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Abstract

Background: The scientific interest to understand the function and structure of the microbiota associated with the
midgut of mosquito disease vectors is increasing. The advancement of such a knowledge has encountered challenges
and limitations associated with conventional culture-based and PCR techniques.

Methods: Flow cytometry (FCM) combined with various cell marking dyes have been successfully applied in the field
of ecological microbiology to circumvent the above shortcomings. Here, we describe FCM technique coupled with
live/dead differential staining dyes SYBR Green I (SGI) and Propidium Iodide (PI) to quantify and study other essential
characteristics of the mosquito gut microbiota.

Results: A clear discrimination between cells and debris, as well as between live and dead cells was achieved when
the midgut homogenate was subjected to staining with 5 × 103 dilution of the SGI and 30 μM concentration of the PI.
Reproducibly, FCM event collections produced discrete populations including non-fluorescent cells, SYBR positive cells,
PI fluorescing cells and cells that fluoresce both in SYBR and PI, all these cell populations representing, respectively,
background noise, live bacterial, dead cells and inactive cells with partial permeability to PI. The FCM produced a strong
linear relationship between cell counts and their corresponding dilution factors (R2 = 0.987), and the technique has a
better precision compared to qRT-PCR. The FCM count of the microbiota reached a peak load at 18 h post-feeding and
started declining at 24 h. The present FCM technique also successfully applied to quantify bacterial cells in fixed midgut
samples that were homogenized in 4 % PFA.

Conclusion: The FCM technique described here offers enormous potential and possibilities of integration with advanced
molecular biochemical techniques for the study of the microbiota community in disease vector mosquitoes.

Keywords: Anopheles Coluzzii, Microbiota, Midgut homogenate, Flow cytometry, Propidium Iodide, Live, Dead,
discrimination, Fixed cells

Background
Mosquito vectors of human pathogens house a diverse
population of commensal microbiota in their midguts. The
abundance and composition of midgut microbiota com-
munities change dramatically after a blood meal [1, 2].
Such changes are influenced by microbial intra-and inter-
species interactions, mosquito immune responses, nutrient
availability and the pH of the midgut. In turn, the midgut
microbiota influence the vectorial efficiency of mosquitoes
both by interacting directly with the pathogens that are

ingested with the blood meal or indirectly by triggering the
immune response of the mosquito [3–6]. As the midgut
microbiota are potential targets for disease control, the
study of their interactions with the mosquito vector and
pathogens has lately received great attention [6–8]. One as-
pect of such investigations involves establishing the impact
of mosquito immune and immune-related genes on the
abundance and composition of gut microbiota using RNAi
based gene-silencing techniques, where homologous
mRNA of the target gene is destroyed by the action of
dicer machinery [9, 10]. Large changes in the gut micro-
biota load and compotation occur when receptors of mos-
quito Immuno-deficiency (Imd) signaling pathway [11],
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Immunomodulatory peroxidase (IMPer) [12] or other mid-
gut receptor genes, such as including the fibronectin type-
III domain proteins (FN3D1-3) [13], are silenced.
Efforts to isolate and characterize the microbiota in

the midguts of disease vector mosquitoes date back to
the 1960’s [14–16]. Until recently, the conventional
culture-based techniques have been used in such studies
[2, 17–20]; however, 40–90 % of the gut bacteria are un-
cultivable or only grow under special conditions and are
not observed using culture-dependent techniques [21–23],
leading to a non-representative assessment and underesti-
mation of the abundance of the microbiota populations.
These limitations have been eliminated with the develop-
ment of culture-independent techniques. Such techniques
are often based on polymerase chain reaction (PCR) of the
microbial 16S rRNA genes [24–26]. The two most com-
mon techniques include quantitative real-time PCR
(qrtPCR) and microbiome sequencing [6, 27–29]. However,
these approaches suffer too from a variety of other limita-
tions including the inability to discriminate between DNA
from dead and live bacteria, and between extracellular and
intracellular DNA [30, 31].
FCM combined with various cell-staining techniques has

