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Abstract

Trypanosomatids’ amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of
parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of
permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a
single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a
100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease
(TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine
metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in
TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains
constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls.
Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary
phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in
ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the
intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence
techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of
the plasma membrane named flagellar pocket, staining a single locus close to the flagellar pocket collar. Taken together
these data suggest that arginine transport is closely related to arginine metabolism and cell energy balance. The clinical
relevance of studying trypanosomatids’ permeases relies on the possibility of using these molecules as a route of entry of
therapeutic drugs.
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Introduction

Trypanosoma cruzi is the causative agent of Chagas ‘disease, a

zoonosis affecting approximately 18 million people in the

Americas [1]. This protozoan parasite has a complex life cycle,

involving morphological changes and a wide variety of environ-

ments with different composition, mainly the insect vector gut,

mammalian blood and mammalian host cell cytoplasm. In

consequence, the parasite survival mainly depends on their

adaptive ability and metabolic plasticity. A critical aspect to

achieve these adaptations is the parasite potential to take

advantage of the available metabolites in the different extracellular

milieus using a large repertoire of nutrient permeases. One of the

major amino acid transporter families is the ‘‘Amino Acid/Auxin

Permease Family’’ (AAAP; TC 2.A.18) which is largely represent-

ed in plants [2]. In T. cruzi, many members of this family were first

identified by our group [3] and then confirmed by the TriTryps

genome project [4]. This T. cruzi family, called TcAAAP, has more

than 30 genes coding for proteins with lengths of 400–500 amino

acids and 10–12 predicted transmembrane a-helical spanners.

One interesting feature of this permease family is the absence of

similar sequences in mammalian genomes; however, the presence

of unidentified orthologs could not be discarded [5]. T. cruzi

arginine transport systems have been largely studied during the

last decade [6]; even so, the first evidence of the molecular

determinants of this process was recently reported. TcAAP3

(formerly TcAAAP411), a member of the TcAAAP family, has an

arginine transport activity in a yeast model [7]. A similar arginine

transporter (LdAAP3) was also identified in the protozoan parasite

Leishmania donovani [8]. LdAAP3 regulation mainly depends on

the availability of the extracellular substrate since amino acid

starvation produces an increase in arginine transport and LdAAP3
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protein abundance [9]. Interestingly, a similar mechanism of

regulation was described for arginine and other T. cruzi amino

acids transport systems [10], supporting the hypothesis that most

of the previously characterized transport systems in trypanosoma-

tids involve members of the TcAAAP family. On the other hand,

lysine transporters from this family were also identified and

characterized in Trypanosoma spp. and Leishmania spp. [11]. In

higher eukaryotes most of cationic amino acids transporters

incorporate arginine and lysine by a single permease [12,13,14].

On the contrary, parasite permeases translocate cationic amino

acids by different mono-specific transporters [6,11]. Taken

together, these differences suggest that amino acid transporters

may provide multiple and unexplored targets and gateways for

therapeutic drugs.

In this work we validated the functionality of TcAAP3 in vivo by

homologous over-expression in T. cruzi epimastigotes. We also

studied the TcAAP3 specific localization in the parasite surface

and its contribution on the regulation of arginine metabolism and

cell energy balance.

Materials and Methods

Cell cultures
Epimastigotes of the MJ-Levin strain were cultured at 28uC in

plastic flasks (25 cm2), containing 5 mL of LIT medium (started

with 106 cells per milliliter) supplemented with 10% fetal calf

serum, 100 U/mL penicillin, and 100 mg/mL streptomycin [15].

The parasites were subcultured with passages each 7 days. Cells

were counted using a hemocytometer. The MJ-Levin T. cruzi

strain was recently typified according to the mini-exon sequences

from twenty independent clones (Schijman et al., personal

communication). Based on these results the strain has been included

in the typing unit 1 [16].

