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Abstract: Disorders of energy metabolism, which can result from a failure to adapt to the period of
negative energy balance immediately after calving, have significant negative effects on the health,
welfare and profitability of dairy cows. The most common biomarkers of energy balance in dairy cows
areβ-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA). While elevated concentrations of
these biomarkers are associated with similar negative health and production outcomes, the phenotypic
and genetic correlations between them are weak. In this study, we used an untargeted 1H NMR
metabolomics approach to investigate the serum metabolomic fingerprints of BHBA and NEFA.
Serum samples were collected from 298 cows in early lactation (calibration dataset N = 248, validation
N = 50). Metabolomic fingerprinting was done by regressing 1H NMR spectra against BHBA and
NEFA concentrations (determined using colorimetric assays) using orthogonal partial least squares
regression. Prediction accuracies were high for BHBA models, and moderately high for NEFA models
(R2 of external validation of 0.88 and 0.75, respectively). We identified 16 metabolites that were
significantly (variable importance of projection score > 1) correlated with the concentration of one or
both biomarkers. These metabolites were primarily intermediates of energy, phospholipid, and/or
methyl donor metabolism. Of the significant metabolites identified; (1) two (acetate and creatine)
were positively correlated with BHBA but negatively correlated with NEFA, (2) nine had similar
associations with both BHBA and NEFA, (3) two were correlated with only BHBA concentration,
and (4) three were only correlated with NEFA concentration. Overall, our results suggest that BHBA
and NEFA are indicative of similar metabolic states in clinically healthy animals, but that several
significant metabolic differences exist that help to explain the weak correlations between them. We also
identified several metabolites that may be useful intermediate phenotypes in genomic selection for
improved metabolic health.

Keywords: metabolic profile; ketosis; transition period; livestock; methyl donor; one-carbon
metabolism; negative energy balance

1. Introduction

Most dairy cows experience a period of negative energy balance immediately after calving due to
both a reduction in feed intake preceding calving [1], and an increase in energy requirements for milk
production [2]. A successful transition from pregnancy to lactation requires a series of complex and
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coordinated changes in metabolism and nutrient partitioning, known as homeorhesis [3]. Failure of
these homeorhetic controls can lead to the development of metabolic disorders such as ketosis and fatty
liver [4]. These disorders can have significant negative effects on the health, welfare and profitability of
early-lactation dairy cows due to their (1) relatively high incidence [5,6], (2) demonstrated association
with other diseases [4,7] and (3) their significant economic costs [8,9].

Serum β-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA) are biomarkers that
are commonly used to evaluate the energy balance of dairy cows in the transition period [6,10,11].
One of the main physiological responses to reduced energy intake is the mobilization of stored energy
from adipose tissue as NEFA. Serum NEFA concentration is a measure of the degree of lipolysis,
and therefore an indicator of the magnitude of negative energy balance [12]. Once released, NEFA are
transported via the bloodstream to the mammary gland for milk fat synthesis, or to the liver where
they undergo either (1) complete oxidation via the TCA cycle, (2) partial oxidation to ketone bodies
(BHBA, acetone and acetoacetate), or (3) re-esterification to form triglycerides which can either be
stored or exported as very low density lipoprotein (VLDL). BHBA is the most stable of the three ketone
bodies [13], and is commonly used as a biomarker of energy balance [14].

Mild elevations in serum BHBA and/or NEFA concentration during the transition period are
considered normal [15], but marked elevations are indicative of excessive negative energy balance
and/or perturbed metabolism [16]. Elevated concentrations of both BHBA and NEFA can be observed in
clinically healthy animals (i.e., showing no visible signs of illness), and are associated with (1) reduced
reproductive performance [11,17], (2) an increased incidence of clinical diseases such as displaced
abomasa and metritis [15,17,18], (3) decreased milk production [6,11,19] and (4) an increased risk of
culling [6,15,20]. However, despite these similarities, both the phenotypic [21,22] and genetic [23]
correlations between these two biomarkers are low. This is not necessarily important if biomarkers are
being used for management purposes (such as the identification of sick animals or the assessment of
nutritional status) but may be significant if the biomarkers are used as phenotypes for genetic selection
for improved animal health and resilience. There is therefore a need to better understand the metabolic
states represented by BHBA and NEFA.