been successfully applied in the field of ecological micro-
biology. Bacterial cells are marked with fluorescent-labelled
antibodies, oligonucleotides or general DNA-binding fluor-
escent dyes such as SYBR green and PI before being sub-
jected to FCM analysis. SYBR can enter both live and dead
cells, but the PI is membrane impermeable and it enters
only dead cells or cells with compromised membrane. In
membrane compromised cells, both SYBR and PI mole-
cules access the nucleic acid and, respectively, bind the
DNA minor-groove and intercalate in the DNA. Double
staining with the dye pair results in the radiationless fluor-
escence energy transfer (FRET) from SYBR (donor mol-
ecule) to PI (accepter molecule). This leads to a reduction
in the SYBR fluorescence intensity and an increase in the
PI emission intensity. As a result, the membrane (dead
cells) fluoresce only PI. This phenomenon has been
exploited in previous studies aimed at discrimination be-
tween living and dead bacteria [32, 33].
Here, we applied a FCM-based technique for direct

analysis of midgut microbiota in disease vector mosqui-
toes and discriminate live and dead cells. The FCM tech-
nique was evaluated for reliability and precision in
measuring the microbiota cells in the gut samples. Also,
the efficiency of the technique in quantifying the micro-
biota in fixed midgut samples was determined.

Methods
Ethics statement
The protocol for infecting mice with P. berghei and P. yoe-
lii was approved and carried out at the Imperial College
London under the UK Home Office License PPL70/7185.

Mosquito colonies and maintenance
The Anopheles gambiae strain N’gousso M-form (a
laboratory-strain colonized in 2006 from field mosquitoes
collected around Yaoundé, Cameroon), now formally
named as Anopheles coluzzii [34], was used in these exper-
iments. The mosquitoes were reared and maintained at
27 °C, 70 % relative humidity and 12-h light/dark cycle.
Adult mosquitoes were fed on 10 % sucrose cotton pads.

Blood feeding
Female mosquitoes 3–5 days old or 3 days post dsRNA in-
jection were offered human blood using the membrane
feeding system and were maintained on sugar solution until
midgut dissection. To ensure aseptic midguts, mosquitoes
were given antibiotic mixture of penicillin (10 units/mL)–
streptomycin (10 μg/mL) and gentamycin (200 μg/mL)
both in sugar solution as well as blood meal.

Preparation of midgut homogenate for FCM
Midguts were dissected on sterile glass-slides placed on
ice. The midguts were either transferred to Eppendorf®
tubes individually or as pools and homogenized by pipet-
ting up and down in ice cold PBS (live homogenate) or
4 % paraformaldehyde (PFA) in PBS (fixed homogenate).

Cell culture
LB broth liquid media (20 ml) in 250-mL wide-neck
Erlenmeyer flasks was inoculated with midgut hom-
ogenate from mosquitoes that obtained a blood meal
24 h earlier. The culture was kept overnight on a
shaker at 37 °C. Next morning, the cells were pelleted
and re-suspended in fresh culture media and left on
the shaker for 4 h to obtain bacterial cells at the ex-
ponential growth phase. The cells were equally split
into two tubes, pelleted and re-suspended in 1 ml
acetone and 1 ml PBS, respectively.

Fluorescent staining
Standard nucleic staining protocol combining a cell-
permeant fluorochrome SGI (Invitrogen, UK) and the
cell-impermeant PI (Invitrogen, UK) was used to stain
live homogenate samples, whereas fixed samples were
stained with SGI alone. The final staining volume for
both live and fixed samples was 350 μl. When enumer-
ation of the microbiota was required, samples were
spiked with 25 μl CountBright beads (Life Sciences, UK).
Several concentrations of SGI and PI were tested inde-

pendently to determine the optimal conditions for the sep-
aration between bacterial cells and background, and
between live and dead cells. These tests were carried out in
pools of 10 midguts from aseptic mosquito; a 10th of the
homogenate was used for each FCM analysis. Before add-
ing the SGI and PI, the 2 μl bacterial cells from each group
(described above) were spiked to the midgut homogenate
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samples and incubated for 15 min at room temperature. Fi-
nally, the mixture was passed through FCM machine.
The optimal combination of SGI/PI was used to stain

live samples in subsequent experiments. Fixed samples
were stained with SGI only.

