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Abstract

Oxygen availability is regarded as a critical factor to metabolically regulate systemic blood flow. There is a debate as to how
peripheral blood flow (PBF) is affected and modulated during hypoxia and hyperoxia; however in vivo evaluating of
functional PBF under oxygen-related physiological perturbation remains challenging. Microscopic observation, the current
frequently used imaging modality for PBF characterization often involves the use of exogenous contrast agents, which
would inevitably perturb the intrinsic physiologic responses of microcirculation being investigated. In this paper, optical
micro-angiography (OMAG) was employed that uses intrinsic optical scattering signals backscattered from blood flows for
imaging PBF in skeletal muscle challenged by the alteration of oxygen concentration. By utilizing optical reflectance signals,
we demonstrated that OMAG is able to show the response of hemodynamic activities upon acute hypoxia and hyperoxia,
including the modulation of macrovascular caliber, microvascular density, and flux regulation within different sized vessels
within skeletal muscle in mice in vivo. Our results suggest that OMAG is a promising tool for in vivo monitoring of functional
macro- or micro-vascular responses within peripheral vascular beds.
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Introduction

Blood vessels in either macro- or micro-circulation respond to

internal and external stimulations, including tissue metabolites and

inspired oxygen concentrations, respectively, which enables blood

flow to be regulated according to tissue needs [1,2]. The availability

of oxygen is considered an important factor in metabolic regulation

of blood flow, although the mechanism of its action is not totally

clear [3]. In brain, the general reactions of the cerebral blood flow

(CBF) to different oxygen tensions have been extensively described

by numerous investigators, which has been reviewed by [4].

Hypoxia induces hyperemic responses whereas hyperoxia leads to

anemic responses of CBF [5]. With respect to alterations in the

peripheral blood flow (PBF) in response to different oxygen tension,

the results are less understood [3]. Perfusion of the isolated vascular

bed of skeletal muscle with hypoxic/hyperoxic oxygen uniformly

produces vasodilatation/vasoconstriction related to the severity of

the hypoxia/hyperoxia [6]. However, in whole animal studies,

where reflex neuro-humoral mechanisms are present, a variety of

responses have been observed during arterial hypoxia/hyperoxia

[7]. Under the same experimental conditions, some reports indicate

an increase [8,9,10], whereas others demonstrate a decrease in

blood flow to skeletal muscle [6,11].

Macrovascular responses to inspired oxygen are usually directly

measured by the venous occlusion plethysmographic method [7] or

estimated by local thermodilution [6], yielding inconsistent results.

Likewise, the results from some studies measuring microvascular

responses by intravital microscopy [12,13,14] are variable. The

adjustment of macrocirculation to a change in inhaled oxygen may

result in the alteration of microcirculation, e.g. capillaries. For an

understanding of the effects of the inhalation of gases with low/high

oxygen on the whole circulation, a tool which enables the

assessment of macro- and micro-circulation simultaneously would

be indispensable. By doing so, macrovascular mechanisms of PBF

regulation would be validated by the microvascular mechanisms,

and vice versa. Furthermore, the relationship between the two

during this physiological perturbation would become clearer.

As a novel extension of optical coherence tomography (OCT)

technology, optical microangiography (OMAG) [15] is a new

imaging modality capable of generating 3D images of blood

perfusion distribution within microcirculatory tissue beds. It is a

label-free optical method because the imaging contrasts is

produced via endogenous light scattering from flowing red blood

cells (RBCs) within open vessels. Recent OMAG development has

improved the system sensitivity to blood flow as low as ,4 mm/s

that is sufficient to measure the capillary flows within mouse

skeletal muscles [16]. In order to evaluate flow velocity, however, it

is required to apply the phase-resolved Doppler technique [17] to

the OMAG flow signals so that the differential phase values (thus

the axial velocity) are extracted [18]. However, the axial velocity

information based on mean frequency shift has significant

limitations. These limitations include Doppler angle dependence,

aliasing, and difficulty in separating the true flow signal in slow-

flow state (e.g. microcirculation) from the noise background. In
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addition, the Doppler frequency shifts caused by macro-circulation

(.50 mm in diameter) flow in fast-flow state are often phase-

wrapped, which makes it difficult to obtain the true velocity values.

