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ABSTRACT

Objectives: The development of clinical predictive models hinges upon the availability of comprehensive clini-

cal data. Tapping into such resources requires considerable effort from clinicians, data scientists, and engi-

neers. Specifically, these efforts are focused on data extraction and preprocessing steps required prior to

modeling, including complex database queries. A handful of software libraries exist that can reduce this com-

plexity by building upon data standards. However, a gap remains concerning electronic health records (EHRs)

stored in star schema clinical data warehouses, an approach often adopted in practice. In this article, we intro-

duce the FlexIBle EHR Retrieval (FIBER) tool: a Python library built on top of a star schema (i2b2) clinical data

warehouse that enables flexible generation of modeling-ready cohorts as data frames.

Materials and Methods: FIBER was developed on top of a large-scale star schema EHR database which contains

data from 8 million patients and over 120 million encounters. To illustrate FIBER’s capabilities, we present its

application by building a heart surgery patient cohort with subsequent prediction of acute kidney injury (AKI)

with various machine learning models.

Results: Using FIBER, we were able to build the heart surgery cohort (n¼12 061), identify the patients that de-

veloped AKI (n¼1005), and automatically extract relevant features (n¼774). Finally, we trained machine learn-

ing models that achieved area under the curve values of up to 0.77 for this exemplary use case.

Conclusion: FIBER is an open-source Python library developed for extracting information from star schema clin-

ical data warehouses and reduces time-to-modeling, helping to streamline the clinical modeling process.
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INTRODUCTION

The advent of large-scale electronic health record (EHR) databases

has paved the way for promising applications in precision medi-

cine.1,2 By providing access to retrospective cohorts of real-world

patient populations, they constitute a powerful instrument for clini-

cal research.3 Furthermore, advancements in machine learning (ML)

in the last decade led to a surge of ML algorithms applications on

EHR data.4 However, both defining the inclusion and exclusion cri-
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teria for specific disease cohorts as well as extracting their data from

the databases is a sophisticated process.5 Translating these work-

flows into database queries and transforming the extracted data for

further analysis tasks requires deep-ranging knowledge of the under-

lying EHR data model, its entities, and their relationships. Those

skills often take a considerable amount of time to develop and lead

to code that is hard to maintain and replicate. Enabling researchers

to work with the data directly in their modeling pipeline, abstracting

away database structures and vendor-specific jargon, promises to re-

duce time-to-modeling in clinical ML applications.6

To that effect, different initiatives related to interoperability

have been championed by industry and academia.6 Three of the

most prominent ones are the Fast Healthcare Interoperability

Resources (FHIR),7 the Observational Medical Outcomes Partner-

ship (OMOP) Common Data Model (CDM),8 and the Integrating

Biology and the Bedside (i2b2) clinical data warehouse platform.

Only the latter one is inspired by a “star schema” design:9,10 in this

schema, atomic “facts”, that is, single observations about a patient,

are stored in a narrow fact table and ontology tables are then used

to translate local database codes to medical concepts.11 As of Janu-

ary 2021, 83 academic health centers in the United States are cur-

rently using the i2b2 data model, which builds upon the star schema

design.12 While high-level programming languages libraries for que-

rying OMOP-based data warehouses are available, no such open-

source tools exist for star schema-based EHR systems to our knowl-

edge.6,13,14 We thus created the FlexIBle EHR Retrieval (FIBER), an

open-source Python library which is addressing this gap by provid-

ing an end-to-end framework that allows users to efficiently and reli-

ably extract EHR data from star schema-based databases for easy

integration into ML pipelines. To illustrate the use of FIBER, we

present a concrete use case for building a cohort of heart surgery

patients who developed acute kidney injury (AKI). Additionally, we

evaluate the query-time performance of the framework in two differ-

ent databases, one columnar In-Memory Database (IMDB) and an-

other following a traditional row-based approach.

RELATED WORK

This section describes the cohort building process and the software

tools currently available for that intent.

