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Abstract: Diffuse large B-cell lymphoma (DLBCL) is the commonest form of lymphoid malignancy,
with a prevalence of about 40% worldwide. Its classification encompasses a common form, also
termed as “not otherwise specified” (NOS), and a series of variants, which are rare and at least in
part related to viral agents. Over the last two decades, DLBCL-NOS, which accounts for more than
80% of the neoplasms included in the DLBCL chapter, has been the object of an increasing number
of molecular studies which have led to the identification of prognostic/predictive factors that are
increasingly entering daily practice. In this review, the main achievements obtained by gene expres-
sion profiling (with respect to both neoplastic cells and the microenvironment) and next-generation
sequencing will be discussed and compared. Only the amalgamation of molecular attributes will lead
to the achievement of the long-term goal of using tailored therapies and possibly chemotherapy-free
protocols capable of curing most (if not all) patients with minimal or no toxic effects.

Keywords: diffuse large B-cell lymphoma; gene expression profiling; next-generation sequencing;
classification; diagnosis; prognosis; therapy

1. Classification

Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoid
malignancy, with a prevalence of about 40% worldwide [1]. It consists of medium or large
B-lymphoid cells in which the nuclei are the same size as or larger than those of normal
macrophages, or more than twice the size of those of normal lymphocytes, with a diffuse
growth pattern [1]. The concept of DLBCL has undergone fine-tuning over time, as is
clear from the comparisons between the REAL and WHO classifications (third, fourth, and
revised fourth editions) [1–4]. This produces some apparent terminological discrepancies
throughout the text, which reflect the time of publication of each reference.

In the Revised Fourth Edition of the WHO Classification of Tumours of Haematopoi-
etic and Lymphoid Tissues, DLBCL is subdivided into morphologic variants, molecular sub-
types, and distinct disease entities (Table 1) [1]. Nevertheless, about 70% of all DLBCLs lack
features allowing their inclusion into one of the diagnostic categories listed in Table 1 [1].
These cases are collectively termed as “not otherwise specified” (DLBCL-NOS) [1] and are
conventionally treated with the chemoimmunotherapy regimen R-CHOP [5,6].
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Table 1. Diffuse large B-cell lymphoma, high-grade B-cell lymphoma, and gray-zone lymphoma
according to the Revised Fourth Edition of the WHO Classification of Tumours of Haematopoietic
and Lymphoid Tissues (italics indicate that an entity is provisional).

Diffuse Large B-Cell Lymphoma (DLBCL):

DLBCL not otherwise specified (NOS)

Morphological variants

Centroblastic

Immunoblastic

Anaplastic

Other rare variants

Molecular subtypes

Germinal centre B-cell subtype (GCB)

Activated B-cell subtype (ABC)

Other lymphomas of Large B-Cells:

T-cell/histiocyte-rich large B-cell lymphoma

Primary DLBCL of the CNS

Primary cutaneous DLBCL, leg type

EBV-positive DLBCL, NOS

EBV-positive mucocutaneous ulcer

DLBCL associated with chronic inflammation

Lymphomatoid granulomatosis

Large B-cell lymphoma with IRF4 rearrangement

Primary mediastinal (thymic) large B-cell lymphoma

Intravascular large B-cell lymphoma

ALK-positive large B-cell lymphoma

Plasmablastic lymphoma

HHV8-positive DLBCL

Primary effusion lymphoma

High-Grade B-Cell Lymphoma:

High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangement

High-grade B-cell lymphoma, not otherwise specified (NOS)

B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and classic
Hodgkin’s lymphoma

Based on a recent survey of 3550 DLBCL patients who mostly underwent R-CHOP with
curative intent, the 5-year overall survival and cumulative incidence of relapsed/refractory
disease corresponds to 65.3% and 23.1% of cases, respectively [6]. Thus, there is still an
unmet need for optimal therapy for a significant proportion of DLBCL-NOS patients.

In recent years, DLBCL-NOS has been the object of the extensive application of high-
throughput technologies, which has led to the identification of prognostic/predictive
factors that are increasingly entering daily practice.

Although DLBCL-NOS is the main focus of this review, the borders between DLBCL-
NOS and high-grade B-cell lymphoma (HGBCL) (Table 1) will also be discussed. In fact,
it is not uncommon to encounter cases that could be regarded as DLBCL-NOS but are
ultimately classified as HGBCL due to the detection of double or triple hits (D/TH) of
MYC, BCL2, and/or BCL6 (HGBCL-D/TH) by FISH, as underlined by Sehn and Salles
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in their review on DLBCL published in the New England Journal of Medicine on 4 March
2021 [7] (see below).