In an attempt to overcome these limitations, in this study, we

propose to use ‘‘Power Doppler’’ concept [19], a widely used

approach in color Doppler ultrasound modality, to analyze the

OMAG flow signals. Analogous to power Doppler ultrasound, the

flow signals (i.e., optical reflectance) generated by OMAG indeed

demonstrate the integrated power of the Doppler signal [15]; this

power is related to the number of RBCs flowing across light beam

within a unit time [20], which can be referred to as flux (sometimes

also termed as blood flow, flow rate or perfusion rate in literatures).

As an alternative means of demonstrating peripheral hemody-

namics, in this study, ultrahigh sensitive OMAG flow signals (i.e.

power signals) are used to track the changes of both macro-

vascular and detailed micro-vascular flow and analyze their

relationship under physiological challenge associated with oxygen

availability.

Materials and Methods

Ethics Statement
The experiments were performed on C57BL/6 adult mice of

20–30 g weight. All experimental animal procedures were in

compliance with the Federal guidelines for care and handling of

small rodents. The laboratory animal protocol for this work was

approved by the Animal Care and Use Committee of the

University of Washington (Protocol #4262–01).

Ultrahigh sensitive OMAG system
The system (Fig. 1a) used to monitor peripheral hemodynamics

is similar to that used in our previous work [21,22]. Briefly, a

superluminescent diode with a central wavelength of 1310 nm and

a bandwidth of 65 nm was used as the light source, providing a

,8.9 mm axial resolution in the tissue. In the sample arm, a

30 mm focal length objective lens was used to achieve ,9 mm

lateral resolution. The output light from the interferometer was

sent to a spectrometer with spectral resolution of ,0.141 nm,

producing a total depth range of ,2.2 mm in the tissue. To

achieve ultrahigh sensitive imaging of the flow, the spectrometer

employed a high speed InGaAs camera (SU1024LDH2, Goodrich

Ltd. USA) capable of 92,000 lines per second. We adopted the

scanning protocol described in previous work [23], that enabled an

imaging rate of 280 frames per second (fps). With this setup, it took

,3 seconds for the system to acquire a whole 3-D volume dataset,

covering an area of ,2.5 mm in X direction (fast scan) and

,2.5 mm in Y direction (slow scan) over the sample. With 280 fps

imaging rate afforded by the fast camera, the temporal resolution

(in terms of cross sectional scan) is sufficient to monitor the time-

dependent changes of blood flow in this study.

Physiological perturbation associated with oxygen
The animal was ventilated with gas using a breathing mask at a

gas flow rate of ,1 L/min. To challenge the animal, we adjusted

the O2 concentration by balancing N2 in the inhaled gas through a

gas-proportioning meter (GMR2, Aalborg). A 20% O2 gas was

initially given to the animal (i.e., normoxia state) and then

switched to 10% O2 for a period of 5 minutes so that the animal

was experiencing acute hypoxia. This was followed by supplying of

20% O2 gas for 3 minutes for the animal to recover (back to the

normoxia state). And then the gas supply was switched to 100%

O2 for 5 minutes (i.e, hyperoxia) and finally switched back to 20%

O2 gas.

In vivo imaging
Before OMAG imaging, the right hind-limb of the mouse was

shaved and depilated. In order to avoid signal attenuation caused

by skin and improve the imaging quality, a 4 mm longitudinal skin

incision was made to expose our imaging site, the gastrocnemius

muscle (see Fig. 1b). The imaging area was kept moist under a

piece of plastic foil. During the imaging, the animal was

immobilized in a custom-made stereotaxic stage and was lightly

anesthetized with isoflurane. The body temperature was kept at

37uC by use of a warming blanket; the body temperature was

monitored by a rectal thermal probe throughout the experiment;

and the mean arterial blood pressure (MABP) were monitored by

CODA monitor (Kent Scientific Corp., Torrington, CT). At initial

stage of normoxia, we used OMAG to capture a 3D dataset

covering an area of 2.5 mm (X) by 2.5 mm (Y) over the

gastrocnemius muscle. During gas challenging periods, OMAG

was set continuously acquiring the B-scan images (M-B-scan

mode) at a representative position.

Signal analysis
To provide hemodynamic analysis, we estimated the blood flow

(total flux) by integrating the reflectance signals from all vessels

across the entire B-scan cross-sectional area, and evaluated its

change over time by normalizing the signals with the mean value

of baseline. We calculated the microvessel density as the

percentage of the number of image pixels with values greater

than zero divided by the total pixel numbers for a capillary

apparent region. According to the relationship between the

density, the mean flux and the total flux within the region, the

relative mean flux changes can be obtained by dividing the relative

total flux values by the microvessel density values. The relative

values obtained at each time point are displayed by the average

with standard deviation (SD) calculated from 1000 repeated B-

scans.