Arginine and lysine transport assays
Aliquots of epimastigote cultures (36107 parasites) were

centrifuged at 8,0006g for 30 s, and washed once with

phosphate-buffered saline (PBS). Cells were resuspended in

0.1 mL PBS and then added 0.1 mL of the transport mixture

containing 100 mM L-(3H) arginine or lysine (PerkinElmer’s

NENH Radiochemicals; 0.4 mCi). Following incubation for

10 min at 28uC, reaction was stopped by adding 1 mL of ice-

cold PBS. Cells were centrifuged as indicated above, and washed

twice with ice-cold PBS. Cell pellets were resuspended in 0.2 mL

of water and counted for radioactivity in UltimaGold XR liquid

scintillation cocktail (Packard Instrument Co., Meridien CT, USA)

[6]. Assays were run at least by triplicate. Cell viability was

assessed by direct microscopic examination. Non-specific uptake

and carry over were measured in transport mixture containing

10 mM L-arginine (100-fold molar excess), or in standard

transport mixture incubated at 4uC.

Plasmid constructions and parasite tranfection
TcAAP3, TcBilbo1 and TcAAP7 genes (GeneDB: Tc00.

1047053511411.30, Tc00.1047053511127.20, and Tc00.1047053

511127.20, respectively) were amplified using genomic T. cruzi

DNA as template and the following primers: TcAAP3F 59

ATGGGCACCGAGAGTGGCAA 39; TcAAP3R 59 TTACC-

GAACCACACCATACA 39; TcBilbo1F 59 ATGTTGGTCAT-

TAATGTAGCCGCTG 39; TcBilbo1R 59 GGATCCGGAT-

CGTCCTCCCTGCAGCT 39; TcAAP7F 59 ATGTATGACA-

ACGTCAATGAGG 39; and TcAAP7R 59 GTCGACTCAGC-

CATGGGCTTCG 39. Amplification products were cloned into a

modified pTREX expression plasmid called pTREXL [17];

(Bouvier et al. unpublished observations) or fused to mCherry

(mCherry::TcAAP3; the name corresponds to the order in which

the genes were fused) and eGFP (TcBilbo1::eGFP; eGFP::T-

cAAP7) genes present in the pTREXL plasmids. Constructions

were transfected into T. cruzi epimastigotes as follows. 108 parasites

grown at 28uC in LIT medium were harvested by centrifugation,

washed with PBS, and resuspended in 0.35 mL of electroporation

buffer (PBS containing 0.5 mM MgCl2 and 0.1 mM CaCl2). This

cell suspension was mixed with 50 mg of plasmid DNA in 0.2 cm

gap cuvettes (Bio-Rad Laboratories). The parasites were electro-

porated using a single pulse of (400 V, 500 mF) with a time

constant of about 5 ms.

Fluorescence Microscopy
Epimastigote samples from the days 1–7 after transfection, were

washed twice with PBS. After letting the cells settle for 30 min at

room temperature onto poly-L-lysine coated coverslips, parasites

were fixed at room temperature for 20 min with 4% formaldehyde

in PBS, followed by a cold methanol treatment for 5 min. Slides

were mounted using Vectashield with DAPI (Vector Laboratories).

Cells were observed in an Olympus BX60 fluorescence micro-

scope. Images were recorded with an Olympus XM10 camera.

Amino acid and ATP determinations
Epimastigote cells were counted using a hemocytometric