Cohort building methodology
EHR databases and early standardized data formats were originally

designed for billing and accounting purposes, and not primarily

intended for conducting scientific medical research.15 This secondary

use has been a product of a wider and more abundant availability of

routine clinical data from Hospital Information Systems (HISs) in

such databases. Since most research questions involving EHR data-

bases focus on specific patient subsets, that is, cohorts, this develop-

ment came along with the need for defining concise criteria to select

such cohorts. This process is called phenotyping and a number of ini-

tiatives aim at providing such validated sets of criteria to the EHR

and medical research community.5,16 A typical phenotyping work-

flow would comprise a connection to the EHR database, setup of the

case-specific vocabulary, querying different data modalities, that is,

structured (diagnosis and procedure codes, laboratory values, medi-

cations, vital signs, etc.) and unstructured—mostly clinical notes—

and combining these modalities in a conditional way to define differ-

ent subcategories of (diseased) cases and (healthy) controls, for exam-

ple, in the context of heart disease.17 In a star schema data structure,

these different events during a patient’s journey can be found in a fact

table. In order to make sense of these atomic facts, every of these

entries needs to be connected to information in other dimension

tables such as diagnoses and laboratory values. Additionally, the tem-

poral occurrence of these events often needs to be taken into account.

In practice, this translates to complex and nested SQL queries includ-

ing many JOIN operations, which can become computationally ex-

pensive. The retrieved cohort data should then be transformed in a

format that easily allows for processing and follow-up analysis.

Software tools for cohort building and analysis
The existing tools in the area of applied EHR-based research are tai-

lored around the creation and assessment of cohorts and their basic

statistical analysis in the context of observational research or hospi-

tal quality improvement programs.16,18,19 Most of the available soft-

ware is based on the OMOP medical database schema or

proprietary formats and the majority of the tools do not provide

modeling-ready, patient-level aggregated features as output. Neither

are all published tools available as open-source software.18,19 Some

of the existing tools and libraries for EHR analysis and their features

are mentioned in Table 1. The selection was based on the open-

source availability of the tools and the independence from the under-

lying HIS. The table should give an overview of key features (though

not exhaustive) of the different tools. Each tool was assessed inde-

pendently by two of the authors. In case of no consensus, a third au-

thor was involved into the discussion. The comparison with FIBER

is discussed in the Discussion section.

METHODOLOGY

In this section, we describe the data on which the library was built

and tested on. Then, we show the architecture and the design

LAY SUMMARY

The extraction of data from electronic health records (EHR) for applications such as machine learning traditionally is a very

time-consuming task requiring expertise in many different programming languages. FlexIBle EHR Retrieval (FIBER) is a tool

designed to ease that process of information extraction from EHR databases by providing all functionality of that workflow

in the popular programming language Python. It specifically focuses on star schema databases, a popular choice for storing

large quantities of health data. By providing many different utility functions, FIBER removes the need to write complicated

database queries and can thus reduce the time required for researchers to extract and process data. To show FIBER’s capa-

bilities, we demonstrated an exemplary end-to-end clinical modeling use case of predicting acute kidney injury after heart

surgery on a cohort of 12 061 patients. Additionally, we evaluated the interplay of FIBER with different database systems

and came to the conclusion that both row-oriented and columnar databases work seamlessly with FIBER, while at the same

time the latter can significantly improve data retrieval performance.
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principles that guided the development of the library. Finally, we de-

scribe the technology stack used.

Data description
FIBER was developed and tested using the deidentified EHR data

within the Mount Sinai Data Warehouse (MSDW), which uses a

star schema data model. The Mount Sinai health system generates a

huge volume of structured, semistructured, and unstructured data as

part of its healthcare and clinical operations, which include inpa-

tient, outpatient, and emergency encounters.25 In this article, we use

the structured data which resides in the MSDW. As of the end of

2018, MSDW contains data from more than 8 million patients with

more than 120 million encounters. Each encounter between the pa-

tient and the hospital generates one or more facts which are stored

in the FACT table of the star schema. The FACT table has around 2.4

billion entries. Every fact is associated with the deidentified Medical

Record Number (MRN) of a patient. Dimension tables are used to

translate concepts, such as “diagnosis of essential hypertension” to

local database codes, such as the International Classification of Dis-

eases (ICD). Some facts of the same category are often grouped to-

gether when they happen during the same encounter and under the

same context. The grouping tables in the database schema help us

map the group facts to individual facts. These groups reduce the

number of entries in the fact table but can imply larger join opera-

tions and result in more complicated SQL queries. Testing FIBER

with MSDW has allowed us to show that FIBER can handle high

volume of real-world EHR data. The underlying data schema is pro-

vided in a database embedded in a Docker container (cf. Supplemen-

tary Material for further details).