2. Gene Expression Profiling
2.1. Cell of Origin (COO)

At the beginning of this century, using gene expression profiling (GEP) Alizadeh and
coworkers first reported that DLBCLs could be divided into two main subtypes with a gene
signature related to the germinal center B-cell (GCB) and activated B-lymphocytes from the
peripheral blood (ABC), respectively [8]. Such a distinction, not feasible on morphological
grounds, had an important prognostic impact. In fact, the GCB forms had a significantly
more favorable response to chemotherapy (CHOP) than those of ABC. This corresponded
to a clear-cut difference in terms of overall and progression-free survival (OS and PFS,
respectively). This subdivision was subsequently confirmed using cohorts consisting of
hundreds of cases, and maintained its value in the era of chemoimmunotherapy [9–11].
By expanding the number of profiled cases, a third group between those of GCB and
ABC emerged and was indicated as unclassified (U), corresponding to about 15% of
DLBCLs [9–11]. Besides prognostic value, the distinction between GCB and ABC subtypes
has biological relevance as it corresponds to different genetic aberrations as well as pathway
perturbations (as detailed in the following).

The main limitation of conventional GEP was the need for fresh or frozen (FF) samples,
which were available for a small minority of patients followed up at reference centers.
Therefore, many attempts were made to find surrogates for GEP through the search for
immunohistochemical markers [12–18]. Several algorithms were proposed, with that of
Hans et al. having the widest applications as it was based on the simple determination of
CD10, BCL6, and IRF4/MUM1 [12]. However, none of these algorithms met their goal, for
several reasons: (a) a lack of correspondence with GEP data in the same patients; (b) vari-
ability in the preanalytical and immunohistochemical techniques (including antibody and
antigen retrieval, detection systems, and automatic platforms); and (c) subjectivity in result
interpretation [19,20].

In 2014, a new approach was proposed based on targeted digital GEPFF and was
successfully applied to mRNA extracted from formalin-fixed, paraffin-embedded (FFPE)
tissue samples (Lymph2Cx) [21]. In particular, a 20-gene panel (including 15 top genes
and 5 housekeeping genes for normalization) was designed, which in 67 cases provided
the same COO classification as conventional GEP from FF. Furthermore, the OS and PFS
curves were over-imposable, irrespective of the type of GEP used (targeted digital vs. con-
ventional). These preliminary results, which had been obtained by using the NanoString
platform, were subsequently confirmed by independent studies based on several hundred
cases [22–25]. The advantages of this approach over immunohistochemical algorithms
are: (1) reproducibility in different laboratories; (2) the assessment of the absolute value of
mRNA expressed by each gene; and (3) a lack of confounding factors (such as the variability
of immunohistochemical techniques and subjective result interpretation). Moreover, tar-
geted GEP subdivides DLBCLs-NOS into GCB, ABC, and U, like conventional profiling of
FF samples. In contrast, immunohistochemical algorithms differentiate DLBCLs-NOS into
GCB and non-GCB, with the latter group containing cases that are molecularly classified as
GCB [21–25]. Interestingly, identical results were obtained by targeted profiling on different
platforms and with different panels of genes confirming the prognostic relevance of the
COO determination [21–25].

The COO determination provided less significant prognostic information when ap-
plied to cases enrolled in some trials [26–28]. This may be for several different reasons,
i.e., (1) the adoption of protocols that are more intense than those used in real situations;
(2) the selection of patients fit enough to await the completion of all the tests required for
trial enrolment; and (3) the influence of other factors that can affect behavior within each
subgroup defined by the COO.
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The main limitation of targeted GEP applied to routine biopsies is the need for plat-
forms which are not available in all pathology laboratories, unlike immunohistochemistry.
This problem, as well as the test costs and need for basic bioinformatic skills, can be over-
come by a hub-and-spoke organization, which is also required for the application of the
array of molecular techniques at the basis of precision medicine (see below).

2.2. Key Genes

FISH analyses have shown that B-cell lymphomas, regarded as DLBCLs-NOS based
on morphology and phenotype, could carry double or triple rearrangements of MYC, BCL2,
and/or BCL6 [1]. These cases, which overall have a significantly worse prognosis and may
require therapies that are more intense than standard R-CHOP, are nowadays included in
the provisional category of high-grade B-cell lymphomas with double/triple hits (HGBL
D/TH). Based on this observation, FISH should ideally be applied to all DLBCL-NOS cases.
As FISH analyses are rather expensive, attempts have been made to find surrogates for
FISH results through immunohistochemistry. This has led to the identification of a group
of DLBCL-NOS cases which show double expression of MYC and BCL2 at the protein
level (the so-called double expressors (DEs)) [29,30]. According to the Revised Fourth
Edition of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues,
at least 50% and 40% of neoplastic cells should express BCL2 and MYC, respectively, in
order to consider a DLBCL-NOS patient as a DE [1]. However, discrepancies exist as to the
reproducibility of the cut-off value of MYC positivity, which has been moved to 70% by
some groups [31]. Most importantly, as there is no actual correspondence between the
results of immunohistochemistry and FISH [32], these cases with MYC and BCL2 double-
expression but lacking D/TH remain within the bounds of DLBCL-NOS but more often
belong to the ABC/non-GCB subtype and require further studies to definitively assess
their prognostic and/or therapeutic relevance [1,32].