Untargeted metabolomics combines high throughput molecular analytical techniques such as
proton nuclear magnetic resonance (1H NMR) spectroscopy with multivariate statistical modelling,
to characterize the metabolic response of a biological system to pathophysiological stimuli [24].
Examples in dairy cattle include studies of ketosis [25,26], fatty liver [27], hypocalcaemia [28] and
displaced abomasa [29]. The collective metabolic features of a given state or condition can be described
as its “metabolomic fingerprint”. As well improving our understanding of the biological processes,
metabolomic studies can uncover intermediate molecular phenotypes (metabotypes) associated with
complex animal health traits such as metabolic resilience. These metabotypes can then be integrated
with genomic data to (1) elucidate the genetic architecture of these traits, and (2) improve genomic
prediction accuracies [30,31].

The aim of this study was therefore to use an untargeted 1H NMR metabolomic approach to
investigate the metabolomic fingerprints of serum BHBA and NEFA concentrations in clinical healthy
dairy cows in early lactation, and in so doing (1) identify common and differential metabolic pathways,
and (2) identify novel metabotypes for application to genetic selection for improved metabolic health.

2. Results

2.1. Analysis of Experimental Metadata

Descriptive statistics of the datasets used in this experiment are shown in Table 1.
BHBA concentrations were significantly higher in Dataset 1 than in Dataset 2 (p < 0.001). The differences
in all other parameters were not statistically significant (p > 0.05). The correlation between BHBA and
NEFA concentrations was 0.45 in Dataset 1 and 0.40 in Dataset 2.
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Table 1. Descriptive statistics of the datasets used in this experiment, including number of animals (N),
stage of lactation defined as days in milk (DIM), age in years, and β-hydroxybutyrate (BHBA) and
non-esterified fatty acid (NEFA) concentrations (mmol/L) in the serum obtained from clinically healthy
dairy cows.

Variable
Dataset 1 (N = 248) Dataset 2 (N = 50)

p 1

Min Max Mean
(SD) Min Max Mean

(SD)

DIM (days) 4 30 16.7 (6.0) 4 30 18.6 (7.3) 0.09
Age (years) 2 12 3.7 (2.0) 2 9 3.9 (1.8) 0.22

BHBA (mmol/L) 0.22 1.86 0.55 (0.21) 0.23 0.94 0.42 (0.17) <0.001
NEFA (mmol/L) 0.11 2.18 0.75 (0.32) 0.14 1.91 0.67 (0.36) 0.07

1 Statistical significance of the differences between Datasets 1 and 2 were determined using paired t-test for DIM,
and a paired Wilcoxon signed-rank test for age, BHBA and NEFA.

2.2. 1H NMR Spectra

Twenty-four metabolites could be clearly identified from the 1H NMR spectra. Two metabolites,
cholate and 3-phenyllactate, were tentatively identified. Figure 1 shows representative spectra
from animals in Dataset 1 with (a) elevated BHBA concentration, (b) elevated NEFA concentration
and (c) normal BHBA and NEFA concentrations. Upfield regions of spectra were dominated by
branched-chain amino acids (leucine, isoleucine and valine), organics acids (BHBA, lactate, acetate) and
the methyl and methylene groups of low density (LDL) and very low density lipoproteins (VLDL) at
δ 0.86 ppm and δ 1.25 ppm, respectively [32]. We also observed a prominent peak at δ 2.03 ppm which
was consistent with the N-acetyl groups of glycoproteins [33]. The singlet at δ 3.14 ppm was identified
as dimethyl sulfone (DMSO2) [34,35]. The middle of the spectrum was complex and dominated by
glucose. Signal overlap and weak 2D signal strength meant that hippurate was the only compound
that could be clearly identified in the downfield region. Relative chemical shifts and the multiplicity of
identified peaks are available in the supplementary material (Table S1).

Unsupervised analysis of the data using PCA showed no obvious clustering of samples by dataset.
Results of ANOVA-simultaneous component analysis showed that fixed effects (cow age, herd of
origin and days in milk (DIM)) explained only 13.94% of the spectral variation (Table S2). Only the
effect of age was statistically significant (p < 0.05). This suggests that most spectral variation is due to
differences between individual animals.
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Figure 1. Representative 700 MHz 1H nuclear magnetic resonance spectra of serum samples 
from early lactation dairy cows with (a) elevated β-hydroxybutyrate (BHBA), (b) elevated 
non-esterified fatty acid (NEFA), and (c) normal BHBA and NEFA concentrations. 
Downfield regions were vertically expanded 32 times for clarity. Legend: 1, cholate; 2, very 
low density lipoprotein/low density lipoprotein; 3, leucine; 4, isoleucine; 5, valine; 6, β-
hydroxybutyrate; 7, lactate; 8, alanine; 9, acetate; 10, N-acetyl glycoprotein; 11, pyruvate; 
12, citrate; 13, creatine; 14, creatine phosphate; 15, dimethyl sulfone (DMSO2); 16, choline; 
17, phosphocholine; 18, betaine; 19, methanol; 20, glucose; 21, glycine; 22, β-Glu; 23, α-Glu; 
24, 3-phenyllactate; 25, hippurate; 26; formate. * = tentative identification. 