FCM analysis
The following FCM machines were used in this study: (i)
FACS Calibur flow cytometer (BD Biosciences, USA)
was used for an initial proof of concept of direct FCM
analysis of midgut microbiota; (ii) BD LSRFortessa™ Cell
Analyzer (Becton, Dickinson and Company, BD Biosci-
ences, and San Jose, CA USA) was used to evaluate and
optimize the fluorescence signal on SYBR and PI chan-
nels; and (iii) BD FACSAria™ III instrument (Becton,
Dickinson and Company, BD Biosciences, and San Jose,
CA USA) was used for cell sorting.
SGI was excited by a 488 nm (50 mW) laser and col-

lected through a 530/30BP filter with a preceding 502LP
filter. PI was excited by a 561 nm (50 mW) laser and the
resultant fluorescence collected through a 610/20BP fil-
ter with a preceding 600LP filter. The voltages were set
on both fluorescent parameters so that the SYBR posi-
tive cells and PI positive cells were both on scale and
above threshold. All parameters were displayed as height
measurements on a logarithmic scale. Dual Boolean ‘OR’
thresholds were established using unstained cells so that
a minimal number of events were present at the thresh-
old limits. The compensation was calculated using single
stained fixed cells. Tubes containing stained cells were
vortexed for 20 s before acquisition on a low flow rate
(approximately 12 μL/min), and at least 20,000 events
were collected.
First, the forward and side scatter of cells was evalu-

ated in a bivariate dot plot. The population was gated by
the relative value of the forward and side scatter to elim-
inate debris. The gated population was further divided
according to SYBR emission (on the abscissa axis) and
the PI emission (on the ordinate axis) in a bivariate dot
plot. An additional bivariate plot displaying bead fluores-
cence against time allowed the stability of the acquisition
rate to be monitored so that any perturbations that had
the potential to affect the count calculations could be
identified and excluded. The counting calculations were
performed according to manufacturer’s directions.
For cell sorting, the FACSAria III was run at 70 PSI

using a 70 μm nozzle and the cells were sorted into tubes
containing PBS. Cell sorts were concentrated by spinning
down at 500 rpm for 10 min and examined under a fluor-
escent microscope or plated on LB agar medium.

Assay repeatability/intra-assay precision
The bacterial load in midgut samples was determined
using three parallel FCM and qrtPCR-based assays, using

the same midgut homogenate sample. First, midguts
were isolated from 10 mosquitoes that obtained blood
meal 24 h earlier, and were homogenized in 1 ml PBS
and split into two tubes of 500 μl. Each tube was
assigned to one of the assays.
For FCM measurements, the homogenate sample was

brought to 1.2 ml volume with PBS/PFA (4 %). A third
of the homogenate sample was removed and stained
with SYBR dye to enumerate the microbiota cells. This
assay was repeated after 3 and 6 days using the remain-
der of the homogenate sample that was stored at 4 oC.
The number of bacteria per microliter of gut homogen-
ate was determined by adding 25 μl of bead suspension
(containing 990 beads/μl) before FCM analysis. The total
count per sample was calculated as the ratio of the num-
ber of events in the bacterial cell population and the
number of events in the bead population, multiplied by
the ratio of the total number of beads used in the test
and the final volume of the test sample. The remaining
half of the midgut homogenate was used in qrtPCR as-
says as described below.