chamber, harvested by centrifugation at 1,5006g for 10 min

and washed three times with PBS. Cell pellets were then

resuspended in MilliQ water and lysed by 5 cycles of freezing

and thawing. Samples (0.2 mL) were centrifugated and the soluble

fraction was mixed with (5 mL) b-mercaptoethanol and allowed to

stand for 5 minutes at room temperature followed by precipitation

with ice-cold methanol (800 mL) while vortexing. Tubes were

allowed to stand for 15 minutes in ice before centrifuging and the

supernatant was collected. Efficiency of protein precipitation step

was assessed by Bradford’s method. The protein free supernatants

obtained from 56108 parasites were dried in a rotary evaporator,

resuspended in 20 mL of milliQ water and processed immediately

for assaying total amino acids by HPLC analysis or stored at

280uC until further analysis. Amino acids were derivatizated and

analyzed using the AccQ. Tag Amino Acid Analysis Method

(Waters) according to the manufacturer instructions. ATP

determinations were performed using the ‘‘ATP Bioluminiscence

Assay Kit HS II’’ (Roche) according to the manufacturer

instructions. Glucose determinations were performed using the

‘‘Enzymatic Glycemia Kit’’ (Biosystems) according to the manu-

facturer instructions. Assays were run at least by triplicate.

Bioinformatics
Sequences from the ‘‘Tritryps’’ genome projects were obtained

at GeneDB (http://www.genedb.org/) and TcruziDB (http://

tcruzidb.org/). Assembly and analysis of the DNA sequence data

were carried out using the software package Vector NTI v. 10.3.0

(Invitrogen) and the online version of BLAST at the NCBI

(http://www.ncbi.nlm.nih.gov/BLAST/). Local or online soft-

ware were used under default parameters. Reference metabolic

pathways were obtained from the Kyoto Encyclopedia of Genes

and Genomes - KEGG (www.genome.jp/kegg/).

Results and Discussion

TcAAP3 encodes an arginine transporter
To study whether TcAAP3 is a bona fide arginine permease in T.

cruzi, the full-length TcAAP3 and the eGFP genes were cloned

in the expression vector pTREXL and epimastigote cells were

T. cruzi Arginine Transporter
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transfected with the different plasmid constructions. After the

selection period, pTREXL-TcAAP3 transfected parasites

(TcAAP3 epimastigotes) showed an arginine transport rate of

about 2.5-folds greater than pTREXL-eGFP controls (Figure 1,

image 1). The increase in the arginine transport rate seems not to

be well tolerated by T. cruzi epimastigotes, in contrast to the

previously studied lysine transporter TcAAP7. While the transport

of lysine has been increased in 50-folds by over-expression of

TcAAP7 [11], in the case of arginine transport we failed to

obtained cell clones exceeding about 2.5-folds the control rate

using exactly the same approach. This phenomenon could be

related to alterations in the T. cruzi arginine metabolism, in

contrast to the lysine one, which is probably limited to

osmoregulation and protein synthesis [11].

TcAAP3 epimastigotes did not present morphological differ-

ences respect to the controls. However, transfected parasites

showed impaired growth kinetics, reaching a cell density of

7.56107 (61.26107) cells per mL, and the GFP controls 12.36107

(61.26107) cells per mL at the late stationary phase of culture.

This growth phenotype could be due to the toxicity of the over-

expressed membrane protein per se or to the metabolic effects as a

consequence of increased arginine concentrations, as explained

below.

TcAAP3 is highly specific for arginine
Mammalian cells transporters incorporate arginine and lysine

together through a single cation amino acid transporter; however,

previous studies from our group demonstrated that the T. cruzi and

Leishmania lysine permeases (AAP7) are mono-specific [11]. To test

if TcAAP3 is also a mono-specific permease, arginine and lysine

transport assays were performed using TcAAP3 epimastigotes and

GFP transfected parasites. As Figure 1 (image 1) shows, TcAAP3

epimastigotes presented an increase only in arginine, but not in

lysine transport rate compared to the pTREXL-GFP controls.

Additionally, when arginine transport assays were performed in

the presence of a 100-folds molar excess of lysine, the measured

rates remain unaltered. As expected, only an excess of arginine

produced an inhibition of the (3H)-L-arginine intake by isotopic

dilution. These results confirm that TcAAP3 is, unlike mammalian

transporters, a mono-specific arginine permease.

