
 International Journal of 

Molecular Sciences

Article

Recipient HLA-G +3142 CC Genotype and
Concentrations of Soluble HLA-G Impact on
Occurrence of CMV Infection after Living-Donor
Kidney Transplantation

Hana Guberina 1,*, Rafael Tomoya Michita 2, Sebastian Dolff 1, Anja Bienholz 3, Mirko Trilling 4,
Falko M. Heinemann 2, Peter A. Horn 2, Andreas Kribben 3, Oliver Witzke 1,3 and
Vera Rebmann 2

1 Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen,
Germany; Sebastian.Dolff@uk-essen.de (S.D.); Oliver.Witzke@uk-essen.de (O.W.)

2 Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen,
Germany; Rafael.Tomoya-Michita@uk-essen.de (R.T.M.); Falko.Heinemann@uk-essen.de (F.M.H.);
Peter.Horn@uk-essen.de (P.A.H.); Vera.Rebmann@uk-essen.de (V.R.)

3 Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
Anja.Bienholz@uk-essen.de (A.B.); Andreas.Kribben@uk-essen.de (A.K.)

4 Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
Mirko.Trilling@uk-essen.de

* Correspondence: Hana.Guberina@uk-essen.de; Tel.: +49-0201-723-3394; Fax: +49-0201-723-3395

Received: 21 September 2017; Accepted: 31 October 2017; Published: 5 November 2017

Abstract: The expression modulation of the immunosuppressive non-classical Human leukocyte
antigen-G (HLA-G) molecule and its soluble isoforms is an immune evasion strategy being deployed
by cytomegalovirus (CMV). The +3142 C>G single nucleotide polymorphism (SNP) located within
the 3′ untranslated region (3′UTR) is of crucial importance for the regulation of HLA-G expression.
Therefore, we analyzed the influence of the +3142 C>G HLA-G SNP on the occurrence of CMV
infection in a cohort of 178 living-donor kidney recipients and their 178 corresponding donors.
In addition, soluble HLA-G (sHLA-G) levels were quantified before and after transplantation.
The presence of the HLA-G +3142 CC genotype in recipients, but not donors of our cohort as
along with elevated sHLA-G levels (≥6.1 ng/mL) were associated with higher susceptibility to CMV
infection after transplantation. Our results provided evidence that (i) HLA-G is implicated in the
establishment of CMV after living-donor kidney transplantation and (ii) recipient HLA-G +3142 CC
genotype and sHLA-G concentration levels could represent important predictive risk markers for
CMV infection.

Keywords: Human leukocyte antigen-G; HLA-G 3′UTR Polymorphisms; Living Kidney
Transplantation; Cytomegalovirus

1. Introduction

Human cytomegalovirus (CMV) is the prototypic member of the β-herpesvirus subfamily
that causes widespread, life-long human infections, which are particularly life threatening for
immunosuppressed patients after solid organ transplantation [1,2]. In order to escape immune
responses, CMV has developed multiple strategies to counteract numerous aspects of the host immune
system [3]. In this process, the immunological antagonism of the human leukocyte antigen (HLA)
presentation represents an essential mechanism of immune evasion. CMV encodes several gene
products (e.g., US2, US3, US6, US10, US11, pp71-UL82, miR-US4-1 etc.) which target classical
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HLA class I molecules and/or prevent antigen presentation on the surface of infected cells [4,5].
Some of these inhibitory proteins discriminate between classical and non-classical HLA molecules [6],
while others affect both types of HLA molecules [7,8]. In this context, the accumulating line
of evidences demonstrates that an up-regulated expression of the immune checkpoint molecule
HLA-G facilitates viral immune escape [9,10]. HLA-G has the capacity to inhibit immune competent
cells thereby modulating the innate and adaptive immune system [11]. It alters natural killer
(NK) cell- and T lymphocyte-mediated cytotoxicity and B cell activation by interacting with the
corresponding inhibitory receptors immunoglobulin-like transcript 2 (ILT-2) and ILT-4 as well as killer
cell immunoglobulin-like receptor 2DL4 (KIR-2DL4) [12–14]. Remarkably, similar to the membrane
bound forms, the soluble HLA-G facilitates these inhibitory effects [11,15–17]. HLA-G is characterized
by a low number of allelic variations resulting in limited variability in the protein-encoding region.
However, polymorphic sites within the non-coding region such as the 5′ upstream regulatory region
(5′URR) and the 3′ untranslated region (3′UTR) are of crucial importance for the regulation of HLA-G
expression levels [18,19]. The HLA-G +3142 C>G (rs1063320) single-nucleotide polymorphism (SNP)
located within the 3′UTR, affecting the binding site for microRNAs and thereby influencing the
expression levels is of particular relevance [20].