Software architecture
Figure 1 presents the architecture of FIBER with its components

using an FMC block diagram.26 Clinical data scientists can obtain

cohorts and use automated functions through the FIBER

Application Programming Interface (API), which is built on top of a

unified query engine and data adapters.

Data adapters and extensions

FIBER is currently focused on structured clinical data; however, the

architecture is flexible to accommodate a number of other data sour-

ces. Assuming a suitable data mapper is developed, it becomes possi-

ble to tap into not only relational data but also omics or textual

data. For instance, a Variant Call Format (VCF) genomic file could

be mapped onto a tabular format containing only genetic variants

and chromosome positions by a corresponding “VCFDataMapper.”

By extending FIBER and creating a “Variant” condition based on

this mapper, one could generate cohorts that match a given genomic

variant. At this stage, FIBER relies on SQLAlchemy27 as a mapper

for querying relational databases, but the FIBER query engine is ag-

nostic to the underlying data sources. In our example with the heart

surgery cohort, the data scientists can specify the conditions which

define the case cohort. These conditions are then translated to SQL

queries by the FIBER data adapters and are executed against the

database to retrieve the patient cohort. In order to achieve reproduc-

ibility, the cohort definition can be saved and shared with fellow

researchers.

Query engine

The query engine holds condition and cohort objects, which are the

main building blocks of FIBER. Conditions enable us to filter the

FACT table based on different dimensions such as diagnosis, proce-

dure, medications, etc. For example, facts that indicate a heart sur-

gery can be extracted with the following code:

Conditions can return multiple facts about the same patient. For

example, if a patient has two heart surgeries, the command above

will return two entries for that patient, which are separate in time.

Table 2 shows the available condition classes. Apart from textual

Table 1. Major features of cohort creation and analysis tools

Feature ATLAS20 FIDDLE21 inspectOMOP13 Leaf 22 PLP 23 ROMOP 6 rEHR 24 FIBER

Internal standards

Standard of underlying

database

OMOP Specialized data set only

(MIMIC)

OMOP i2b2þ OMOP OMOP OMOP CPRD i2b2

(Programming)interface GUI Py Py GUI R R R Py

Data handling

Complex cohort build-

ing

� � � � � � � �

Modeling-ready data-

frames (aggregated at

patient level)

� � � � � � � �

Customization of

graphical display and

results

� � � � � � � �

Abbreviations: Py: Python; GUI: graphical user interface; CPRD: Clinical Practice Research Datalink.

Legend: �: fully supported; �: partially supported; �: not mentioned.

Procedure(description¼’HEART SURGERY’)
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description supporting partial string matching, standardized coding

schemes can also be used to create conditions where available. For

example, below are two semantically equivalent procedures which

would yield the same result:

Since most cohorts are selected by complex conditions that in-

corporate more than a single code or group of codes, FIBER allows

researchers to combine two or more conditions with Boolean opera-

tors AND and OR. Conditions can be combined in any manner

and with different nesting levels. The following code, for example,

will generate a condition which is satisfied by every patient that is

male and has either a closed heart valvotomy (ICD-9 code: “35.0”)

or a bypass anastomosis for heart revascularization (ICD-9 code:

“36.1”):

The next building block of FIBER is the cohort object. A cohort can

be built based on one or more conditions. While a condition

describes all occurrences of matching events from the FACT table, a

cohort describes the set of patients for which at least one matching

occurrence exists. For example, the following code generates a set of

patients who had closed heart valvotomy:

Once the cohort has been created, FIBER provides easy utility func-

tions to analyze it further, for example, calculating its size and basic

demographic composition. Additionally, two other noteworthy

functions are occurs and values_for. The first one allows users

to get occurrences of different conditions such as procedures, diag-

nosis, etc. relative to the cohort in question. The values for func-

tion allows researchers to extract different laboratory values and

vital signs. The details of all the functions available on the cohort

object can be found in the documentation of the library.