In order to predict the putative molecular determinants of the

substrate specificity, a comparative bioinformatic analysis was

performed using different approaches. The amino acid sequences of

all members of the TcAAAP family present a highly variable N-

terminal domain (about 90 amino acids, 5% of consensus) which

constitutes a candidate to be the determinant of the permeases

specificity [7]. Recently it was reported that these variable regions

are phosphorilated by unidentified kinases that may represent a

regulation mechanism of permeases activity [18]. In contrast, the

central and C-terminal domains have .70% of consensus amino

acid positions. Despite the variable regions of T. cruzi and Leishmania

orthologs do not share any clearly similar motif, a region of

negatively charged amino acids was found between the 6th and the

7th predicted transmembrane spans, corresponding to TcAAP3

residues 291–305 (Figure 1, image 2). This charged region, also

present in TcAAP7 and in both TcAAP3 and TcAAP7 Leishmania

orthologs, can be the cationic amino acids recognition motif.

Over-expression of TcAAP3 increases the intracellular
arginine concentration

In order to test if the elevated rates of arginine transport,

derived from TcAAP3 over-expression, produce an increase in the

intracellular arginine pools, amino acid concentrations were

determined by derivatization and further resolution by reversed-

phase chromatography. Control parasites transfected with an

empty plasmid presented an arginine concentration of 0.46 mM

and TcAAP3 epimastigotes 1.73 mM, representing an increase

in intracellular arginine concentration of about 3.8-fold. No

differences were observed in lysine concentration between both

transfected parasite groups. These results not only reinforce the

data about the mono-specificity of the transporter, but also suggest

that if exist any compensatory mechanism that maintain the

physiological levels of arginine, it is inactive or insufficient to

restore the equilibrium in this parasite model.

Arginine kinase is the only predicted arginine consuming
enzyme in Trypanosoma cruzi

Arginine metabolism has been largely studied in trypanosomes

but there are still many unresolved issues. T. cruzi is unable to

synthesize arginine; therefore the amino acid is obtained from the

host through different transport systems [19]. In trypanosomatids,

most of the well-studied enzymatic reactions involving L-arginine

have been related to the ornithine-arginine pathway. T. cruzi lack

ornithine decarboxylase, arginine decarboxylase and arginase,

indicating that it is unable to neither synthesize diamines from

either L-arginine or L-ornithine, nor excrete the nitrogenous waste

by the urea cycle [19]. To identify genes coding for arginine

metabolizing enzymes, a carefully bioinformatic approach by data

mining was performed. None of the genes coding for enzymes of

the urea cycle, nopaline or octopine dehydrogenases, nitric oxide

synthases, arginine monooxygenases, arginine deiminase, glycine

amidotransferase, arginine succinyltransferase, arginine/ornithine

decarboxylase and arginine transaminases, have been identified

(Figure 2, image 1). These data suggest that T. cruzi would be

Figure 1. Substrate specificity of TcAAP3. 1) Radiolabeled L-
arginine (100 mM, black) or L-lysine (100 mM, grey) uptake was
measured in TcAAP3 over-expressing parasites (TcAAP3), GFP controls
(GFP), and in the presence of 100-fold molar excess of lysine (Lys) or
arginine (Arg). Uptake rates of arginine and lysine are expressed as a
percentage of the GFP controls and correspond to 93 and 21 pmol/min
per 108 cells, respectively. 2) Schematic representation of the arginine
permease (TcAAP3) and the previously characterized lysine permease
(TcAAP7). N-terminal red diamonds represent the variable region of the
TcAAAP permeases, numbered yellow diamonds represents the
transmembrane spans, and blue boxes are the putative cationic amino
acids binding motifs.
doi:10.1371/journal.pone.0032760.g001
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unable to use arginine as an alternative carbon source like proline

and other amino acids. To preliminary test this hypothesis

different epimastigotes samples were incubated in PBS, or PBS

supplemented with 10 mM glucose, proline, glutamate or

arginine. After 96 h of treatment motile parasites were observed

in proline (92%), glucose (73%) and glutamate (51%), but not in

arginine or PBS controls.