In 2018, investigators from two groups used GEP signatures to identify high-risk
patients with DLBCL in FFPE series. Sha et al. [33] used a Burkitt lymphoma-like signature,
whereas Ennishi et al. [34] used a signature derived from genes differentially expressed
between MYC/BCL2 DH and non-DH GCB-DLCBLs. With their respective signatures,
these investigators were, as expected, able to identify most DH lymphomas, as well as
many non-DH lymphomas which were actually found in about half of the identified pa-
tients and showed a poorer response to standard chemoimmunotherapy. These findings
suggest that many of the patients harbored genetic or even epigenetic alterations that
produced similar gene expression changes in the tumor cells, as recognized by the respec-
tive signatures. This does not come as a surprise. In fact, activation of an oncogene or
oncogenic pathway can be produced by multiple mechanisms besides MYC/BCL2 DH, for
example MYC upregulation through translocation and gene amplification. Apart from
structural alterations, MYC expression or activity can be enhanced through transcriptional
and posttranscriptional events.

Derenzini et al. [25] used a targeted GEP panel combining the Lymph2Cx signature
for COO classification, with additional targets including MYC, BCL-2, and NFKBIA (the
latter encoding for the IkB-α protein, an endogenous inhibitor of NF-kB signaling [35]), in
186 FFPE cases originally diagnosed as DLBCL-NOS from two randomized trials (discovery
cohorts NCT00355199 and NCT00499018) and in three independent validation cohorts. By
integrating the COO, MYC/BCL-2 DE status, and NFKBIA expression, a three-gene signature
was designed combining MYC, BCL-2, and NFKBIA (MBN signature). The high-risk (MBN
Sig-high) subgroup, characterized by higher expression levels of MYC and BCL-2 and a
lower expression of NFKBIA, could be used to identify a significant fraction of ABC DLBCLs
and the vast majority of double-hit cases, allowing for further risk stratification within the
GCB/U subset. These results were validated in three independent series including Sha’s
cohort based on the REMoDL-B trial [33,36], a phase III randomized trial investigating the
efficacy of the addition of bortezomib to standard first-line chemoimmunotherapy. In line
with the biological activity of bortezomib, which increases the protein abundance of IkB-α,
leading to inhibition of NF-kB signaling [37], an exploratory ad hoc analysis of the latter
cohort showed that the addition of bortezomib in the MBN Sig-high subgroup provided
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a progression-free survival advantage compared with standard chemoimmunotherapy.
These data suggest that a simple three-gene signature based on MYC, BCL-2, and NFKBIA
can refine the prognostic stratification in DLBCL.

Finally, Mottok et al. [38] developed a robust and accurate molecular classification
assay (Lymph3Cx) for the distinction of primary mediatinal B-cell lymphoma (PMBCL)
from DLBCL subtypes based on gene expression measurements in formalin-fixed, paraffin-
embedded tissue. A probabilistic model accounting for classification error comprising
58 gene features was trained on 68 cases of PMBCL and DLBCL. Model performance was
subsequently evaluated in an independent validation cohort of 158 cases and showed a
high agreement of the Lymph3Cx molecular classification with the clinicopathological
diagnosis of an expert panel (frank misclassification rate, 3.8%). In the authors’ view,
Lymph3Cx represents a molecular tool that is potentially helpful for the diagnosis of
PMBCL in light of the use of ad hoc therapeutic approaches [1]. In fact, on central review,
cases enrolled in trials as DLBCL-NOS are not infrequently reclassified as PMBCL and vice
versa, as seen in the authors’ experience at a reference center for several trials of the Italian
Lymphoma Foundation.

3. Tissue Microenvironment (TME)

By means of a gene profiling analysis of nearly 500 FF DLBCL samples, in 2008
Lenz et al. first demonstrated that the expression of peculiar gene sets, namely “Stromal-1”
and “Stromal-2” signatures, respectively correlated with good- and poor-outcome sub-
groups of R-CHOP-treated patients independently of COO [39]. Although they were selec-
tively enriched in genes encoding extracellular matrix proteins and histiocyte infiltration
(Stromal-1) or reflecting angiogenesis (Stromal-2), these signatures resulted mechanistically
uninformative, and their practical use was limited by the lack of standardized GEP assays
for FFPE samples. A number of subsequent research attempts were aimed at identifying
TME-related prognostic factors, but none provided biomarkers reproducible enough to be
translated into daily clinical practice [40–43].