qrtPCR analysis
Genomic DNA (gDNA) was extracted from whole mid-
gut homogenate, pellets of the homogenate after spin-
ning or from supernatant only. The bacterial cells in the
samples were first lysed with a 40 mg/ml lysozyme solu-
tion incubated for 1 h at 37 °C and then subjected to
gDNA extraction using the DNeasy Blood & Tissue kit
(QIAgen®, UK). The resulting gDNA was used in the
qrtPCR assay. The qrtPCR were performed using a BI
PRISM 7500 Sequence Detection System (Applied
BioSystems, UK). The total volume of reactions was
20 μl containing 2 μl gDNA, 10 μl of 2x SYBR® premix.
The following universal 16S bacterial primers were used
357f CTCCTACGGGAGGCAGCAG and 519r GAAT-
TACCGCGGCTGCTG to amplify 16S bacterial rRNA
gene [35]. The S7 gene served as an internal standard
(AgS7 forward, GTGCGCGAGTTGGAGAAGA; AgS7
reverse, ATCGGTTTGGGCAGAATGC). Each target
was quantified in duplicate and the threshold crossing
values (Ct-values) of the samples were first standardized
(using a standard curve) and were then normalized to
the geometric mean of mosquito.

Gene silencing with RNAi technique
We silenced two type III fibronectin genes, FN3D1
(AGAP005147) and FN3D3 (AGAP001824), and the gus-
tatory receptor gene GR9, (AGAP009805). To synthesize
double stranded RNA (dsRNA), a fragment of target
gene was PCR cloned using gene specific T7 primers
from a cDNA library that was synthesized from tRNA
extracted from 10 mosquitoes using TRIzol reagent (Life
Technologies, UK). The dsRNAs production was performed
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using the MEGAscript T7 Kit (Ambion, UK). Purified
dsRNAs (using RNeasy kit, QIAgen®, UK) was concentrated
to a 3 μg/μl and a 69 nl dsRNA was injected into the lateral
side of the thorax of female mosquitoes [36]. The control
mosquitoes were injected with dsRNA of the LacZ gene
(dsLacZ).

Statistical analysis
The bacterial count data were highly skewed, thus
counts were log transformed before statistical analysis.
Statistical analysis was performed using a linear fixed ef-
fects model. For bacterial proliferation data, the bacterial
count was considered as a function of time after blood

meal, with time as a categorical fixed effect. For gene
knockdown effects, the bacterial count was considered
as a function of gene knock down with gene as a cat-
egorical fixed effect. The repeatability of the FCM and
qrtPCR methods is summarized by the coefficient of
variation, which is used regularly as a measure of preci-
sion or assay variability [37].

Results and discussion
Optimization of the staining protocol
Dual SGI (green) and PI (red) staining results in intense
green fluorescence and dim red fluorescence of live bac-
terial cells, and intense red and dim green fluorescence

Fig. 1 SYBR Green I (SGI) serial dilution to determine optimum dilution rate for discrimination between cells and debris and between live and
dead microbiota in the mosquito midgut. Each scattergram represent flow cytometric dot plots of red (FL3) versus green (FL1) fluorescence of midgut
homogenate suspension stained concurrently with different SGI dilution with respect to a fixed PI at fixed concentration (12 μM) as recommended by
the manufacturer. Four regions in the scattergram (A, B, C, D) represent different population of FCM collection, i.e. (A) PI intensive cells representing dead
cells, (B) both PI and SGI positive cells representing bacterial cells with partially compromised membrane, (C) background noise and autofluorescing
debris and (D) SGI intensive cells representing live bacteria. The number at the center of the plot correspond to the ratio of mean fluorescent intensity
(±95 % CI) between bright and dim bacterial cell populations on the SYBR channel
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of dead bacterial cells. Due to a high concentration of
debris in midgut homogenates, particularly heme (the
most abundant debris), autofluorescence can limit the
signal resolution for the SGI as well as the PI channels
depending up on the dye concentration. To address this,
we optimized the concentrations of the fluorochromes.
First, a range of SGI dilutions (102, 5 × 103, 103, 5 × 104,
104, 5 × 105, and 105) were tested in combination with a
fixed PI concentration (12 μM) in mosquito midgut ho-
mogenates spiked with live and killed bacterial cells. The
FCM collections were displayed on a bivariate dot plot
with the SYBR emission on the abscissa and the PI emis-
sion on the ordinate axis (Fig. 1).