2.3. Accuracy and Robustness of Prediction Models 

The robustness of the orthogonal partial least squares (OPLS) regression models built using data 
from Dataset 1 was assessed using (1) 10-fold cross-validation (Figure 2a,c) and (2) external validation 
with data from Dataset 2 (Figure 2b,d). Prediction accuracies derived from external validation were 
high for BHBA (R2 = 0.88), and moderately high for NEFA (R2 = 0.75). BHBA models were remarkably 
robust, with external validation R2 and RMSE results almost identical to cross-validation results. 
Models predicting serum NEFA concentration were less accurate than those predicting BHBA 
(NRMSE 0.32 and 0.50, respectively), but external validation results indicated that these models were 
still quite robust. p-values derived from permutation testing were < 0.001 for all models, indicating 
that models were not over-fitted. 

Figure 1. Representative 700 MHz 1H nuclear magnetic resonance spectra of serum samples from early
lactation dairy cows with (a) elevated β-hydroxybutyrate (BHBA), (b) elevated non-esterified fatty acid
(NEFA), and (c) normal BHBA and NEFA concentrations. Downfield regions were vertically expanded
32 times for clarity. Legend: 1, cholate; 2, very low density lipoprotein/low density lipoprotein;
3, leucine; 4, isoleucine; 5, valine; 6, β-hydroxybutyrate; 7, lactate; 8, alanine; 9, acetate; 10, N-acetyl
glycoprotein; 11, pyruvate; 12, citrate; 13, creatine; 14, creatine phosphate; 15, dimethyl sulfone
(DMSO2); 16, choline; 17, phosphocholine; 18, betaine; 19, methanol; 20, glucose; 21, glycine; 22, β-Glu;
23, α-Glu; 24, 3-phenyllactate; 25, hippurate; 26; formate. * = tentative identification.

2.3. Accuracy and Robustness of Prediction Models

The robustness of the orthogonal partial least squares (OPLS) regression models built using data
from Dataset 1 was assessed using (1) 10-fold cross-validation (Figure 2a,c) and (2) external validation
with data from Dataset 2 (Figure 2b,d). Prediction accuracies derived from external validation were
high for BHBA (R2 = 0.88), and moderately high for NEFA (R2 = 0.75). BHBA models were remarkably
robust, with external validation R2 and RMSE results almost identical to cross-validation results.
Models predicting serum NEFA concentration were less accurate than those predicting BHBA (NRMSE
0.32 and 0.50, respectively), but external validation results indicated that these models were still quite
robust. p-values derived from permutation testing were < 0.001 for all models, indicating that models
were not over-fitted.
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Figure 2. Accuracy of orthogonal partial least squares (OPLS) regression models predicting serum β-
hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations from 1H NMR spectra, 
built using data from Dataset 1 (N = 248); (a) 10-fold cross-validation (CV)-predicted BHBA vs. 
measured BHBA; (b) external validation (N = 50)-predicted BHBA vs. actual BHBA; (c) CV-predicted 
NEFA vs. measured NEFA; (d) external validation-predicted NEFA vs measured NEFA. 

2.4. Metabolomic Fingerprints of BHBA and NEFA 

The metabolomic fingerprints associated with BHBA and NEFA were investigated using OPLS 
regression. Larger scores on the first latent variable (LV1) correspond to higher concentrations of both 
BHBA and NEFA (Figure 3a,b). LV1 loadings plots were used to identify which spectral features 
contributed most to the variation in the reference biomarker concentrations [36] (Figure 3c,d). 
Spectral features with positive loadings correspond to metabolites that are positively correlated with 
reference biomarker concentrations, and vice-versa. Peaks with a variable importance of projection 
(VIP) score greater than one were considered statistically significant [37] (Figure S2). 

Figure 2. Accuracy of orthogonal partial least squares (OPLS) regression models predicting serum
β-hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations from 1H NMR spectra,
built using data from Dataset 1 (N = 248); (a) 10-fold cross-validation (CV)-predicted BHBA vs.
measured BHBA; (b) external validation (N = 50)-predicted BHBA vs. actual BHBA; (c) CV-predicted
NEFA vs. measured NEFA; (d) external validation-predicted NEFA vs measured NEFA.