To overcome this limitation, in 2018 Ciavarella and co-workers [44] generated a 1028-gene
matrix incorporating the signatures of 17 cytotypes and applied the computational method
CIBERSORT to deconvolve Lenz’s GEP dataset. The work clarified the prognostic asso-
ciations between patient outcome and quantitative proportions of tumor-infiltrating cell
types. A panel of 45 genes related to myofibroblasts (MFs), dendritic cells, and CD4+ T-cells
was selected and digitally validated by a NanoString-based approach on an independent
cohort of 175 FFPE DLBCLs from two randomized trials. All tissue samples consisted of
pretreatment biopsies of advanced-stage nodal DLBCLs treated by comparable R-CHOP/R-
CHOP-like regimens. The expression of the 45 TME genes positively correlated with better
outcomes and predicted the patient risk of overall and progression-free survival. In a mul-
tivariate Cox model, the TME panel retained high prognostic performance independently
of COO, and integration of the two prognostic factors (COO + TME) improved survival
prediction. Finally, a model to assign single DLBCL cases to a “COO–TME” risk category
was built and successfully applied to an independent cohort of 40 “real-life” cases.

In a parallel work, Staiger et al. [45] proposed a lymphoma-associated macrophage
interaction signature (LAMIS) interrogating features of the microenvironment, once again
using a NanoString assay applicable to FFPE. The clinical impact of the signature was vali-
dated in a cohort of 466 patients enrolled in prospective clinical trials at the German High-
Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Patients with high expression of
the signature (LAMIS-high) had shorter event-free survival (EFS), progression-free survival
(PFS), and overall survival (OS). Multivariate analyses revealed independence from Inter-
national Prognostic Index (IPI) factors in EFS (HR 1.7, 95%CI 1.2–2.4, p-value = 0.001), PFS
(HR 1.8, 95%CI 1.2–2.5, p-value = 0.001), and OS (HR 1.8, 95%CI 1.3–2.7, p-value = 0.001).
Multivariate analyses adjusted for the IPI factors showed the signature was independent
of COO, MYC rearrangements, and double-expressor (DE) status. LAMIS-high and simul-
taneous DE status characterized a patient subgroup with dismal prognosis and greater
probability of early relapse.
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Beyond the prognostic value of TME, only a few studies have provided comprehen-
sive biological insights into the putative link between B-cell genomics and functional
patterns of immune and stromal components while suggesting new rationales for future
therapeutic approaches.

Tripodo et al. [46] reported on a spatially resolved 53-gene signature comprising
key genes of the dark-zone (DZ) mutational machinery, and light-zone (LZ) immune and
mesenchymal milieu. This signature was applied to the transcriptomes of 543 cases of GCB-
DLBCL and HGBCL-DH. According to the DZ/LZ signature, the GC-related lymphomas
were sub-classified into two clusters. The subgroups differed in the distribution of DH
cases and survival, with most DH cases displaying a distinct DZ-like profile. The clustering
analysis was also performed using a 25-gene signature composed of DZ/LZ genes posi-
tively enriched in the non-B, stromal sub-compartments, for the first time achieving DZ/LZ
discrimination based on stromal/immune features. The report offers new insight into the
GC microenvironment, hinting at a DZ microenvironment of origin in DH lymphomas.

Intriguing research integrating transcriptomic, genetic, and immunophenotypic data
of 347 DLBCLs demonstrated that MHC loss, particularly in GC-derived tumors originating
from the centroblast-rich DZ, is associated with a strong enrichment of EZH2 mutations,
lower T cell infiltration, and poorer outcome [47]. Such results paved the way for the
potential use of EZH2 inhibitors to treat the tumor by simultaneously modulating its
immune microenvironment.

Finally, very recent work by Kotlov et al. [48] provided a relevant classification of DL-
BCL based on the transcriptomic characterization of TME from 4655 cases. Four major TME
categories were identified as being associated with peculiar genetic/epigenetic aberrations
of the malignant component, clinical behavior, and potential therapeutic targeting. Beyond
its classification value, to date this work represents the most extensive translational and
biological analysis of malignant and non-malignant DLBCL components.

By all means, in-depth TME analysis still represents an approach that can significantly
improve the prognostication of DLBCL and even further tune the identification of different
risk groups within the same COO category, predicting the response to targeted therapies.