The ratio of SGI median fluorescence intensities (MFI)
of bright to dim bacterial population to quantify the cap-
acity to discriminate between live and dead cells (MFI
expressed as median value in relative fluorescence units).
Our data suggests that the MFI for GSI increased with
the dye concentration until the fluorescence signal was
saturated, indicating a high binding affinity of this
fluorochrome to nucleic acids [37]. There was a clear
separation between bacterial cells and debris at the SGI
dilution of 102 and 5 × 103. The most optimum discrim-
ination was achieved at the 5 × 103 dilution, indicating a
complete FRET from SGI to PI [33]. This SGI concen-
tration is much higher than the recommended, i.e. 104.

Fig. 2 Propidium Iodide (PI) serial dilution to determine optimum dilution rate for discrimination between cells and debris and between live and
dead microbiota in the mosquito midgut. Each scattergram represent flow cytometric dot plots of red (FL3) versus green (FL1) fluorescence of
midgut homogenate suspension stained concurrently with different PI dilutions with respect to a fixed SGI concentration (5 × 103). Four regions
in the scattergram (A, B, C, D) represent different population of FCM collection, i.e. (A) PI intensive cells representing dead cells, (B) both PI and
SGI positive cells representing bacterial cells with partially compromised membrane, (C) background noise and autofluorescing debris and (D) SGI
intensive cells representing live bacteria. The number at the center of the plot correspond to the ratio of mean fluorescent intensity (MFI) (± 95 %
CI) between bright and dim cells populations on the PI channel
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Next, we tested a range of PI concentrations (60 μM,
50 μM, 40 μM, 30 μM, 20 μM, 10 μM, 1 μM, and 0.5 μM)
with respect to a fixed SGI concentration (5 × 103) in
order to identify the optimum PI concentration for clear
discrimination between cells and debris and also between
live and dead cells. The FCM collections are reported in
Fig. 2. The results showed a clear differentiation between
cells and debris for all PI dilutions, except for 60 μM,
where PI positive cells were poorly detected perhaps due
to increased background fluorescence [38]. A decreased
MFI observed at higher PI concentrations might be re-
lated to a leakage of the dye from cells leading to in-
creased background fluorescence [39].
From the two optimization tests, we identified SGI

5 × 103 and PI 30 μM as the optimum dye combination
for subsequent FCM analysis.

Live dead discrimination
After dual SGI/PI staining, midgut homogenates were
analysed by FCM and the resulting collections were first
displayed on scattergram, i.e. forward scatter (FSC) vs
side scatter (SSC). The plot revealed two distinct popula-
tions: a large population of events with low FSC and
SSC, and a smaller population accounting for 3–4 % of
the total with higher FSC and SSC (Fig. 3a). Microscopic

examination of the sorts of the latter population revealed
cells with relatively large nuclei, probably representing
midgut epithelial cells, and also aggregates of debris
from digested erythrocytes [40, 41]. There was no colony
growth when sorts from this population were seeded on
solid agar media (inset in Fig. 3a). These events were
gated out from subsequent analyses.
The populations exhibiting low FSC and SSC were

analysed using a bivariate dot plot displaying the SYBR
emission on the abscissa and the PI emission on the or-
dinate axis (Fig. 3b). This analysis reproducibly produced
four discrete populations, including a non-fluorescent
population (left-bottom corner), and three fluorescent
populations. Visualization of sorts of the non-
fluorescence population under a light microscope re-
vealed that no bacteria cells were present and no bacter-
ial colony growth was observed from sort of this
population when seeded on solid agar media. The three
fluorescent populations fall in separate regions in the
fluorescence scattergram: (1) Bottom-right corner: live
SYBR positive cells that when streaked on LB agar plates
resulted in growth of bacterial colonies (inset in Fig. 3b).
These bacterial colonies demonstrate a great potential of
combining FCM with other microbiological techniques
for detailed characterization of the microbiota community.