2.4. Metabolomic Fingerprints of BHBA and NEFA

The metabolomic fingerprints associated with BHBA and NEFA were investigated using OPLS
regression. Larger scores on the first latent variable (LV1) correspond to higher concentrations of both
BHBA and NEFA (Figure 3a,b). LV1 loadings plots were used to identify which spectral features
contributed most to the variation in the reference biomarker concentrations [36] (Figure 3c,d). Spectral
features with positive loadings correspond to metabolites that are positively correlated with reference
biomarker concentrations, and vice-versa. Peaks with a variable importance of projection (VIP) score
greater than one were considered statistically significant [37] (Figure S2).
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Figure 3. Results of the orthogonal partial least squares (OPLS) regression models predicting serum 
BHBA and NEFA concentrations from 1H NMR spectra; (a) First latent variable (LV1) vs. second latent 
variable (LV2) scores for the BHBA prediction model; (b) LV1 vs. LV2 scores for the NEFA prediction 
model; (c) LV1 loadings for the BHBA prediction model; (d) LV1 loadings for the NEFA prediction 
model. Scores plots color-coded by reference biomarker concentration, loadings plots by VIP score. 

Figure 3. Results of the orthogonal partial least squares (OPLS) regression models predicting serum
BHBA and NEFA concentrations from 1H NMR spectra; (a) First latent variable (LV1) vs. second
latent variable (LV2) scores for the BHBA prediction model; (b) LV1 vs. LV2 scores for the NEFA
prediction model; (c) LV1 loadings for the BHBA prediction model; (d) LV1 loadings for the NEFA
prediction model. Scores plots color-coded by reference biomarker concentration, loadings plots
by VIP score. α-Glu = α glucose, β-Glu = β glucose, Ace = acetate, Ala = alanine, Bet = betaine,
BHBA = β hydroxybutyrate, Cr = creatine, DMSO2 = dimethyl sulfone, Glu = glucose, Gly = glycine,
Ile = isoleucine, Lac = lactate, Leu = leucine, NAG = N-acetyl glycoprotein, ChoP = phosphocholine,
Pyr = pyruvate, Val = valine, LDL = low density lipoprotein; VLDL = very low density lipoprotein.
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2.4.1. Commonalities in the Metabolomic Fingerprints of BHBA and NEFA

The results of this study show that several metabolites showed similar co-variances with
both BHBA and NEFA concentrations. The largest effect we observed was from peaks assigned
to glucose, which were negatively correlated with both biomarkers. Other metabolites with
common co-variances included lactate, valine and alanine (negatively correlated), and glycine and
phosphocholine (positively correlated). Spectral regions attributed to lipoproteins (LDL and VLDL)
and glycoproteins were positively correlated with both BHBA and NEFA concentrations.

2.4.2. Differences between the Metabolomic Fingerprints of BHBA and NEFA

Figure 4 highlights the differences we observed between the metabolomic fingerprints of BHBA
and NEFA. Acetate and creatine were positively correlated with BHBA, and negatively correlated
with NEFA. A small number of metabolites showed significant co-variance with only one of the
biomarkers. BHBA concentration was positively correlated with betaine, and negatively correlated
with dimethyl sulfone (DMSO2), while NEFA concentration was positively correlated with isoleucine
and negatively correlated with leucine.
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Figure 4. Loadings on the first latent variable (LV1) derived from orthogonal partial least squares 
(OPLS) regression of 1H NMR spectra against serum BHBA (blue) and NEFA (red) concentrations in 

Figure 4. Loadings on the first latent variable (LV1) derived from orthogonal partial least squares
(OPLS) regression of 1H NMR spectra against serum BHBA (blue) and NEFA (red) concentrations
in early lactation dairy cows. Spectral regions between (a) δ 0.2 ppm to 2.9 ppm and (b) δ 2.9 ppm
to 5.5 ppm are shown. Figure (b) has been for clarity purposes. Ace = acetate, Bet = betaine,
ChoP = Phosphocholine, Cr = creatine, DMSO2 = dimethyl sulfone, Ile = isoleucine, Leu = leucine,
LDL/VLDL = low/very low-density lipoprotein, NAG = N-acetyl glycoprotein, Pyr = pyruvate.
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3. Discussion