Results and Discussion

Imaging of PBF in skeletal muscle
In Fig. 1, the OMAG in vivo imaging results produced by one

typical volume dataset [2.562.562.2 (x-y-z) mm3] are shown.

Fig. 1c shows one typical cross-sectional image within the OMAG

structural volume, which is identical to the conventional OCT

image. Figure 1d gives the corresponding blood flow image

obtained from the OMAG algorithm [23], where the capillary

flows within the cross section of skeletal muscle are abundant from

the surface to a depth of ,1.0 mm, as illustrated by arrows.

Rendered with 3D visualization software Amira 4.1.1 (Visage

Imaging, Inc.), muscular blood flow distribution (x-y view) and 3D

volumetric perfusion image of microvasculature were shown in

Fig. 1e and 1f, respectively. Single capillary vessel can be resolved

clearly from the dense capillary bundles, which aligned along fiber

bundles in longitudinal direction. The transversal cross-connec-

tions between capillary bundles are depicted by some arterioles or

venules. Aside from the microcirculation, the macrovascular blood

flow can also be obtained as shown in Fig. 1e and 1f.

Unlike the previous optical methods, such as laser Doppler

imaging and laser speckle contrast imaging which also utilize

signals backscattered from flowing particles, this method has the

advantage of super high flow sensitivity (down to ,4 mm/s),

making it suitable for detecting the slow blood flows in

microvessels, especially capillaries. With its depth-resolved attri-

butes, ultrahigh sensitive OMAG could produce volumetric

images in which the microvessel networks within different layers

can be easily segmented or visualized [16].

Optical Imaging of Peripheral Blood Flow
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PBF responses during physiological perturbation
The representative time courses of relative PBF changes from

three individual animals are given in Fig. 2. Although their

extreme points (maximum and minimum) varied, in general, the

responses corresponded well to the temporal locations. When the

gas mixture was switched to an acute hypoxia state, a transient

blood flow drop occurred within one minute, and continued to

70–82% of respective baseline by 5 min at which time the

content of gas was changed to normoxia. Normoxia was sustained

for three minutes to allow acute circulatory adjustments to take

place. Unfortunately, we observed a partial, rather than a

complete restoration of blood flow. When acute hyperoxia was

performed, robust augments were shown, but the increasing

extents varied in different animals. In animal #3, the PBF rise

exceeded the baseline, and achieved the maximum at the end of

hyperoxia. During the final stage of three-minute normoxia, the

trends of all PBF moved towards baseline wherever they were

located.

Fig. 1. OMAG system and its typical in vivo images of detailed PBF within skeletal muscle in mice. (a) is schematic of OMAG system,
where SLD is superluminescent diode, PC is polarization controller. (b) shows OMAG imaging area indicated by a yellow box covering an area of the
gastrocnemius muscle in mouse hindlimb. (c) is one typical OMAG cross-sectional image (B-scan) of muscular microstructure and (d) is the
corresponding blood flow image where some representative capillaries are shown by arrows. 3-D volumetric rendering of blood perfusion within
scanned muscle tissue volume are demonstrated by projection view (e) and 3D view (f). In (e), the dash line indicates the corresponding position of
chosen B-scan (c/d). White bar is 500 mm, which can apply to (c-e).
doi:10.1371/journal.pone.0026802.g001
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To explain this dynamics, the MABP variation caused by

physiological challenge should be considered. Previous reports

indicate that MABP and heart rate are significantly reduced/

increased when the mammals are exposed to hypoxia/hyperoxia

[5,7]. The MABP data collected during experiments (Table 1) also

shows the influence of oxygen levels on this systemic circulatory

parameter. Apparently, the rapid changes in MABP during acute

hypoxia/hyperoxia were associated with pressure-passive micro-

vascular PBF. During the hypoxic or hyperoxic 5-min time

window, we did not observe any flux adaption on the muscle tissue

we imaged, but we cannot exclude the possibility that an

adaptation may likely occur during the following chronic phase.