In kidney transplantation, CMV reactivation remains one of the most common infectious
complications despite the availability of generally effective antiviral therapies [2]. Enhanced HLA-G
expression has been associated with allograft tolerance after kidney transplantation [11]. Studies
aiming to demonstrate the relevance of HLA-G on the occurrence of CMV infection are limited in
transplantation setting and mostly exclusively focused on the recipient HLA-G genotype [21,22].
Considering the immune inhibitory features of HLA-G, differences in recipient and donor HLA-G
+3142 C>G polymorphism induce altered protein expression levels, and therefore may possibly
have implications on the occurrence of CMV replication during the first year of living-donor kidney
transplantation. To address this question, the recipient and the donor HLA-G +3142 C>G SNP was
genotyped, in addition to the quantification of pre- as well as post-transplant sHLA-G concentrations.
The results were correlated with the clinical outcome in terms of allograft loss and the occurrence of
CMV infection.

2. Results

We found that the incidence of CMV infection was significantly higher among living-donor kidney
transplant recipients carrying at least one +3142 C allele and the homozygous +3142 CC genotype,
compared to non-carriers (p < 0.0462 and 0.0394, respectively, Table 1A).

Table 1. The genotype distribution and allele frequencies of the +3142 C>G (rs1063320) gene
polymorphism in living-donor kidney transplant recipients; (A) and corresponding donors (B) with
respect to cytomegalovirus (CMV) infection.

(A) Recipient CMV Infection
N = 18

No CMV
Infection N = 160 p Value OR CI (95%)

C/C 8 (44.4%) 34 (21.3%) 0.0394 2.965 1.082–8.092
C/G 5 (27.8%) 80 (50%) 0.0855 0.384 0.131–1.129
G/G 5 (27.8%) 46 (28.7%) 1 1.037 0.35–3.07

Allele

C 26 148
0.0462 2.01 1.028–3.947G 15 172

(B) Donor CMV Infection
N = 18

No CMV
Infection N = 160 p Value OR CI (95%)

C/C 4 (22.2%) 41 (25.6%) 1 0.82 0.26–2.66
C/G 8 (44.4%) 85 (53.1%) 0.62 0.7059 0.26–1.882
G/G 6 (33.3%) 34 (21.3%) 0.24 1.85 0.64–5.3

Allele

C 16 167
0.386 0.732 0.366–1.46G 20 153
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Taking into account the time course, the results of the Kaplan-Meier plot analysis combined with
the log-rank test indicate that the development of CMV during the first year after living-donor kidney
transplantation was significantly higher among recipients with a homozygous +3142 CC genotype
(p = 0.027; Hazard Ratio (HR) 2.7; 95% confidence interval (95% CI): 1.0–6.9, Figure 1), compared
to +3142 G allele carriers (i.e., homozygous +3142 GG and heterozygous +3142 CG). Interestingly,
we found that the recipient homozygous +3142 CC genotype was associated with an increased risk
of 5-year allograft loss (p = 0.009, HR 4.3; 95% CI: 1.3–14.2, Figure 2 and Table 2A). The recipient
HLA-G +3142 C>G genotype was not associated with acute cellular rejection within the first year after
living-donor kidney transplant (data not shown).