3.1. Similarities between BHBA and NEFA

Not surprisingly, many of the metabolites identified as having common co-variance with both
BHBA and NEFA concentrations are involved in hepatic energy metabolism. These relationships
are summarized in Figure 5. Most obvious was the negative relationship between both biomarkers
and glucose. Hypoglycaemia has been widely reported in early lactation dairy cows due to the
massive demand for glucose for lactogenesis [3,38]. More recently, NMR metabolomics studies have
identified serum glucose concentration as being (1) directly correlated to energy balance (r = 0.84) [39],
and (2) lower in cows with clinical and subclinical ketosis [25] and fatty liver [27] when compared
to healthy controls. Our results offer further evidence of the pivotal role glucose plays in the early
lactation metabolic health in dairy cows.
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Figure 5. Summary of hepatic energy metabolism in early lactation dairy cows. Arrows indicate
the direction of the relationship between the metabolites and the reference BHBA (blue) and
non-esterified fatty acid (NEFA) (red) concentrations. BHBA = β-hydroxybutyrate; OAA = oxaloacetate;
TAG = triglyceride, TCA = tricarboxylic acid, VLDL = very low density lipoprotein.

Lactate and alanine, important gluconeogenic substrates in ruminants [40,41], were also negatively
associated with both BHBA and NEFA, as was valine (another gluconeogenic amino acid). Interestingly,
Xu et al. [39] found no correlation between calculated energy balance in early lactation dairy
cows and the concentrations of any of the branched-chain amino acids or lactate. Conversely,
when compared to healthy controls, cows with fatty liver and displaced abomasa have been shown
to have lower serum alanine concentrations [27,29], and cows with ketosis have lower lactate and
alanine concentrations [25,42]. This suggests that alterations in glucogenic precursors, in particular
lactate and alanine, are indicative of a perturbed metabolism, not simply negative energy balance.
We previously showed that lactate concentration in pasture-fed dairy cows is heavily influenced by
herd-specific management factors [43], and as such may not be heavily influenced by genetic factors.
Alanine has been shown to be the most important glucogenic amino acid, and the most important
gluconeogenic precursor after lactate and propionate, in dairy cows [41]. Therefore, genetic selection for
cows with higher serum concentrations of alanine in early lactation may help to increase endogenous
glucose supply.

Spectral features attributed to VLDL and LDL were positively correlated with the concentrations
of both BHBA and NEFA. These results need to be interpreted with caution as the methanol extraction
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used in this study removed much of the protein from the samples and may have introduced
experimental artefacts. Interestingly, 1H NMR spectroscopy has recently been shown capable of
providing high-throughput and accurate quantification of lipoprotein subclasses in human serum and
plasma samples [32,44]. It is important to note that these protocols used different pulse sequences and
involved the dilution of plasma/serum in a deuterated water/phosphate buffer solution without any
metabolite extraction, such as the one used in our study. The findings of these studies cannot, therefore,
be applied directly to our results. However, lipoprotein metabolism is central to early lactation health
in dairy cows, and impaired VLDL production in the liver can result in hepatic triglyceride (TAG)
accumulation (Figure 4) and the development of fatty liver [45]. Dyslipoproteinaemia is also an
important feature of metabolic syndrome in humans, and the quantification of lipoprotein subclasses is
considered critical to the better understanding of this disease [44]. We believe that the investigation of
serum lipoproteins using 1H NMR spectroscopy holds great promise in the research of early lactation
metabolic health in dairy cows, and we plan to validate the aforementioned protocols on bovine serum
and plasma samples.

The region of the spectrum associated with glycoproteins was also significantly positively
correlated with both NEFA and BHBA concentrations. Glycoproteins are acute phase proteins which
can be used as indicators of inflammation in cattle [46]. In dairy cattle, increased serum NEFA
concentrations in early lactation are associated with uncontrolled inflammation, and this inflammatory
dysfunction is hypothesized to be a central link between metabolic and infectious disorders [14,47].
1H NMR spectroscopy is showing promise for the quantification of glycoprotein A (GlcA) in human
research into metabolic diseases such obesity, diabetes mellitus and the metabolic syndrome [33].
Given that these syndromes have much in common with early lactation metabolic disease in dairy
cows (e.g., insulin resistance), we believe that further research into GlcA as a biomarker for early
lactation health is warranted. Overall, our results offer further evidence that inflammation plays an
important role in early lactation metabolic health of dairy cows.

