific indicator

variable for differential expression, i.e. hjg ? 0, j = 1,…, J, where p

is the percent of differentially expressed genes. Thus, Pro-

b(Ig = 1) = p, where

Ig~
0 if hjg~0, j~1, . . . ,J

1 if hjg=0, j~1, . . . ,J

�

Here, genes are separated into two groups, non-expressed (Ig = 0)

and differentially expressed (Ig = 1) with probabilities (1-p) and p,

respectively. When Ig = 0, the hjg are modeled as normally

distributed around zero with small varianceg2
jg0; when Ig = 1, the

hjg are modeled as normally distributed around zero with large

variance cj|g2
jg0. Model (1) produces the gene-specific posterior

probability of differential expression, Dg = Prob(Ig = 1 | data),

which is used for inference.

Bayesian Meta-analysis Operon Model
The previous Model (1) assumed that the average expression for

a gene is independent of other genes. However, in prokaryotic

genomes, many genes are organized in operons, which are

commonly transcribed. Thus, genes in the same operon tend to

have similar expression levels. Here, we introduce a new Bayesian

meta-analysis model that incorporates predicted operon structure

Figure 1. Results for the two-study simulation data with simulated percent differentially expressed genes ps = 5%. a) True integration-
driven discovery rate (tIDR) versus levels of posterior probability of differential expression c $0.50, for Model (1) (triangles) and Model (2) (circles); b)
The maximum number of true genes discovered versus posterior expected false discovery rate (peFDR) for Model (1) (triangles), Model (2) (circles),
individual analyses of Study 1 (checks), Study 2 (diamonds).
doi:10.1371/journal.pone.0052137.g001

Bayesian Model for Pooling Gene Expression Studies
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into the model. Our model borrows information across operons,

and used a weighted average of the individual gene’s expression

level and the operon expression level to estimate expression for

each gene. The weights are inversely proportional to the variances.

Our Model (2) to incorporate operon information is as follows.

For spotted array (SA) studies:

yjgseDmjge*N(mjge,t2
jg), j~1,:::,JSA; g~1,:::,G; s~1,:::,Se;

e~1,:::,E

mjgeDhjg*N(hjg,s2
jg), j~1,:::,JSA; g~1,:::,G; e~1,:::,E

For oligonucleotide array studies:

yjgbseDvjgse*N(vjgse,w2
j ), j~(JSAz1),:::,J; g~1,:::,G;

b~1,:::,Bg; s~1,:::,Se; e~1,:::,E

vjgseDmjge*N(mjge,t2
jg), j~(JSAz1),:::,J; g~1,:::,G;

s~1,:::,Se; e~1,:::,E

mjgeDhjg*N(hjg,s2
jg), j~(JSAz1),:::,J; g~1,:::,G; e~1,:::,E

For all studies:

hjg*N(jjn,n2
j ), j~1,:::,J,for g[On for some n~1, . . . ,N

hjg:jjn, j~1,:::,J,for g=[On for any n,

n~(Nz1), . . . ,(NzN 0)

jjnDIn~0*N(0,g2
jg0), j~1,:::,J; n~1,:::,(NzN 0)

jjnDIn~1*N(0,cj|g2
jg0), j~1,:::,J; n~1,:::,(NzN 0)

In*Bernoulli(p)

p*Uniform(0,1),

ð2Þ

The valuesyjgse,yjgbse,mjge,vjgse,t2
jg,s2

jg,w2
j are as described above

for Model (1). For hjg, if gene g is a member of operon On, the hjg

values are assumed to be normally distributed with the average

expression equal to that of operon n in study j, with n2
j the study-

specific operon variability. If gene g is not a member of any operon

On, hjg is treated separately from other genes. Here, n ranges from 1

to the total number of operons N plus the number of genes not

included in any operon N9. Similar to Model (1), Model (2)

specifies each study separately, and does not combine mean

expression levels for each study into an overall mean value. The

normal assumption for log-expression ratios of genes organized in

operons has been used by many previous authors, including Wang

and Zhang [30], Price et al. [26], Xiao et al. [23], Iber [31], de

Hoon et al. [32], Segal et al. [33]. In repeated microarray

experiments, it is typical to model the log-expression ratios with

a normal distribution. For genes organized in operons, the same

bases for the model assumptions apply. We assume that genes

within the same operon will have the same expression pattern for

ratios between two conditions, on the log scale, for a steady-state

condition. We assume that there will be some systematic error

around the average log-expression ratio within an operon. Some

genes will have log-ratios with higher values than the mean, and

some will have lower, but the distribution will center with the

highest probability at the mean, and lower probability for values

much higher and lower. Thus, the log-ratios of expression for

genes within an operon are assumed normally distributed.