With respect to the HLA-G +3142 C>G donor genotype, neither it was associated with occurrence
of CMV infection (p = 0.77, HR 0.85; 95% CI: 0.28–2.59; Table 1B) or with acute cellular rejection (p = 0.39;
HR 0.7; 95% CI: 0.3–1.6), while there was a borderline significance with allograft loss (p = 0.068; HR 2.9;
95% CI: 0.8–9.5; Table 2B). There was no association with outcome parameters and presence of the
HLA-G +3142 C>G mismatch.
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Table 2. The genotype distribution and allele frequencies of the +3142 C>G (rs1063320) gene
polymorphism in living-donor kidney transplant recipients (A) and the corresponding donors; (B) with
respect to allograft loss.

(A) Recipient Graft Loss N = 11 No Allograft
Loss N = 167 p Value OR CI (95%)

C/C 6 (54.5%) 36 (21.6%) 0.022 4.37 1.26–15.14
C/G 4 (36.4%) 81 (48.5%) 0.54 0.61 0.17–2.15
G/G 1 (9.1%) 50 (29.9%) 0.29 0.25 0.03–2.03

Allele

C 16 153
0.0158 3.155 1.204–8.263G 6 181

(B) Donor Graft Loss N = 11 No Allograft
Loss N = 167 p Value OR CI (95%)

C/C 5 40 0.125 3.175 0.87–11.5
C/G 5 88 0.76 0.75 0.22–2.54
G/G 1 39 0.46 0.33 0.04–2.65

Allele

C 15 168
0.125 2.11 0.84–5.33G 7 166

Soluble HLA-G molecules are of clinical relevance and exhibit equal immunosuppressive
properties as their membrane bund counterparts [17]. In an attempt to identify a predictive marker for
CMV infection based on sHLA-G levels, we quantified soluble molecule concentrations in patient sera.
In contrast to previous studies that linked levels of sHLA-G to the HLA-G +3142 C>G SNP [19] there
was no significant association in our cohort (data not shown).

The sHLA-G levels prior kidney transplantation were significantly elevated in recipients exhibiting
productive CMV replication after transplantation compared to those with no viral replication
(38.9 ± 13.0 ng/mL vs. 25.1 ± 1.74 ng/mL; p = 0.04). After transplantation, the sHLA-G levels
dramatically decreased (sHLA-G before 26.8 ± 16.7 ng/mL vs. after transplantation 6.1 ± 4.8 ng/mL;
p = 0.0002). Soluble HLA-G levels remained nearly twice as high in recipients with CMV reactivation
without reaching the level of significance (10.32 ± 1.73 vs. 5.4 ± 0.9 ng/mL; p = 0.082). To evaluate
whether post-transplant sHLA-G levels can help to identify patients with increased risk of CMV after
transplantation, the ROC analysis was performed (Figure 3A). Using an optimal cut-off value of 6.1 ng/mL
(AUC = 0.75, sensitivity: 80.0%, specificity: 75.8%), Kaplan-Meier curve analyses combined with the
log-rank test revealed that sHLA-G concentrations were significantly associated with an increased
occurrence of CMV within the first year after transplant (p = 0.010; HR 10.1, 95% CI: 1.1–90.8; Figure 3B).
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Figure 3. The correlation between plasma levels of soluble human leukocyte antigen-G (sHLA-G)
and the occurrence of CMV viremia during the first year of living-donor kidney transplantation.
(A) Receiver operating characteristic curve-based stratification was performed to predict CMV-infection
free survival based on sHLA-G levels. The red open circle indicates the optimal cut-off value with
a sensitivity of 80.0% and a specificity of 75.8%; black dots represent differing cut-off values (B) patients
with higher sHLA-G levels (≥6.1 ng/mL) had a significantly increased likelihood of CMV infection
compared to patients with low sHLA-G levels (<6.1 ng/mL).
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3. Discussion