Glycine was positively correlated with the concentrations of both BHBA and NEFA. Metabolomics
studies comparing healthy and ketotic dairy cows have reported (1) no change in glycine
concentrations [25], (2) increased glycine concentrations in cows with sub-clinical ketosis [26],
(3) increased glycine concentrations in cows with clinical ketosis [48] and (4) decreased glycine
concentrations in cows with clinical ketosis [26] and fatty liver [49]. Glycine concentration has also been
shown to increase in response to lipolysis [50]. These differing results suggest that changes in glycine
concentration may be dependent on the severity of the metabolic disorder (i.e., increased in mild cases,
and decreased in more severe cases). Most interesting are the findings of a recent metabolomics study
that showed that glycine concentrations in plasma and milk were strongly negatively correlated with
energy balance in early lactation dairy cows (r = −0.80 and r = −0.79, respectively) [39]. The authors of
this study hypothesized that this relationship was due to an increase in one-carbon or methyl donor
metabolism, specifically an increase in the conversion of choline to glycine. Given that all cows in our
study were clinically healthy, our results are consistent with glycine being an indicator of negative
energy balance, lipolysis, and/or sub-clinical ketosis. Further work is required to better understand the
role of glycine metabolism in clinical metabolic disease.

The positive correlations between phosphocholine and both BHBA and NEFA concentrations, and
between betaine and BHBA concentration, are consistent with an increase in methyl donor metabolism
in cows experiencing negative energy balance. Methyl donor metabolism and nutrition are receiving a
great deal of attention in dairy science due to links with early-lactation cow health (including fatty liver),
milk production and immune function [51]. Betaine, phosphocholine and glycine are intermediates in
several important one-carbon metabolic pathways including the folate and methionine cycles, and the
cytidine diphosphate (CDP)–choline pathway [51] (Figure 6a). The positive correlation between
NEFA and phosphocholine may be due to increased breakdown of phosphatidylcholine (Figure 6a).
This is consistent with the findings of Imhasly et al. [52] who showed that serum concentrations of
lyso-phosphatidylcholines and phosphatidylcholines increase in response to negative energy balance
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in post-partum dairy cows. The positive association observed between betaine and BHBA could be
due to increased oxidation of choline. A detailed description of these pathways is beyond the scope of
this study, however our results suggest that methyl donor metabolism has an important influence on
both BHBA and NEFA concentrations in early-lactation dairy cows.
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3.2. Differences between BHBA and NEFA

Despite many similarities, we observed some significant differences between the metabolomic
fingerprints of BHBA and NEFA. Most obvious was the difference in the direction of correlation between
acetate and the two biomarkers. Acetate is a volatile fatty acid produced by microbial fermentation of
feedstuffs in the rumen, and is an important energy source [55] (via oxidation or the partial oxidation
of acetyl-CoA in the liver) and substrate for de novo milk fat synthesis [56] in cows. The negative
relationship we observed between acetate and NEFA is consistent with the findings of Bielak et al. [57],
who reported a negative correlation (r = 0.44) between plasma NEFA and acetate concentrations in
early lactation dairy cows, possibly due to the down-regulation of the active transport of acetate across
the rumen wall. The positive association between acetate and BHBA is consistent with previously
discussed metabolomic studies of ketosis and fatty liver [25,27]. These results suggest that differences
in acetate metabolism may help to explain the weak correlation between serum BHBA and NEFA
concentrations in early lactation dairy cows.

The positive correlation between creatine and BHBA concentration is consistent with previous
reports that creatine is a potentially useful biomarker of ketosis and severe energy deficiency in dairy
cows [25,26,39]. Creatine is an important intermediate in energy metabolism, and this result may
represent increased breakdown of creatine phosphate in skeletal muscle and the release of high-energy
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phosphate for the conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP)
(Figure 6b). Interestingly, creatine concentration was negatively correlated with NEFA concentration
(albeit weakly and non-significantly (VIP < 1)). That mobilization of energy from skeletal muscle is
a feature of the BHBA metabolomic fingerprint, but not that of NEFA, suggests that elevated BHBA
concentrations are indicative of a more severe energy deficiency than are elevated NEFA concentrations.
However, the ability to rapidly mobilize energy from skeletal muscle may be advantageous to
early-lactation dairy cows, and we believe the role of creatine metabolism in transition cow health
warrants further investigation. We therefore plan to undertake genome-wide association studies to
better understand the genetic relationships between hepatic and skeletal muscle energy metabolism.

The significant negative correlation between DMSO2 and BHBA concentration was an interesting
finding of this study. DMSO2 concentration in the milk and rumen fluid of dairy cows has been shown
to vary according to feeding system; higher in pasture-fed cows managed outdoors than in cows fed a
total mixed ration indoors [58]. Maher et al. [59] showed that the concentrations of DMSO2 in milk and
plasma are highly correlated (r = 0.69), so serum DMSO2 may also be an indicator of pasture intake.
Given that all animals in this experiment were fed pasture, the negative association we observed
between DMSO2 and BHBA concentration may indicate that hyperketonemic cows are consuming
less feed.