We define In , Bernoulli(p) as the indicator variable for

differential expression, i.e. jjn ? 0, j = 1,…, J, where p is the

percent of differentially expressed genes. Thus, Prob(In = 1) = p,

where

In~
0 if jjn~0, j~1, . . . ,J

1 if jjn=0, j~1, . . . ,J

�

Here, genes are separated into two groups, non-expressed (In = 0)

and expressed (In = 1) with probabilities (1-p) and p, respectively.

When In = 0, the jjn are assumed to be normally distributed with

mean zero and small varianceg2
jg0; when In = 1, the jjn are assumed

to be normally distributed with mean zero and large variance

cj|g2
jg0. For each gene, Model (2) produces the posterior

Table 1. Simulation results for two and five studies.

Ps = 5% Ps = 10% Ps = 25%

Model (1) Model (2) Model (1) Model (2) Model (1) Model (2)

Two-Study Simulation Data

tIDR, c= 0.95 12.9% 25.9% 6.5% 21.9% 2.6% 15.3%

True Genes, peFDR = 0.05 102 122 207 245 544 614

True Genes, Fixed Top ps% 111 127 232 259 609 657

Five-Study Simulation Data

tIDR, c= 0.95 5.3% 9.9% 1.9% 6.1% 1.6% 4.2%

True Genes, peFDR = 0.05 141 150 277 293 719 735

True Genes, Fixed Top ps% 142 149 278 294 714 735

True integration-driven discovery rate (tIDR) for posterior probability of differential expression c= 0.95, the number of true genes discovered for posterior expected false
discovery rate peFDR = 5%, and the number of true genes discovered for a fixed top number of genes. Results are shown for Models (1) and (2), and for the three values
of simulated percent differentially expressed genes ps.
doi:10.1371/journal.pone.0052137.t001

Bayesian Model for Pooling Gene Expression Studies
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probability of differential expression, Dg = Prob(In = 1 | data),

which is the basis for inference.

Prior Distributions for Models (1) and (2)
For prior distributions, we assign distributions that are as

uninformative as possible which still result in convergence of the

models. For parameters common to both Models (1) and (2), we

assigned conjugate scaled inverse chi-squared prior distributions to

the experiment, slide and probe variance parameters, s2
jg, t2

jg, and

w2
j , respectively. The scale parameters are derived from the data,

by pooling information from all genes (similar to Tseng et al. [5];

Lönnstedt and Speed [8]; Gottardo et al. [10]; Conlon et al. [19],

[20]). For Model (2), the prior distribution of operon variability n2
j

was assigned an inverse chi-squared distribution, with scale

parameter equivalent to the variability within operons of each

study. Note that we specify a common parameter for variance over

all operons within each study (similar to Xiao et al. [23]). Further

details on prior distributions are provided in Appendix S2: Prior

distributions. The prior structure for Models (1) and (2) for

individual studies is similar to that of Gottardo et al. [10], except

that Models (1) and (2) generate posterior distributions for p, while

Gottardo et al. calculate p using an iterative algorithm. Our data

sets also have more levels of replication than the model of

Gottardo et al., i.e. multiple probes, slides and experiments. The

hierarchical structure of Models (1) and (2) for individual studies is

also similar to the Bayesian ANOVA models (BAM) of Ishwaran

and Rao [11], [12]. BAM redefines the identification of

differentially expressed genes as a variable selection procedure,

and employs a Bayesian model designed for adaptive shrinkage.

Models (1) and (2) differ from BAM for individual studies,

however, since BAM models are constructed for two-sample rather

Figure 2. Results for the five-study simulation data with simulated percent differentially expressed genes ps = 5%. a) True integration-
driven discovery rate (tIDR) versus levels of posterior probability of differential expression c $0.50, for Model (1) (triangles) and Model (2) (circles); b)
The maximum number of true genes discovered versus posterior expected false discovery rate (peFDR) for Model (1) (triangles), Model (2) (circles),
individual analyses of Study 1 (checks), Study 2 (diamonds), Study 3 (pluses), Study 4 (inverted triangles), Study 5 (stars).
doi:10.1371/journal.pone.0052137.g002

Bayesian Model for Pooling Gene Expression Studies
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than one-sample data; Models (1) and (2) also have more levels of

data replication. We produce posterior distributions for model

parameters by implementing a Markov chain Monte Carlo

(MCMC) procedure (details provided in Appendix S2). We

calculate gene-specific posterior probabilities of differential

expression for Models (1) and (2); the models are then compared

using integration-driven discovery and Bayesian false discovery,

defined in the following sections.