Fig. 3 Flow cytometric analysis of midgut homogenate in the blood fed mosquito. a Total FCM collection depicted in SSC vs FSC plot, showing a
large population of events with low FSC and SSC, and a smaller population accounting for 3–4 % with higher FSC and SSC. b SYBR vs PI dot plot
of low FSC and SSC population, showing four distinct populations depending up on their fluorescein characteristics. c SYBR vs IP dot plot of low
FSC and SSC population in aseptic mosquito treated with a cocktail of antibiotics, showing depletion of all the bacterial cells. Insets represents LB
agar plate seeded with FCM sorts from the corresponding population
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(2) Top-left corner: dead cells only fluorescing on the PI
channel. The absence of reproductive growth and meta-
bolic activity relates to a loss of membrane integrity in
bacterial cells [42]. While both SGI and PI can enter dead
cells due to compromised outer membrane, these cells
fluorescence only red in the presence of saturating PI con-
centrations. This is due to FRET whereby the fluorescent
emission spectrum of SYBR is absorbed by PI and no lon-
ger visible [33]. As expected, no colony growth on the
plates seeded with the PI positive sorts (see inset). (3)
Top-right corner: cells that are potentially partially perme-
able to PI, hence fluoresce both SYBR and PI because of
incomplete FRET from SGI to PI [33]. A rapid cell division
and cell-wall synthesis during the exponential growth
phase can create transient perforations of the cell-wall
mediating entry of PI [43]. Sort-collection from this popu-
lation was streaked on LB agar plates, but no colony was
observed, which might be due to PI toxicity of the cells.
To further demonstrate that the three fluorescence popu-
lations constitute bacterial cells, FCM analysis was con-
ducted on midgut homogenates isolated from aseptic
mosquitoes. The FCM collection is depicted in Fig. 3c,
which shows the depletion of the three fluorescence popu-
lations. This further confirmation that the double positive
population correspond to bacterial cells.

Validation of FCM to measure midgut bacteria load
We determined the linearity of the FCM measurement
of microbiota on a serial dilution of midgut homoge-
nates. The number of microbiota as a function of the di-
lution factor is presented in Fig. 4. A strong linear
relationship of the counts in the serial dilutions and the
dilution factor was observed (R2 = 0.987). The FCM

measurement of gut microbiota has a better precision
compared to qrtPCR, with co-efficient of variation (CV)
0.56 and 1.36, respectively, for the two measurements.
Taken together, these results confirm that FCM is an ac-
curate analytical tool for applications in mosquito mid-
gut microbiology.

FCM measurement of bacterial load in blood fed mosquito
The determination of the abundance of the microbial
16S rRNA gene using qrtPCR has been routinely applied
in mosquito midgut microbiology including determin-
ation of the effect of mosquito gene silencing on micro-
biota proliferation [13] or determination of the
microbiota proliferation and dynamics during the mos-
quito gonotropic cycle [44]. We assessed the capacity of
the FCM technique to derive such measurements.
We silenced the same set of genes as in [13], i.e. GR9,

FN3D1 and FN3D3, in An. gambiae mosquitoes and
enumerated the microbiota 24 h after blood feed. The
results showed that the number of microbiota was sig-
nificantly higher in silenced than control (dsLacZ-
injected) mosquitoes for all the genes tested (P < 0.001;
Fig. 5). The FCM technique reproduces the previous
qrtPCR-based results.
We also used the FCM technique to determine the

proliferation of mosquito midgut microbiota at different
time points after blood feeding. The result showed that
the microbiota reached a peak load at 18 h post-feeding
and started declining at 24 h (Fig. 6a). This peak load is
significantly earlier than what is reported in a previous
study, where microbiota appear to peak at 30 h [44]. To
elucidate whether differences are due to limitations of
the qrtPCR technique, we firstly carried out direct