Cohort storage

Apart from the regular cohort building, FIBER also offers utility

functions to facilitate the collaboration between scientists working

with EHR. One such function enables the researcher to save com-

plex cohort conditions in the JavaScript object notation (JSON) so it

can be easily shared among researchers.28

Feature extraction

FIBER already provides users with functions like occurs and val-

ues_for to extract individual diagnosis, procedures, laboratory,

and other values, for a particular cohort. Nonetheless, sometimes

the researcher does not know upfront which features from the ones

available will show significant predictive power for the condition of

interest. The number of all possible features can easily run into the

order of hundreds of thousands, if not more. Hence, it is not feasible

to extract all possible features individually. To address this issue,

FIBER provides a simple function to extract all possible features for

a particular cohort, within any specified time window. Also, as we

run into features in the range of thousands, most of them become

very sparse. A lot of medications, diagnosis codes, and laboratory

values have entries only for a very small number of patients. While

many imputation algorithms exist to impute features that contain

null values, researchers usually choose to drop the features that are

very sparse. Therefore, FIBER also allows researchers to define

thresholds for the different feature classes (laboratory values, diag-

noses, etc.), so only features which are present for at least a certain

fraction of the total patients are extracted. Since multiple instances

of specific laboratory tests can be encountered for a particular pa-

tient, FIBER also allows researchers to aggregate these values either

by predefined aggregation functions (eg, min, max, mean, and me-

dian) or by using a user-defined aggregation function.

Time series extensions

EHR data are intrinsically longitudinal in nature. In some ML

approaches, such data cannot be used for modeling without prior

processing, for example, extracting the mean value for a series

of measurements. However, those types of aggregation functions

often implicate loss of potentially predictive information. Advanced

techniques exist for preprocessing time series that aim to use all

data points, such as Symbolic Aggregate approXimation (SAX).29

To account for this, FIBER has an accompanying utility package

(FIBER Utils) with built-in functions for alternative modes for time-

series representations and other cohort aggregation functions. These

utilities make experimenting and model prototyping more conve-

nient.

Cohort exploration

FIBER provides a number of utilities to quickly explore a given co-

hort. They encompass, among others, distribution of demographic

features, heatmap for the number of patient encounters over time,

and summary plot for the availability of features given a certain

threshold.

Technology stack
FIBER was developed as a Python 3.x module. It makes extensive

use of the object-relational mapper SQLAlchemy for interfacing

with the database, thus abstracting away the complexities of

database-specific SQL dialects.27 Within this framework, data are

handled by means of Pandas dataframes.30 This presents a 2-fold ad-

vantage (1) it allows complex data operations to be performed con-

sistently regardless of the underlying data source and (2) it is widely

Procedure(code¼’35.0’, context¼’ICD-9’) # OR Procedure(’35.0’,’ICD-9’) Procedure(description¼’CLOSED
HEART VALVOTOMY’)

(Procedure(’35.0’,’ICD-9’) j Procedure(’36.1’,’ICD-9’)) & Patient(gender¼’male’)

Cohort(condition¼Procedure(description¼‘CLOSED HEART VALVOTOMY’))
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employed in the ML community as the de facto standard for data

manipulation along with NumPy.31 Graphical functionality is pro-

vided by the packages Matplotlib and Seaborn.32

When working with large amounts of records as in the MSDW,

we expect a difference in performance when using distinct database

management systems. As FIBER can be connected to different types

of databases, its performance has been evaluated on top of both a

MySQL and an SAP HANA database as representatives for row-

oriented and column-based database architectures. For the former, a

MySQL 5.5 instance was selected and for the latter an SAP HANA

2.00 running inside a Docker container. All experiments were exe-

cuted on a server with 64 cores and circa 1 TB of main memory,

with the HANA database being limited to 128 GB memory con-

sumption and no predetermined volatile memory cap for MySQL.