Finally, the only enzymes involved in arginine metabolism

found in the T. cruzi genome project are arginyl-tRNA synthetases

and a previously described arginine kinase.

Arginine transport is related to arginine metabolism
N-Phosphorylated guanidino compounds, commonly referred

to as phosphagens, play a critical role as an energy reserve because

of the high energy phosphate that can be transferred when the

renewal of ATP is needed. It has also been proposed that these

compounds function in spatial buffering of cellular energy

production sites. So, phosphagens act as reserves not only of

ATP but also of inorganic phosphate, which is mostly returned to

the medium by metabolic consumption of ATP [20]. Earlier

studies demonstrated that T. cruzi arginine transport system is

coupled to arginine metabolism, specifically to the arginine kinase-

mediated synthesis of phosphoarginine, a phosphagen molecule

with a critical role as energy reservoir [6,20,21]. Arginine kinase

expression in T. cruzi epimastigotes is precisely regulated by

extracellular conditions increasing its levels during the parasites

growth curve [22]. As demonstrated above free intracellular

arginine is only used by arginine kinase, in addition to protein

synthesis, to synthesize phosphoarginine from ATP. In conse-

quence, the increase in the arginine concentration produced by

TcAAP3 over-expression would produce a displacement in the

equilibrium of the reaction toward the formation of phosphoar-

ginine with the consequent decrease of the concentration of ATP.

Such a dramatic effect as the decrease in ATP probably has

compensatory mechanisms. In order to test if this regulatory

mechanism is associated to arginine transport, arginine kinase

expression was evaluated during the parasite growth curve, in

TcAAP3 epimastigotes and GFP controls. Figure 2 (image 2)

shows a graphical comparison, of arginine kinase expression,

between the parasites that have increased the arginine transport

activity (AAP3) and controls (GFP). Western Blot and densitom-

etry analysis demonstrated that arginine kinase expression is

significantly lower, up to 32% in day 6th, in the parasites that

arginine transport is exacerbated. A possible explanation of this

down-regulation of arginine kinase is the metabolic need to

counteract the displacement of equilibrium toward the formation

of phosphoarginine.

Arginine uptake affects the intracellular ATP levels when
glucose is depleted in the medium

In order to test if variations in arginine concentrations could

regulate the cell energy homeostasis throughout arginine kinase,

the intracellular ATP levels, and the glucose concentration in the

media were determined in TcAAP3 epimastigotes and controls

samples. If the higher intracellular arginine concentrations affect

the arginine kinase equilibrium, the glycolytic ATP synthesis

would be a critical step to maintain the cell energy balance.

Therefore, according to this model when the extracellular glucose

is scarce the ATP levels should decrease more in TcAAP3

epimastigotes. As expected, the measured intracellular ATP levels

remained constant between 3 and 4 mM during the first 6 days of

the logarithmic phase of growth, and glucose was gradually

consumed decreasing from 7 to 2.4 mM. However, in the

stationary phase of growth (day 12) when de glucose concentration

in the medium is low (,0.5 mM) the ATP levels fall dramatically

to 0.6 mM in TcAAP3 epimastigotes but remain constant in

controls (Figure 3, image 1). These results indicate that an increase

in arginine concentration caused by TcAAP3 over-expression

could produce pleiotropic effects on the metabolism of the parasite

generated by an imbalance of ATP concentration. Such decrease

of ATP concentration could be the cause of the observed lower

growth rates of TcAAP3 epimastigotes in the stationary phase.