Markov Chain Monte Carlo Procedure
We produce posterior distributions for model parameters by

implementing a Markov chain Monte Carlo (MCMC) algorithm

(details provided in Appendix S2). For the operon model, the

estimated expression level of a gene is a weighted average of the

gene-specific and operon-specific mean expression levels. The

weights are inversely proportional to the variance values. We

calculate gene-specific posterior probabilities of differential

expression for Models (1) and (2); the models are then compared

using integration-driven discovery and Bayesian false discovery,

defined in the following sections. More detail on the MCMC

implementation is provided in Appendix S2.

Integration-driven Discovery
Choi et al. [16] introduced the integration-driven discovery rate

(IDR) as the proportion of genes determined to be differentially

expressed in meta-analysis but not in any of the individual studies

alone. IDR depicts the gain in information from combining studies

compared to individual analyses. We fix the threshold level of

posterior probability of differential expression, c, and label genes

as differentially expressed if (Dg $ c). Specifically, IDR is defined

as follows:

IDR(c)

~
# genes ½(Dg§c) in meta-analysis� and ½(Dgvc) in all individual studies�

#genes ½(Dg§c) in meta-analysis� :

For the simulation data, true genes are defined as those that were

simulated to be differentially expressed. The true integration-

driven discovery rate, tIDR, is the proportion of true genes

discovered in meta-analysis but not in any of the separate studies:

tIDR(c)

~
# true genes ½(Dg§c) in meta-analysis� and ½(Dgvc) in all individual studies�

# true genes ½(Dg§c) in meta-analysis� :

Bayesian False Discovery Rate
The false discovery rate (FDR) was introduced by Benjamini

and Hochberg [34] and is defined as the expected number of

discoveries that are not truly differentially expressed divided by the

total number of discoveries. Further analyses and discussions of

FDR for microarray data are provided in Tusher et al. [35],

Genovese and Wasserman [36], Storey [37] and Storey and

Tibshirani [38]. For Bayesian analyses, Genovese and Wasserman

[39] introduced the posterior expected FDR (peFDR) as:

peFDR~E(FDRDY )~

P
g

(1{Dg)dg

P
g

dg

,

with dg an indicator variable for differentially expressed genes and

Y representing the data (see also Do et al. [14]). Note that Conlon

et al. [19] compared true FDR to peFDR in several simulation

studies and found that the two measures were always within 3% of

each other on average. In addition, the peFDR was a conservative

estimate of true FDR in these simulation studies.

Results

Simulation Results for Two Studies
We simulated data for two studies similar to the biological data;

Study 1 was specified to resemble the spotted array study, and

Study 2 was similar to the ISO array study. We simulated a total of

3,000 genes and three values for the percent of differentially

expressed genes: ps = 5%, 10%, 25% (ps denoting simulated); each

slide was also standardized to have mean zero and unit standard

deviation (similar to Shen et al. [17]; Conlon et al. [19], [20]). We

simulated the operon structure similar to the predicted operon

structure of the biological data. For genes within the same operon,

we assumed a common average gene expression level, with

variance again corresponding to the biological data. Appendix S1

provides further details on the simulation procedure.

We implemented Models (1) and (2) for the meta-analysis of two

studies; each study was also analyzed separately using j = 1. Results

are discussed here for the data set with ps = 5%. To compare

Models (1) and (2), we calculated for both models the true

integration-driven discovery rate (tIDR) for fixed levels of c $0.50,

which correspond to posterior probabilities of differential expres-

sion greater or equal to 50%. Model (2) produced higher tIDR

than Model (1) for all values of c $0.50 (Figure 1a). We also fixed

threshold levels of peFDR and found that Model (2) discovered

more true genes than Model (1) for the same levels of peFDR

,20%; both models improved discoveries versus separate analyses

(Figure 1b). Similar results for tIDR and peFDR were determined

for the data sets with ps = 10%, 25% (Table 1).

In addition to tIDR and peFDR, researchers are often interested

in the top set of genes only, e.g. the top 100 genes. For this reason,

we ranked the genes based on Dg in both Models (1) and (2) and

compared the resulting numbers of true genes included in the top

set of genes. Here, we chose a threshold of the top ps% of genes.

We found that Model (2) identified more true genes than Model

(1), for all data sets (Table 1).