The SQL queries were generated by FIBER and executed on the

aforementioned server. To inspect the behavior of the databases

with a different number of results, that is, patients or laboratory val-

ues, we added a LIMIT clause to the SQL queries.

EVALUATION

To evaluate our framework, we demonstrate how a concrete cohort

building and subsequent predictive modeling use case can be imple-

mented in FIBER using selected utility functions. Additionally, we

present performance benchmarks of the framework using three eval-

uation queries executed into two distinct database types.

Use case: heart surgery
To illustrate some of the capabilities of the framework, we address

the use case of predicting AKI onset after heart surgery using preop-

erative parameters such as laboratory values, vital signs, comorbid-

ities, and patient demographics. Renal complications affect up to

30% of the patients following cardiac surgery procedures, such as

valvectomy or valve replacement and/or bypass surgery, and are as-

sociated with poor patient outcomes.33 Let us assume a clinical data

scientist or researcher aims to create a prediction model for the like-

lihood of AKI after heart surgery, based on a number of patient

characteristics and longitudinal measurements.

In the code snippet below, we first define the condition of the

heart surgery. We then build a cohort around that condition. The

has_onset function allows us to check which patients in the co-

hort developed AKI after the heart surgery. The has_onset func-

tion automatically extracts the date of the base condition of the

cohort (heart surgery) and only considers the AKI events which hap-

pened after the surgery. The outcome of this function becomes our

target variable. Finally, the get_pivoted_features function

helps us to get all the features which we want to input into the

model. Here, we only demonstrate this with a sample configuration

to extract the laboratory values for this cohort during a time win-

dow of 180 days till the day of the heart surgery. Additionally, at

least 50% of all the patients must have that laboratory test result.

After fetching the laboratory values the function also aggregates

them by calculating the minimum, maximum, and median values as

indicated in the PIVOT_CONFIG. In a similar fashion, the diagnoses,

drugs, and vital signs, etc., can also be extracted for the said cohort.

The code performing the whole task looks as follows:

Executing this cohort definition, a total of 12 061 patient records

(male: 7456; female: 4605) were identified from the database which

contains a total of 8 million patient records. Average age in years is

61.6 for male and 61.8 for female. For a more detailed explanation

of the code, including the algorithm, please refer to Supplementary

Appendix II.

Furthermore, we demonstrate a few plotting functions that FI-

BER provides to explore cohorts. Figure 2A and B show two exem-

plary plots to inspect the patient demography (age and gender) of

the heart surgery cohort that we created above.

In the use case above, the researcher might also be interested in

knowing how many encounters the patients had and how this num-

ber changes over time. With data sparsity being a major issue in

EHR research, a first glance at data availability for the observation

window of interest can be obtained from a built-in function. An ex-

ample output of the utility function that generates a heat map which

shows how the number of encounters of the patients changes around

the event of interest can be seen in Figure 3A. This plot shows that

the number of patient encounters are higher directly before and after

the heart surgery and it gets sparser when moving away from that

event. Figure 3B shows the number of features of the different fea-

ture classes (diagnosis, laboratory values, etc.) obtained from the

get_pivoted_features for the heart surgery cohort for different

feature completeness thresholds.

heart_surgery_condition ¼ (

Procedure(code¼’35.%’, context¼’ICD-9’).age(min_age¼18) j
Procedure(code¼’36.1%’, context¼’ICD-9’).age(min_age¼18)

)

heart_surgery_cohort ¼ Cohort(heart_surgery_condition) aki ¼ heart_surgery_cohort.has_onset(

name¼"aki",
condition¼Diagnosis(code¼"584.%", context¼"ICD-9"),

)

PIVOT_CONFIG ¼ f
LabValue(): f

’timewindow’: [-180, 0],

’threshold’: 0.5,

’pivot_table_kwargs’: f’aggfunc’: f’numeric_value’: [’min’, ’median’, ’max’]gg,
g

g
input_features ¼ heart_surgery_cohort.get_pivoted_features(PIVOT_CONFIG)
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Once the relevant features had been extracted, we predicted the

onset of AKI for heart surgery patients. We try two different predic-

tions windows, 7 days and 28 days within which we observe if a

heart surgery patient developed AKI or not. We tried four different

machine learning models namely logistic regression, random forest,

XGBoost, and lightGBM.34–36 The models were compared based on

the area under the receiver operating characteristics curve (AUC),

the area under the precision-recall curve (AUPRC), Precision, and

Recall. The mean of these metrics across a 5-fold cross-validation is

reported in Table 3. For a more detailed account of the previous

work on this specific clinical question and model explanations,

please refer to Supplementary Appendix I.