4. Genetic Classification

Over the last few years, several proposals for a genetic classification of DLBCL have
been published. Hereunder, the main contributions will be summarized and discussed
based on the technical approach used.

4.1. Whole-Exome Sequencing (WES)-Based Studies

In 2017, Reddy and coworkers [49] reported on the whole-exome sequencing (WES)
of 1001 FF DLBCLs and 400 paired germline DNAs. They found 150 driver genes to be
recurrently mutated. The 60 top genes frequently exhibited a pattern of either predominant
missense and/or copy number gains consistent with an oncogene or truncating mutations
and/or copy number losses consistent with a tumor suppressor gene. When the mutational
pattern was matched with the COO, 20 genes were differentially mutated between the
two groups, including EZH2, SGK1, GNA13, SOCS1, STAT6, and TNFRSF14, which were
mutated in GCB tumors, and ETV6, MYD88, PIM1 and TBL1XR1, which were mutated
in ABC tumors. Interestingly, MLL2 mutations were associated with those of MYC, while
TP53 mutations occurred in a mutually exclusive fashion with KLHL6. CRISPR screening
revealed that knockout of EBF1, IRF4, CARD11, MYD88, and IKBKB was selectively lethal
in ABC DLBCL cell lines, as was knockout of ZBTB7A, XPO1, TGFBR2, and PTPN6 in
the GCB lines. On prognostic grounds, MYC mutations were strongly associated with
poorer survival, as were mutations in CD79B and ZFAT. Mutations in NF1 and SGK1 were
associated with more favorable survival. Furthermore, in ABC DLBCLs, genetic alterations
in KLHL14, BTG1, PAX5, and CDKN2A were associated with significantly poorer survival,
while those in CREBBP were associated with favorable outcomes. In the GCB-DLBCL
group, genetic alterations in NFKBIA and NCOR1 were associated with poorer prognosis,
while alterations in EZH2, MYD88, and ARID5B were all associated with a significantly
better prognosis. The authors developed a multivariate supervised learning approach for
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defining the association of survival with combinations of genetic markers (150 genetic
driver genes) and gene expression markers (cell of origin, MYC, and BCL2). This led to
the proposal of a three-subgroup molecular risk model that was found to outperform all
existing predictors (i.e., COO, MYC/BCL2 DE, and IPI). However, the recent application
of this model to 499 DLBCLs by Bolen et al. [50] did not provide independent validation.
This might reflect the technical differences between the two studies (WES of FF samples by
Reddy et al. vs. targeted NGS of DNA extracted from FFPE biopsies by Bolen et al.).

Two studies published in 2018 proposed a molecular subclassification of DLBCLs that
had potential prognostic and therapeutic implications [51,52]. They both were based on WES
and copy-number analysis of a large series of FF DLBCLs (304 and 574, respectively) [51,52].

Chapuy et al. [51] described five clusters characterized by different genetic lesions that
were capable of identifying subgroups within the COO categories showing different behaviors.

Most cases included in clusters (Cs) 1 and 5 were classified as ABC. However, they
showed important differences on molecular and prognostic grounds. C1 cases were thought
to derive from marginal-zone B-cells, as they showed a stable mutational pattern, structural
variants (SVs) of BCL6, and mutations of genes involved in the NOTCH2 and NF-kB
pathways (NOTCH2, SPEN, BCL10, TNFAIP3, and FAS). Besides the multiple genetic
lesions of genes involved in immune escape (BM2, CD70, FAS, PD-L1, PD-L2), these C1
cases carried MYD88 mutations which were non-L265P, unlike what was observed in
the cases included in C5. Notably, C1 cases had a rather favorable course and revealed
potential therapeutic targets related to NOTCH2 and BCL6 signaling and immune evasion
mechanisms. C5 tumors, which behaved more aggressively than the C1 ones, showed
mutations of MYD88L265P, CD79B, PIM1, TBL1XR1, GRHPR, and BTG1, SV of 18q, and
activation of the NF-kB pathway. In addition, they carried ongoing mutations, being at least
in part under the effect of AID. Potential targets for C5 cases corresponded to BCR/TLR
signaling and BCL2.