Simulation Results for Five Studies
We also implemented Models (1) and (2) to combine five

independent studies. For this, we produced three additional

simulation studies: one with a design similar to Study 1, and two

with designs similar to Study 2. The simulation parameters were

either within the range of the biological data, or somewhat outside

the range; Appendix S1 provides further details on the simulation

procedure. We again simulated three levels for the percent of

differentially expressed genes: ps = 5%, 10%, 25%.

For the data set corresponding to ps = 5%, Model (2) again

identified higher tIDR than Model (1) for all levels of c $0.50

(Figure 2a). In comparison to the two-study simulations, integrat-

ing more studies resulted in lower average tIDR for c $50% for

both Models (1) and (2). This occurred since, for larger numbers of

studies, it was more likely that some genes had Dg $ c in at least

one individual study, which reduced tIDR. Similar results were

established for the data sets with ps = 10%, 25% (Table 1).

When combining five studies, both Models (1) and (2) identified

more true discoveries than separate analyses for the same

thresholds of peFDR; Model (2) again discovered more true genes

than Model (1), similar to the two-study findings (Figure 2b). In

Bayesian Model for Pooling Gene Expression Studies
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comparison to the two-study simulations, pooling more studies

produced more true discoveries for the same levels of peFDR, for

both models. This indicates that combining more data improves

the accuracy of peFDR. When examining the top 150 genes (i.e.

the top ps%), Model (2) again identified more true genes than

Model (1), and pooling more studies improved the results versus

the two study simulations. We found similar results for peFDR and

the top sets of genes for ps = 10%, 25% (Table 1).

Biological Data Results
We implemented Models (1) and (2) to combine the nitrogen

fixation data of G. sulfurreducens for the spotted array and ISO array

studies; we also analyzed each study separately. In total, there were

3,323 genes that had expression in both studies (for further details

of the biological data, see Appendix S1: Biological data). For IDR,

our results were similar to the simulations studies; Model (2)

produced higher IDR than Model (1) for all levels of c $0.50

(Figure 3a). For fixed values of peFDR ,20%, both Models (1) and

(2) discovered more genes than the individual studies alone, and

Model (2) discovered more genes than Model (1) for all values

(Figure 3b).

Discussion

Here, we developed a new Bayesian meta-analysis model that

incorporates operon information into the model. By borrowing

information across genes in the same operon, we improved results

versus previous Bayesian meta-analysis models that assume

expression of a gene is independent of other genes. In simulations

of two and five studies, we found that the operon model

outperformed the independence model using three common

comparison measures: the percent of true genes discovered in

meta-analysis but not in separate studies, the number of true genes

Figure 3. G. sulfurreducens spotted array and ISO array study data results. a) Integration-driven discovery rate (IDR) versus levels of posterior
probability of differential expression c $0.50, for Model (1) (triangles) and Model (2) (circles); b) The maximum number of genes discovered versus
posterior expected false discovery rate (peFDR) for Model (1) (triangles), Model (2) (circles), separate analyses of the G. sulfurreducens spotted array
study (checks) and ISO array study (diamonds).
doi:10.1371/journal.pone.0052137.g003
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identified for the same thresholds of Bayesian false discovery, and

the number of true genes discovered for a fixed top number of

genes. For the biological data of G. sulfurreducens, the operon model

produced higher integration-driven discovery rates for the same

thresholds of posterior probability of differential expression than

the independence model. The operon model also discovered more

genes than the independence model for fixed levels of Bayesian

false discovery. We note that Xiao et al. [23] introduced a

Bayesian model for one study that incorporates operon informa-

tion into the model. The operon model was shown to improve

gene expression estimates compared to the independence model

for one study. Here, we extended this model for multiple studies,

showing similar improvement for the meta-analysis framework.

Our Bayesian meta-analysis operon model used the assumption

that genes in an operon are co-transcribed. There are some cases

where genes from an operon are expressed at different levels. First,

genes may express differently due to their location in the operon.

However, as discussed in Price et al. [26], in steady state cases,

these differences do not affect the ratios of expression between the

two experimental conditions; thus, expression ratios should be

similar across an operon. Second, small noncoding RNAs can bind

to specific transcripts and cause them to increase or decrease

stability. However, in practical terms, genes in the same operon

typically show similar patterns of expression, and patterns of

expression are used to predict genes in the same operon (see also

Sabatti et al. [24]; Price et al. [26]).

Supporting Information

Appendix S1 Description of simulation data sets and biological

data sets.

(DOC)

Appendix S2 Details of the Markov chain Monte Carlo

implementation.

(DOC)
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