Performance benchmarks
For the evaluation, three types of queries that resemble common use

cases were executed (1) retrieval of patient MRNs based on a diag-

nosis, (2) fetching of attributes for those patients, and (3) counting

all laboratory results aggregated by type of test. We defined the

queries based on the diagnosis codes from the heart surgery use case

described in the Use case: heart surgery section.

In the first query (Figure 4A), the MySQL database showed a lin-

ear dependency between the number of patients and the runtime. It

required nearly 10 h for returning the full result set, whereas the

IMDB returned the result set within seconds for all cohort sizes.

Moreover, the runtime did not increase as sharply with the size of

the result set.

In the second query (Figure 4B), the IMDB outperforms MySQL.

For the whole cohort, the IMDB returned the values in about 3 s,

(a)

(b)

Figure 2. (A) Gender and (B) age distribution plots generated using FIBER for

the heart surgery cohort.

Figure 1. FIBER architecture depicted using a Fundamental Modeling Con-

cepts (FMC) block diagram. The architecture can be extended to Omics and

Text Data.

Table 2. Available condition classes in FIBER

Condition class Initialization with

Description (text) Clinical codes

Diagnosis � �

Procedure � �

Measurement (procedure) � �

Vital sign (measurement) � �

Material � �

Drug (material) � �

Encounter � –

Metadata � –

Laboratory value � �a

Patient � –

Note: Some conditions can only be created from short descriptions, for ex-

ample, LabValue(“GLUCOSE”), others also from standardized clinical cod-

ing scheme like ICD-9, for example, Procedure(code¼“35.0”, context¼
“ICD-9”). The condition class names in brackets indicate their parent condi-

tion class.
aStandardized codes like LOINC can be integrated into the FIBER frame-

work but have not been applied in the current use case.
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while the MySQL required roughly 20 min and showed the same

linear dependency as before. For the third query, we simulated the

data exploration feature for laboratory tests by counting the number

of patients for different types of glucose tests. In this case, we limited

the number of database rows retrieved by using the filter “glucose.”

Both databases answered the query within one second for up to 100

000 lab tests, with the MySQL database being marginally faster.

While the IMDB was still in the subsecond range for the maximum

100 000 000 rows, the MySQL database required 45 min for this

aggregation and showed an exponential increase for more than 100

000 tests (Figure 4C).

DISCUSSION

In this section, we address the comparison of FIBER against other li-

braries, the performance differences observed regarding the usage of

different database types, as well as inherent limitations.

Comparison to state-of-the-art
Here, we shortly discuss the comparison of FIBER to some of the

current state-of-the-art libraries and tools for EHR processing that

are openly available. The detailed comparison can be found in Table

1 in the Software Tools for Cohort Building and Analysis section. It

supports complex phenotyping workflows and enables researchers

to conveniently identify cases and controls for the condition of inter-

est. Also, it helps researchers to directly extract machine learning-

ready data frames, for example, to get all relevant features for a co-

hort aggregated on patient level within a specified time window.

Noticeably, only one of the tools reviewed directly supported getting

all features for a cohort as FIBER does.21 Providing a Python

1 2 3 4 5

121d before to 91d before

91d before to 61d before

61d before to 31d before

31d before to 1d before

1d after to 31d after

31d after to 61d after

61d after to 91d after

91d after to 121d after

121d after to 151d after

Ti
m

e 
in

te
rv

al
 r

el
at

iv
e 

to
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oh
or

t 
co

nd
iti

on

0.21 0.15 0.12 0.092 0.074

0.29 0.21 0.16 0.13 0.1

0.46 0.35 0.28 0.22 0.18

1 0.97 0.93 0.87 0.81

1 0.99 0.98 0.94 0.89

0.77 0.61 0.47 0.35 0.28

0.49 0.32 0.24 0.18 0.15

0.38 0.24 0.18 0.14 0.12

0.32 0.2 0.16 0.12 0.1

Fraction of patients with at least x number of encounters

Encounters

0.0

0.2

0.4

0.6

0.8

1.0

(a)