4. Materials and Methods

All procedures undertaken in this study were conducted in accordance with the Australian Code
of Practice for the Care and Use of Animals for Scientific Purposes (National Health and Medical
Research Council, 2013). Approval to proceed was granted by the Agricultural Research and Extension
Animal Ethics Committee of the Department of Jobs, Precincts and Regions Animal Ethics Committee
(DJPR, 475 Mickleham Road, Attwood, Victoria 3049, Australia), and the Tasmanian Department of
Primary Industries, Parks, Water and Environment (DPIPWE Animal Biosecurity and Welfare Branch,
13 St Johns Avenue, New Town, Tasmania 7008, Australia). AEC project approval code 2017-05.

4.1. Animals and Datasets

A total of 298 Holstein-Friesian cows were used in this experiment. The calibration dataset (Dataset
1) was collected between August and September 2017 from 248 animals located at the Ellinbank Dairy
Research Centre, Ellinbank, Victoria, Australia. An independent validation dataset (Dataset 2) was
collected in September 2018, from 50 cows located on a commercial dairy farm in Smithton, Tasmania,
Australia. All cows were clinically healthy, and had been calved for between 4 and 30 days at the time
of sampling. Feeding systems on Australian dairy farms are diverse but can be classified into 5 main
feeding systems [60]. Both farms operated under feeding system 2; grazed pasture plus moderate to
high level concentrate feeding (>1.0 tonne of concentrate fed in the milking parlour per cow per year).

4.2. Blood Sample Collection and Reference Biomarker Measurements

A single serum sample was taken from each cow immediately after morning milking
(approximately 07:00) according to the protocol described in Luke et al. [43]. Cows were fed their
concentrate ration as soon as they entered the milking parlour, meaning that samples were collected
approximately 10 min after grain feeding.

An aliquot of each serum sample was shipped on ice to Regional Laboratory Services (Benalla,
Victoria, Australia) for BHBA and NEFA analyses. Colorimetric assays were performed using a Kone
20 XT clinical chemistry analyser (Thermo Fisher Scientific, Waltham, MA, USA); an enzymatic kinetic
assay for BHBA (McMurray et al., 1984) and enzymatic end point assay for NEFA (Randox Laboratories,
Crumlin, UK). The uncertainty of measurement (at a 95% confidence level) was ±0.060 mmol/L at
0.85 mmol/L for BHBA, and ±0.031 mM at 1.45 mM for NEFA. A second aliquot was stored at −20 ◦C
until processing for NMR spectroscopy.
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4.3. Sample Preparation for NMR Spectroscopy

Details of the sample preparation and metabolite extraction protocols used in this study can be
found in Luke et al. [43]. Briefly, 300 µL of serum was (1) mixed with 600 µL of methanol, (2) vortexed,
(3) incubated at −20 ◦C for 20 min, and (4) centrifuged at 11,360× g at 21 ◦C for 30 min to pellet
proteins. A 600 µL aliquot of the supernatant was then transferred to a clean 2 mL microcentrifuge
tube, dried under vacuum at 21 ◦C overnight using a SpeedVac Savant SPD 2010 Concentrator (Thermo
Fisher Scientific, Waltham, MA, USA) then reconstituted in a D2O phosphate buffer solution (100 mM
K2HPO4) containing 0.25 mM DSS-d6 as an internal standard. A 550 µL aliquot of reconstituted extract
was transferred to a 5 mm NMR tube for analysis.

4.4. 1H NMR Data Acquisition and Pre-Processing

One-dimensional proton spectra were acquired using a Bruker Ascend 700 MHz
spectrometer equipped with cryoprobe and SampleJet automatic sample changer (Bruker Biospin,
Rheinstetten, Germany). A Bruker noesypr1d pulse sequence was used over a −0.76–10.32 ppm
spectral range with the following acquisition parameters; (1) a temperature of 298 K, (2) 256 scans
after eight dummy scans (3) acquisition time per increment of 2.11 s, and (4) relaxation delay (D1)
of 2.00 s. This resulted in 32,768 data points. A line broadening of 0.3 Hz was applied to all spectra
prior to Fourier transformation. Spectra were manually phased, baseline corrected and referenced
to the internal standard (DSS-d6) at δ 0.00 ppm using the Topspin v.3.6.1 software (Bruker Biospin,
Rheinstetten, Germany).