Cs 3 and 4 were significantly enriched in GCB cases but were characterized by different
genetic lesions and responses to chemoimmunotherapy. The majority of DLBCLs in C3
harbored BCL2 mutations with concordant SVs. They also exhibited frequent mutations in
chromatin modifiers, KMT2D, CREBBP, and EZH2, and increased transcriptional abundance
of EZH2 targets by gene set enrichment analisys (GSEA). These tumors also had alterations
in the B-cell transcription factors MEF2B and IRF8, and indirect modifiers of BCR and
PI3K signaling (TNFSF14(HVEM), HCNV1, and GNA13). In addition, C3 tumors had two
alternative mechanisms of inactivating PTEN: focal 10q23.31/PTEN loss and predominantly
truncating PTEN mutations, events that play a role in the process of lymphomagenesis.
C4 DLBCLs were characterized by mutations in four linker and four core histone genes,
multiple immune evasion molecules (CD83, CD58, and CD70), BCR/PI3K signaling inter-
mediates (RHOA, GNA13, and SGK1), NF-kB modifiers (CARD11, NFKBIE, and NFKBIA),
and RAS/JAK/STAT pathway members (BRAF and STAT3). Comparison of the C3 and C4
genetic signatures further revealed that these GCB-DLBCLs utilized distinct mechanisms
to perturb common pathways such as PI3K signaling. In contrast to C3 DLBCLs, C4 tu-
mors rarely exhibited PTEN alterations but harbored more frequent RHOA mutations. In
addition, C4 DLBCLs rarely exhibited BCL2 alterations and had higher mutational density.
The distinct genetic features of C3 and C4 GCB-DLBCLs led Chapuy et al. to suggest
specific targeted therapies including inhibition of BCL2, PI3K, and the epigenetic modifiers
EZH2 and CREBBP in C3 GCB tumors, and JAK/STAT and BRAF/MEK1 blockade in C4
GCB-DLBCLs. Last but not least, C3 cases had a far worse prognosis.

C2 DLBCLs harbored frequent biallelic inactivation of TP53 by mutations and 17p
copy loss. In addition, they often exhibited copy loss of 9p21.13/CDKN2A and 13q14.2/RB1,
perturbing chromosomal stability and cell cycle. C2 tumors also had significantly more
driver somatic copy number alterations (SCNAs) and a higher proportion of genome
doubling events. This cluster included both GCB- and ABC-DLBCLs, as did prior DLBCL
cohorts with TP53 mutations in targeted analyses [53]. Prognostically significant SCNAs,
including 13q31.31/miR-17-92 copy gain and 1q42.12 copy loss, were also more common in
these DLBCLs, which were characterized by a rather unfavorable prognosis.
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A further cluster, termed 0, was also detected, which apparently lacked significant
genetic alterations. However, as the C0 group consisted almost exclusively of T-cell
rich/histiocyte-rich B-cell lymphomas, the obtained results might have been largely influ-
enced by the small number of neoplastic cells.

The authors further evaluated BCL2 and MYC alterations. Tumors with cooccurring
BCL2 and MYC SVs were significantly more frequent in C3 DLBCLs.

Importantly, the coordinate genetic signatures reported by Chapuy et al. predicted
outcomes independent of IPI which could suggest new combination treatment strategies
and, more broadly, provide a roadmap for actionable DLBCL classification [51].

By their integrated approach, Schmitz et al. [52] identified four prominent genetic
subtypes among 574 DLBCLs which they termed MCD (based on the co-occurrence of
MYD88L265P and CD79B mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations),
N1 (based on NOTCH1 mutations), and EZB (based on EZH2 mutations and BCL2 translo-
cations). Interestingly, Schmitz and co-workers enriched their series with unclassified
DLBCLs. The latter turned out to frequently carry mutations affecting SPEN and NOTH2
as well as BCL6 fusions. ABC cases were enriched in MYD88L265P and CD79B or NOTCH1
mutations, with the two conditions being mutually exclusive. GCB tumors showed the
co-occurrence of EZH2 mutations and BCL2 translocations. The MCD and N1 subtypes
were dominated by ABC cases, while EZB included mostly GCB tumors, and BN2 had
contributions from all GEP subgroups. Overall, about 45% of the samples were classified
into the genetically pure subtypes of DLBCL.

The MCD subtype displayed 82% of cases carrying MYD88L265P or CD79B aberrations
(mutation or amplification), with 42% bearing both abnormalities. The MCD subtype
showed a frequent gain or amplification of SPIB, encoding a transcription factor that,
with IRF4, defines the ABC phenotype and promotes plasmacytic differentiation. Known
tumor suppressors in MCD include CDKN2A, ETV6, BTG1, and BTG2, and putative tumor
suppressors include TOX, SETD1B, FOXC1, TBL1XR1, and KLHL14. The tumor suppressor
TP53 was mutated significantly less often in MCD as compared to other subtypes. Immune
editing appeared prominent in MCD genomes, with 76% acquiring a mutation or deletion
of HLA-A, HLA-B, or HLA-C and 30% acquiring truncating mutations targeting CD58.