(b)

Figure 3. Different utility plots for cohort exploration from FIBER. In (A)—an encounter-timeline plot, the x-axis shows the number of encounters, the y-axis shows

different time windows around the heart surgery. The number in the boxes indicates what fractions of patients had that many encounters. In (B)—feature counts,

we see the number of features for some of the different feature classes obtained using the get_pivoted_features function for the heart surgery cohort with

varying thresholds.

Table 3. Metrics for prediction of acute kidney injury onset in a

time window of 7 and 28 days after heart surgery, comparing four

different models for each prediction period

Prediction window (days) Model AUC AUPRC

7 Logistic regression 0.57 0.10

7 Random_Forest 0.52 0.09

7 Light-GBM 0.73 0.16

7 XGBoost 0.55 0.11

28 Logistic_Regression 0.61 0.18

28 Random_Forest 0.54 0.15

28 Light-GBM 0.77 0.25

28 XGBoost 0.60 0.20

Note: The complete data were extracted with FIBER. The values in bold in-

dicate the best performance achieved.
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interface and working on an i2b2 star schema data format, FIBER

stands out in facilitating information exchange and cohort compara-

bility between different health organizations following this schema

(eg, the JSON cohort definitions can easily be shared across institu-

tions). Generalizability of data extraction pipelines for these institu-

tions has always been challenging, and we anticipate FIBER to

alleviate this issue.

Performance benchmarks
The differences in runtime observed can be largely attributed to the

different database architectures. Patient health information in the

MSDW is stored in a star schema format. As such, the benchmark

queries join data from the dimension tables to the main FACT table

to then filter only the relevant information. In our case, the large

volume of the FACT table, which contains 2.4 billion rows, and the

necessary JOIN operations with other dimension tables makes

column-based in-memory databases more performant. In contrast to

a row-based database like MySQL, columnar databases like the

IMDB utilize an optimized memory layout in which a column is rep-

resented as a sequence of encoded and compressed values. This ar-

chitecture reduces the need for I/O during table scans and

aggregations such as cohort creation. Since not all columns need to

be returned in the query results, this works in favor of the column-

based databases. Further, this ability to store sequential values in

consecutive memory blocks enables optimization techniques such as

data cache prefetching. This difference between row- and column-

based databases has been a long-standing topic in database re-

search.37 As such, using FIBER makes it possible to write the extrac-

tion queries only once which can then take advantage of different

database architectures for increased query performance.

Limitations
Though FIBER enables improvements in current processes of clinical

predictive modeling on EHR databases, it does have certain short-

comings. The major limitation is that FIBER is currently only com-

patible with i2b2 star schema-based databases. As such, in its

current state, FIBER does not support out-of-the-box ontology map-

pings, that is, does not directly interface with standardized ontolo-

gies like SNOMED CT.38 Future iterations of FIBER may interface

with other EHR data models, such as OMOP, which in turn enables

ontology mappings to SNOMED CT. Moreover, the library does

not address the privacy concerns related to EHR data, for example,

anonymization of the underlying data.

CONCLUSION

In this article, we introduce the Python library FIBER, a novel

framework which more seamlessly enables data extraction and

modeling for ML on star schema EHR data. This process tradition-

ally requires the stitching of multiple programming languages and

packages. FIBER facilitates this process by providing the major func-

tionalities of EHR data extraction and processing in a single, easy-

to-use framework. We discuss in detail the functionalities and archi-

tecture of the library and demonstrated its capabilities on a real-

world clinical predictive modeling use case. Moreover, we show

how column-oriented, in-memory databases can also have signifi-

cant performance gains over row-oriented databases in extracting

health data. The code, including detailed documentation and exam-

ples, is available as open-source software (cf. Supplementary Mate-

rial). In future work, the library may be extended to additional

health data modalities.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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