Fig. 4 Validation of FCM to quantify bacterial in midguts of mosquito.
Regression plot depicting serial dilution of gut homogenate vs bacterial
count to show the linearity of flow cytometry measurement (R2 = 0.987).
The test was repeated thrice

Fig. 5 Box plot depicts median number of bacterial with first and third
quartiles. Samples correspond midgut homogenates from epithelial
receptor gene silenced mosquito
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Fig. 6 FCM quantification of bacterial in midguts of blood fed mosquito. a The dynamics of midgut bacterial over gonotropic cycle; b Depicting
live (green) and dead (red) bacteria in the midgut lumen

Fig. 7 Effect of fixation of midgut samples on the FCM microbiota analysis. a Dot plot of SSC vs SYB of Flow cytometry collection from fixed midgut
homogenate at different time points after blood feed. The bacterial event population is shown in box. b Effect of storage conditions of fixed gut
homogenate samples on the flow cytometry bacterial count. The samples correspond to midgut homogenates fixed with 4 % PFA in PBS
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microscopic examination of midgut smears stained with
SYBR and PI. The results revealed that at 24 h post-
feeding a significant proportion of the microbiota cells
were non-viable albeit still intact (Fig. 6b). Such dead
cells can contribute to the qrtPCR quantification, while
once they start lyse they release free microbial nucleic
acids that deposit and build up in the gut lumen [45–47].
We examined the latter by measuring the abundance of
extracellular 16S rRNA gene in the midgut using qrtPCR
and found that free 16S gene accounts for up to 9 % of cell
counts (data not showed).

FACS can enumerate microbiota in fixed midgut samples
We explored the possibility of applying FCM to enumer-
ate the microbiota in fixed midgut samples that were ho-
mogenized in 4 % PFA and passed through the FCM after
staining with SGI (5 × 103). The results were displayed on
SSC vs SYBR dot plots (Fig. 7a), and revealed that bacterial
cells express a strong SYBR fluorescence and low side
scatter. Populations with high SSC and considerable SYBR
fluorescence were sorted and confirmed microscopically
to be debris. The high fluorescence in this population is
attributable autofluorescence due to heme aggregates [48].
This population reduced drastically with the progression
of blood meal digestion. Often mosquito samples are col-
lected from field sites, fixed and transported to the labora-
tory for analysis; therefore a significant time lapse passes
between collection and analysis of samples. We compared
the FCM recovery rates of bacteria in fixed midguts stored
at three different temperatures for three different time pe-
riods. The measurement at day 0 was considered as base-
line number. No significant differences were detected for
samples stored at 4 °C, 24 °C or 37 °C, for 1, 7, 15 or
30 days post-fixation (Fig. 7b). These data demonstrate
that the efficiency of the FCM technique to measure total
microbiota cells is not affected by fixation and subsequent
storage of the samples for prolonged time periods.

Conclusion
Here we have demonstrated that FCM analysis in con-
junction with SGI/PI dual staining can robustly discrim-
inate between live and dead microbiota cells, and can
separate both types of cells from autofluorescing debris,
in a highly reliable and precise fashion. The technique
can be applied directly on midgut homogenates, and
thus offers a rapid and inexpensive option compared to
qrtPCR in quantifying the microbiota as it bypasses
intermediate steps such as extraction of DNA or RNA
and conversion to cDNA in the latter case. Depending
on the availability of species-specific antibody, however,
the FCM technique can be used for differential detection
and quantification of gut microbiota to the species level
can be achieved. In clinical microbiology samples, FCM
combined with antibody labelling has been used to sort

live recombinant mycobacterial mutants with high ex-
pression of foreign inserts and to enrich those sorted
bacterial populations [49]. It can be also combined with
other state-of-the-art microbiological techniques for the
molecular taxonomic identification of specific bacterial
populations and potentially their spatial distribution,
temporal dynamics, and physiology [50–53] or to study
the effect of a procedure such as gene silencing or mos-
quito blood meal and infection.
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