BN2 was dominated by NOTCH pathway aberrations, with 73% acquiring a NOTCH2
mutation or amplification, SPEN mutation, or mutation in DTX1, a NOTCH target gene.
BCL6 fusion, the other BN2 hallmark, occurred in 73% of cases. BCL6 fusions were enriched
in cases with NOTCH2, SPEN, or DTX1 lesions to a significantly greater extent in BN2 than
in non-BN2 cases. Genetic aberrations (mutations or amplifications) targeting regulators of
the NF-kB pathway were a prominent feature of BN2. These more often affected TNFAIP3,
PRKCB, and BCL10. Other likely gain-of-function events included mutations targeting
cyclin D3 and CXCR5, whereas inactivating lesions targeting the immune regulator CD70
suggested immune escape.

N1 was characterized by NOTCH1 mutations and aberrations targeting transcriptional
regulators of B-cell differentiation (IRF4, ID3, and BCOR), which may contribute to its
plasmacytic phenotype. TNFAIP3 mutations in N1 could reinforce this phenotype by
fostering NF-KB-induced IRF4 expression.

EZB was enriched for most of the genetic events previously ascribed to GCB-DLBCL,
including BCL2 translocation, EZH2 mutation, and REL amplification, as well as inacti-
vation of the tumor suppressors TNFRSF14, CREBBP, EP300, and KMT2D. The germinal-
center homing pathway involving S1PR2 and GNA1314 was disrupted in 38% of EZB cases.
JAK-STAT signaling was promoted in about half cases by a STAT6 mutation or amplification
or by a mutation or deletion targeting SOCS1. PI3K target of rapamycin signaling turned
out to be activated in 23% of cases by MTOR mutations or the amplification of MIR17HG.
Immune editing was of interest in EZB genomes since 39% acquired lesions in the major
histocompatibility complex class II pathway genes CIITA and HLA-DMA.

The four subtypes differed significantly in PFS and OS, with the BN2 and EZB subtypes
having much more favorable outcomes than the MCD and N1 subtypes. The predicted
5-year OS rates for the MCD, N1, BN2, and EZB subtypes were 26%, 36%, 65%, and 68%,
respectively. Within ABC DLBCL, patients with MCD had significantly inferior survival
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as compared with those with BN2, and patients with either MCD or N1 had significantly
inferior survival as compared with patients with ABC tumors that were not genetically
classified. Within GCB-DLBCL, there was a trend toward inferior OS among patients with
EZB as compared with those with other GCB tumors. The COO subgroups and genetic
subtypes independently contributed to survival in a multivariate analysis. Conversely, the
IPI score did not vary significantly among the genetic subtypes, but the latter significantly
added to IPI. A trend toward increased extranodal involvement (e.g., CNS) was a feature
of MCD, which reflected the frequent CD79B and MYD88L265P mutations.

On therapeutic grounds, constitutive BCR signaling activation was most frequent in
MCD and least frequent in EZB, but genetic alterations involving the BCR cascade occurred
in all genetics subtypes, suggesting that constitutive BCR signaling is a pervasive aspect
of DLBCL pathogenesis. BN2 was notably enriched for BCR–NF-kB and IKK regulator
aberrations. In addition to NF-kB, survival of DLBCL cells turned out to be promoted by
antiapoptotic BCL2 family members, which were targeted by genomic amplification or
translocation in 17.4% of cases. As expected, BCL2 mRNA levels were significantly higher
in EZB tumors with BCL2 translocations than in other EZB tumors. MCD tumors also had
high BCL2 mRNA expression as compared with other cases, a finding due to mechanisms
other than translocation or amplification.

4.2. Targeted NGS and Bioinformatic-Based Studies

Lacy et al. [54] applied a 293-gene chip to DNA extracted from FFPE tissue samples
by using a Covaris LE220. The authors sequenced a large, unselected cohort consisting of
928 DLBCL patients all treated with R-CHOP and provided with full clinical follow-up.
Bernoulli mixture-model clustering was applied, and the resulting subtypes analyzed
in relation to their clinical characteristics and outcomes. Five molecular subtypes were
resolved, termed MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, and NOTCH2, along with an
unclassified group. The subtypes characterized by genetic alterations of BCL2, NOTCH2,
and MYD88 recapitulated the above-mentioned studies showing good, intermediate, and
poor prognosis, respectively. The SOCS1/SGK1 subtype showed biological overlap with
primary mediastinal B-cell lymphoma and conferred excellent prognosis. Although not
identified as a distinct cluster, NOTCH1 mutation was associated with poor prognosis.
The impact of TP53 mutation varied with genomic subtypes, conferring no effect in the
NOTCH2 subtype and poor prognosis in the MYD88 subtype. The results obtained by
Lacy et al. are summarized in Table 2, where they are also compared with the subtypes
reported by Chapuy et al. [51], and Schmitz et al. [52].