For in vivo measurements in the whole animal, the external

stimulus (low/high concentration of inhaled oxygen) challenges

the central nervous system, i.e. the brain, more than distal system,

i.e. the muscle in the limb [24]. When a drop in oxygen is detected

in brain, the CBF is disturbed and has the priority to be protected

over PBF. Specifically, PBF demonstrated a more severe reduction

in relative changes of blood flow in response to acute hypoxia-

induced drop in MABP compared with those of the CBF (data not

shown) and did not display any adjustment during this acute

hypoxia stage, indicating muscle is more tolerant than brain tissue

to the shortage of oxygen. However, because peripheral tissue

perfusion is also essential to the survival of the local tissues and acts

to increase blood flow [25,26,27], the reduction in blood flux will

likely be restored to baseline had we sustained normoxia for a

longer time. Here, we were not aiming at monitoring chronic

response of microcirculation, so three minutes normoxia was

allowed for acute circulatory adjustments to take place, which did

not permit PBF be fully restored to baseline. Similar to the PBF

response occurring with hypoxia, PBF was elevated due to the

increased MABP induced by hyperoxia. However, the PBF

changes were much smaller than we observed during hypoxia.

Changes in blood flow are related with many factors of

physiological condition. For example, under this experimental

design, when the controlled oxygen condition was changed to

hypoxia, the spontaneous breathing rate may have increased to try

to compensate for the lack of oxygen. Although we did not

measure breath rate in our studies, increased/decreased breath

rate would alter the inhalation of isoflurane and may have

additionally resulted in decreased/increased MABP. It is difficult

to separate out the reciprocal effects of oxygen challenge and

compensatory increase in breath rate when performing these

physiological studies for optical imaging. In order to maintain a

constant breath rate, artificial ventilation would be required,

which is beyond the scope of our study.

PBF responses characterized by different vessels
In order to acquire more information with respect to how the

macro- and micro-circulation is altered respectively under

conditions of regulated PBF, we separated macro- and micro-

circulation depending on whether their calibers were over 50 mm

and compared their responses to gas variation shown in Fig. 3a.

The relative values obtained from a typical experiment at each

time point are expressed by average with standard deviation

calculated from 1000 repeated B-scans. The observed effect on

macro-circulation was much smaller than that in micro-circula-

tion, indicating the varied sensitivity to this potent stimulus within

muscular vessels at different flow state. In view of these findings,

the action of hypoxia or hyperoxia on macro- and micro-

circulation could be virtually distinguished on the B-scan images

(shown in Fig. 3c) at five typical stages corresponding to the time

points labeled by numbers in Fig. 3a. We visualized the apparent

vasoconstriction occurring on the macro-vessels pointed by an

arrow in Fig. 3c during systemic hypoxia (1R2) and vasodilation

during hyperoxia (3R4) at the macro-circulation level. As a

consequence of vasoconstriction/vasodilation, the localized reduc-

tion/increase of PBF was found during hypoxia/hyperoxia. On

the systemic level, vasoconstriction/vasodilation is one mechanism

by which the body regulates and maintains MABP, and, in

general, vasoconstriction/vasodilation usually results in an in-

crease/decrease in systemic blood pressure. Therefore, the

vasoconstriction/vasodilation appearing under this physiological

stress is aimed at dampening or even eliminating the changes of

MABP related to oxygen availability. Our finding demonstrated

the contribution of PBF on physiological adaption of systemic

MABP. Additionally, this initial vasoconstriction in muscle is

consistent with a previous report in which the circulation of

skeletal muscle was examined by local thermodilution in rabbit

[6]. In that report, this early vasoconstriction during hypoxia has

been proved to be mediated mainly through sympathetic

vasoconstrictor nerves as a result of strong chemoreceptor

stimulation [6]. On the micro-circulation level, we found the

functional dismissal/recruitment of blood flow through perfused

capillaries as indicated by the decreased/increased capillary flow

signals which may have contributed to this decreased/enhanced

microcirculatory perfusion during transient oxygen-dependent

MABP decrease/increase. It’s interesting to note that the

recruitment of collateral blood flow [28,29] in macro or micro

circulation was initialized at some point during oxygen perturba-

Fig. 2. Time lapsed plots showing relative changes of PBF
under controlled oxygen concentration, 10% (hypoxia), 20%
(normoxia), 100% (hyperoxia), obtained from three individual
animals. The relative values were obtained by normalizing the signals
with the corresponding baseline values at each time point.
doi:10.1371/journal.pone.0026802.g002

Table 1. Mean arterial blood pressure (MABP) measured
under three physiological states.