Data pre-processing was performed in MatLab v.R20017b (Mathworks, Natick, MA, USA).
Spectra were imported as a matrix of signal intensities using the ProMetab v.1.1 script [61].
Spectral pre-processing involved (1) deletion of the residual water peak region (δ 4.68–5.00 ppm),
(2) spectral alignment using the correlation optimized warping algorithm [62], (3) normalization to
total signal area (area = 1), (4) deletion of methanol (δ 3.32–3.36 ppm) and DSS-d6 (δ 0.4–0.60 ppm)
peak regions, and the non-informative region beyond 9.00 ppm, (5) baseline correction using automatic
weighted least squares and (6) mean centering.

4.5. Statistical Analysis

Statistical analysis of experimental metadata was performed in R v3.6.2 [63]. Differences between
the 2 datasets were analysed using a paired t-test or a Wilcoxon signed-rank test depending on the
normality of the data.

Multivariate statistical analyses were performed using the PLS Toolbox v. 8.5.2 (Eigenvector
Research Inc., Manson, WA, USA). Preliminary data analysis and outlier detection was performed
using an unsupervised PCA. Examination of PC1 vs. PC2 scores plot showed 14 samples from Dataset 1
outside the 95% confidence level ellipse (Figure S1). These samples were individually examined, and a
single spectrum with poor water suppression and baseline correction was removed from subsequent
analyses. The influences of fixed effects (DIM, age and herd) on spectra were investigated using
ANOVA simultaneous component analysis with 1000 permutations [64]. Untargeted metabolomic
fingerprinting was done by regressing reference NEFA and BHBA concentrations against 1H NMR
spectra using supervised OPLS regression. Variable importance of projection (VIP) scores for the first
latent variable were used to identify the most statistically significant peaks in each model. Peaks of
interest were identified using the Chenomx NMR suite software v.8.4 (Chenomx Inc., Edmonton, AB,
Canada), comparison to the literature, 2D NMR analysis (COSY, gHMBC and gHSQC), and statistical
total correlation spectroscopy [65].

OPLS models were constructed using data from Dataset 1. The robustness of models was assessed
using (1) cross-validation using a venetian blind technique (10 sample splits with 1 sample per blind)
and (2) external validation using data from Dataset 2. The prediction accuracy of OPLS models was
assessed using the coefficient of determination (R2) and root mean square error (RMSE). Normalized
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RMSE (NRMSE) values, calculated as external validation RMSE divided by the interquartile interval
of the observed data, were used to compare RMSE estimates for NEFA and BHBA predictions.
Permutation testing (50 iterations and statistical significance determined using a Wilcoxon signed-rank
test) was performed to ensure that models were not over-fitted.

5. Conclusions

In this study we used an untargeted 1H NMR metabolomics approach to investigate the serum
metabolic fingerprints of the two most common biomarkers of energy balance in dairy cows, BHBA
and NEFA. Our results suggest that while BHBA and NEFA are indicative of similar metabolic
states in early-lactation dairy cows, there are significant differences between the two biomarkers.
Metabolites with common co-variances were intermediates of energy, phospholipid, and methyl donor
metabolism. The most significant differences in the metabolomic fingerprints were related to acetate
and creatine metabolism. We also identified several intermediate metabotypes which, when combined
with genomic data, will enable further the investigation of the genetic architecture of metabolic health
in early lactation dairy cows.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/247/s1,
Table S1: 1H NMR chemical shifts (δ) and multiplicity of metabolites in bovine serum run in deuterated water
(D2O). Clearly observed resonances are indicated in bold text. s, singlet; d, doublet; dd, doublet of a doublet; m,
multiplet; t, triplet. The right two columns show the direction of the relationship with serum β-hydroxybutyrate
(BHBA) and non-esterified fatty acid (NEFA) concentrations determined by colorimetric assays, Table S2: Results
of ANOVA-simultaneous component analysis (ASCA) of 1H NMR spectra of bovine serum (N= 298). Effect
describes the relative influence of each variable (herd, age and days in milk (DIM)) on spectra. p-value is derived
from permutation testing (1000 iterations), Figure S1: Results of PCA of 1H NMR spectra of serum obtained from
298 dairy cows in early lactation from the Ellinbank research farm (Dataset 1, N = 248) and a commercial dairy
farm in Tasmania (Dataset 2, N = 50), Figure S2: VIP scores from OPLS regressions of 1H NMR spectra of serum
obtained from 298 dairy cows in early lactation against (a) BHBA concentration and (b) NEFA concentration.
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