Ennishi et al. [55] performed an integrative genomic and transcriptomic analysis of
DLBCL using a British Columbia population-based registry. They uncovered recurrent
biallelic TMEM30A loss-of-function mutations which were associated with a favorable
outcome and were uniquely observed in DLBCL. Using TMEM30A-knockout systems,
increased accumulation of chemotherapy drugs was observed in TMEM30A-knockout cell
lines and TMEM30A-mutated primary cells, accounting for the improved treatment out-
come. Furthermore, they found increased tumor-associated macrophages and an enhanced
effect of anti-CD47 blockade limiting tumor growth in TMEM30A-knockout models. By
contrast, Ennishi et al. showed that TMEM30A loss-of-function increased B-cell signaling
following antigen stimulation—a mechanism conferring selective advantage during B-cell
lymphoma development. These findings suggested intrinsic and extrinsic vulnerabilities
of cancer cells that can be therapeutically exploited.

Finally, Wright et al. [56] developed an algorithm to determine the probability of a
patient’s lymphoma belonging to one of seven genetic subtypes based on its genetic features.
This represented a probabilistic classification tool (LymphGen) using any combination of
mutational, copy number, and BCL2/BCL6 rearrangement data. Schmitz’s cohort was used
as training set, while those from Chapuy et al. and Ennishi et al. were used for validation.
Wright et al. developed a model that is summarized in Table 3, which also includes
information on potential therapeutic targets related to the genetic subtype of DLBCL.
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Table 2. Molecular subtypes of DLBCL according to Lacy et al. in comparison with those of Chapuy et al. and Schmitz et al.

Lacy et al. Chapuy et al. Schmitz et al. Notes
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to the NEC group.
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NOTCH1
Characterized by NOTCH1 mutation, this was
significantly elevated in Lacy’s NEC group but
only mutated in 2.5% of samples. Associated with
poor outcome.

PCNSL, primary central nervous system lymphoma; FL, follicular lymphoma; MHG, molecular high grade; MZL, marginal zone lymphoma.

Table 3. Implications of genetic subtypes of DLBCL for therapy (from Wright et al., modified).
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5. Open Issues and Perspectives

The paper of Lacy et al. [54] was accompanied by a commentary from Morin and
Scott [57], who concluded that comprehensive sequencing of a larger number of tumors
with the combination of whole-genome and transcriptome sequencing is warranted to
develop a new molecular taxonomy which may be concretely translated into clinical
benefits. In fact, between 7.5% and 55% of the cases reported by Chapuy et al., Schmitz et al.,
and Lacy et al. did not fit into any of the major genetic categories they identified [51,53,58].
The fact that the genomic studies hitherto reported show a certain variability in terms
of results may depend on different factors, such as the size of the analyzed cohort or
heterogeneity of the techniques used (e.g., FF vs. FFPE tissue, whole exome vs. targeted
sequencing, and the statistical approach applied), but also on the actual heterogeneity of
the lesions occurring in these tumors. For instance, divergent evolution within the same
biopsy, which corresponded to different morphologic, phenotypic, and COO features [59],
has been reported. Although the distinct components had a common clonal origin and
shared the bulk of genetic aberrations, each revealed private mutations, in keeping with
the above-mentioned morpho-phenotypic and molecular differences.

The heterogeneity of genetic lesions is much greater than was thought until a couple of
years ago. This has been highlighted by liquid biopsy (LB) [59–61]. By ultradeep sequencing
of the cell-free circulating tumoral DNA (cfDNA) released by neoplastic cells undergoing
apoptosis, it has been shown that the global mutational landscape of DLBCL is indeed
wider than that observed in diagnostic biopsies, which means that different mutations can
occur at different anatomic sites. Once a standardized methodology is developed and the
cost per test is reduced, LB can represent a real-time noninvasive tool for disease monitoring.
In fact, patients achieving early molecular response (a 2-log decrease of ctDNA after one
cycle of standard chemoimmunotherapy) and major molecular response (a 2.5-log decrease
after two cycles) show a significantly superior outcome at 24 months independently of
IPI and interim positron emission tomography. Conversely, among treatment-resistant
subjects, new mutations are acquired in cfDNA, marking resistant clones selected during
the clonal evolution.

The continuous development of sequencing and bioinformatic techniques will allow
us to achieve the long searched-for goal of using customized therapies based on the
molecular characteristics of each individual tumor. Some approaches do appear to be
more easily and cheaply applicable to daily life. Nevertheless, the more comprehensive
the bioinformatic approach is, the higher the likelihood of overcoming today’s standard
chemoimmunotherapy and designing chemotherapy-free protocols capable of curing most
(if not all) patients, with minimal or no toxic effects.
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