Normoxia Hypoxia Hyperoxia

MABP (mmHg) 9064 8666 9666

doi:10.1371/journal.pone.0026802.t001
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tion. In the region denoted by a box in Fig. 3c, we acquired the

dynamics of the collateral circulation; and we are impressed by the

protective effect of recruitable collateral vessels in response to

increased MABP along with increased inhaled oxygen.

In addition to the M-B-scan mode (repeated cross-sectional

scan) which clearly showed the microcirculatory perfusion change,

the M-A-scan (repeated axial scan at one spatial location) across

some individual capillaries was also able to longitudinally detect

the dynamic response of blood perfusion during physiological

perturbation. For example, Fig. 3d shows that reflectance signals

along one A-line (Z direction) across different vessels changed

gradually with time during hyperoxia as more signals denote more

blood cells passing through those individual vessels. Specifically,

we visualized the whole vascular dynamics in a capillary indicated

by an open arrow in Fig. 3d. The capillary was partially opened

with some plasma gap from a closed state in the beginning of the

hyperoxic stimulus. As the stimulus continued we observed an

appearing continuous and bright RBC trace suggesting more

blood flux through the capillary during the hyperoxic period.

Therefore, in addition to the adaptation of the macro-circulation

to changes in the systemic MABP induced by gas challenge, our

data indicate micro-circulation is also modulated to expedite the

systemic adjustment of blood perfusion in the muscle. It should be

emphasized that although we observed the new capillary

appearance, we could not find any capillary dilatation due to

the accuracy of the capillary diameter evaluation in the current

system (,10 mm).

PBF response characterized by different parameters
Theoretically, an increase/decrease in the total perfusion of the

peripheral microvascular network may not only be associated with

an increase/decrease in the functional microvessel density, but also

related to an increase/decrease in blood flow in each single

microvessel; however, little information is available as to which

mechanism (either microvessel density or single microvessel flux)

plays dominant role in the regulation of regional microvascular

PBF. To investigate whether OMAG can shed some light on this,

we estimated the functional microvessel density from the serial B-

scan images, as described in the ‘‘Materials and Methods’’ section.

According to the relationship among the density, mean flux and

total flux within the region, the relative mean flux changes can be

obtained by dividing the relative total flux values by the microvessel

density values. The resulting curves are shown in Fig. 4. Our results

show that the perfused microvessel density or volume change mainly

accounts for the total blood flux change, whereas, the mean flux of

blood flow through individual open microvessels produced little

Fig. 3. Different types of PBF in response to switching the physiological conditions between hypoxia, normoxia and hyperoxia. (a)
shows diverse response of macro-circulation (.50 mm), micro-circulation(,50 mm) and all circulation in the cross-sectional area OMAG scanned. (b)
shows the dynamics of collateral vessels located in the region denoted by a box in (c). Each value in (a) & (b) is calculated by normalizing the signals
with the baseline at each time point and displayed by mean 6 SD. (c) are B-scan images at five typical stages corresponding to the time points
labeled by numbers in (a). (d) is one A-scan (Z-direction) over hyperoxic period showing the single vessel dynamics. The position of this A-scan was
marked in (c) as the vertical line.
doi:10.1371/journal.pone.0026802.g003
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opposite change, which appears to play a secondary role as a

mechanism in the regulation of microvascular blood flow to the

skeletal muscle during oxygen disturbances. It should be noted that

the relative change of mean flux in microvascular PBF correlates

well with prior observations based on microscopic observation in

which muscle dissection was required [3].

In summary, we presented a preliminary study on using

ultrahigh sensitive OMAG to monitor PBF changes during

hypoxia and hyperoxia in mice. By analyzing OMAG reflectance

signals from moving blood cells, we have shown that OMAG is

sensitive enough to distinguish changes in hemodynamics within

either macro- or micro-circulation, and has a potential to

differentiate the hemodynamics produced by macro-circulation

from that by micro-circulations. OMAG was able to describe the

vascular diameter change on macrovascular level and demonstrate

the microvascular distribution. More interestingly, OMAG could

provide evidence that the hemodynamics occurred in single

capillaries during systemic oxygen challenge. Furthermore,

OMAG could elucidate the pattern of microhemodynamic

changes with respect to different flow parameters, such as, density,

mean and total flux. Our data provide proof of concept that

ultrahigh sensitive OMAG is a highly promising technique for use

in the pre-clinical and clinical settings to determine changes in

macro- and micro- hemodynamics under physiological and

pathophysiological conditions.
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