Figure 3 (image 2) summarizes the proposed arginine transport

and metabolism regulation model. To test this model, experiments

were repeated by adding glucose (2 g.L21) to stationary phase

cultures. According to the model’s prediction, both, controls and

TcAAP3 epimastigotes recovered the intracellular ATP levels (4.8

Figure 2. Arginine metabolism in T. cruzi. 1) Bioinformatic prediction of arginine metabolism. Using the KEGG arginine and proline metabolic
pathways as a reference, genes coding for putative arginine metabolism enzymes in T. cruzi were searched using protein sequences from other
organisms as baits. All enzyme EC numbers are indicated into the boxes, routes marked with a red cross were not identified in T. cruzi. AST: arginine
N-succinyltransferase; ADC: arginine decarboxylase; APT: arginine-pyruvate transaminase; and AMO: arginine 2-monooxygenase. 2) Western blot
analysis of arginine kinase expression was performed along the parasite growth curve between days 1 and 12. GFP control parasites (GFP) and
TcAAP3 over-expressing parasites (AAP3) were compared by band densitometry (upper panel). Arrow indicates the position of the 40 kDa molecular
weight marker. 3) A comparative epimastigotes growth curve was calculated from control (GFP) and TcAAP3 (AAP3) parasite cultures during 21 days.
doi:10.1371/journal.pone.0032760.g002

Figure 3. Regulation of arginine metabolism and ATP levels by
TcAAP3. 1) Intracellular ATP concentrations were measured using a
bioluminescence method and samples from different days of the
parasite growth curve. Bars indicated as ‘‘12+glu’’ represent the ATP
levels of parasites samples from day 12, cultured overnight in the
presence of 2 g.L21 glucose. 2) A brief summary of the arginine
transport and metabolism regulation model at the stationary phase of
epimastigote growth was constructed from the results herein
presented.
doi:10.1371/journal.pone.0032760.g003
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and 4.0 mM, respectively) after the addition of glucose (Figure 3,

image 1, bars indicated as ‘‘12+glu’’).

Arginine and lysine transporters are located into the
flagellar pocket

The flagellar pocket is an invagination in the trypanosomatids

plasma membrane that constitutes a multiorganelle complex that

is involved in the exchange with the extracellular medium and the

cell polarity and division [23]. In a previous work we reported that

the lysine transporter TcAAP7 was localized mainly in an

unidentified membrane structure close to the kinetoplast that

could be the flagellar pocket, the cytostome or the contractile

vacuole [11]. To determine if TcAAP3 has a similar localization,

different plasmid constructions were made using the T. cruzi

expression vector pTREXL. TcAAP3 (mCherry::TcAAP3) was

co-expressed with TcBilbo1 (TcBilbo1::eGFP) or TcAAP7

(eGFP::TcAAP7) in T. cruzi epimastigotes. TcBilbo1 was used as

a marker of the flagellar pocket’s collar, corresponding to a

boundary in the flagellar pocket that demarcates a subdomain

structure [23,24]. After parasites transfection, TcAAP3 fluores-

cence was mainly localized in the flagellar pocket in a single focus

close to collar stained by TcBilbo1 (Figure 4). In addition,

TcAAP3 co-localized with the lysine transporter TcAAP7

suggesting that the TcAAAP family could be concentrated in a

unique region of interchange with the extracellular medium, the

flagellar pocket. An interesting observation was the failure in

obtaining stable transfectant parasites expressing TcAAP3 fused to

a fluorescence protein, suggesting that the fusion protein could act

as a dominant negative mutation. In addition, the low TcAAP3

over-expression levels achieved, as mentioned above, reinforce the

idea that the precise regulation of intracellular arginine levels is

critical for parasite survival. Another issue to highlight is the

validation of TcBilbo1 as a flagellar pocket protein, because it is

the first marker for this subcellular structure in T. cruzi.

T. cruzi amino acid transporters translocate their substrates

against a concentration gradient that can reach difference of about

two orders of magnitude between the mammalian host plasma and

the parasite cytosol. For example, arginine concentration reference

values of human plasma are between 13–64 mM in adults while T.

cruzi intracellular concentration is in the millimolar range. These

features suggest that amino acid transporters could be used as a

gateway for traditional anti-parasitic drugs by the addition of

suitable functional groups recognized by these permeases [25] or

by rational design of molecules that may alter the transport activity

and thus the parasite viability as occurs with TcAAP3.
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