HLA-G is a naturally occurring immune suppressive molecule [23]. Its surface expression is
physiologically restricted to the maternal-fetal interface and to immune privileged adult tissues.
However, secreted soluble forms of HLA-G are detectable in a variety of body fluids [24] The clinical
implications of the differential modulation of HLA-G gene expression by the regulatory polymorphism
within the 3′UTR has been emphasized by a number of studies in a wide range of pathological
conditions [11,13,25]. Many reports highlighted the importance of HLA-G either in viral infections or
in solid allograft acceptance after transplantation [26–29], though only a minority focused on the role
of HLA-G for CMV infection in an allogeneic setting after transplantation [21,22,30]. In a cohort of
living-donor kidney transplant pairs, we were able to uncover that (i) the recipient HLA-G +3142 CC
genotype is associated with CMV infection within the first year after transplantation and to the five
year allograft loss; (ii) donor HLA-G +3142 C>G polymorphism had no impact on allograft outcome;
and (iii) elevated sHLA-G serum concentrations might be useful to discriminate recipients with
an occurrence of CMV, but do not predict acute rejection.

There are strong evidences that CMV infection after transplantation promotes inflammation,
vasculopathy and cellular rejection of an allograft which impacts on allograft survival [2,31–34].
Considering the negative impact of CMV infection on allograft outcome the identification of predictive
markers for detection of CMV prone transplant recipients benefiting from a more intense monitoring or
alternative therapeutic approach is urgently needed. While in healthy individuals most CMV infections
are asymptomatic, life-threatening diseases occur under the influence of immunosuppressive regimens
in the context of allograft transplantation. Implementing prophylactic antiviral therapy has reduced
the occurrence of early CMV disease, but the development of late-onset disease and drug resistance
is increasingly recognized [2]. In this context, HLA-G +3142 CC recipient genotype constitutes
a promising genetic candidate marker for the identification of CMV prone potential recipients even
before kidney transplantation. The functional polymorphism +3142 C>G is of specific interest as it has
been shown that the C allelic variation is associated with enhanced HLA-G protein expression [11].
Our results are strengthened by the few previous reports clearly outlining the influence of the HLA-G
genotype to CMV-susceptibility [21,22,30]. Considering the various immune suppressive functions
mediated by HLA-G, the HLA-G genotype has an impact on level of HLA-G expression and thus
provides the background for facilitating the CMV escape mechanism [11].

In our cohort, the presence of the HLA-G CC recipient genotype was not only associated with
occurrence of CMV infection but also with reduced allograft survival. It is noteworthy that chronic
kidney allograft loss is attributed to multiple immune as well as non-immune injuries, against
a background of various donor- and recipient-derived risk factors. In this setting, immune responses
directed against donor antigens leading to allograft rejection play an eminent role. In our cohort the
co-incidence of CMV infection occurred in 4 out of 35 acute rejection episodes. However, we did not
find any association between recipient HLA-G +3142 CC genotype and occurrence of rejection. Acute
rejection represents an immunological inflammation that occurs within the microenvironment of the
allograft, while CMV infection may comprise a located as well as systemic disease. It is reasonable
that the establishment of systemic CMV viremia is dominantly influenced by the recipient specific
genetic characteristics whereas in cellular rejection both, recipient- and donor-derived factors influence
alloimmune and inflammatory responses. The impact of the donor HLA-G genotype in solid organ
transplantation has only been investigated in one liver transplantation study supporting our findings
on the low influence of the donor HLA-G genotype on transplantation-outcome [30].

Of importance, there was a significant relationship between post-transplant elevated plasma
sHLA-G levels and CMV occurrence. This result suggests that high levels of HLA-G promote
susceptibility to viral infections. Nevertheless, no association between certain HLA-G +3142 C>G
genotypes and soluble HLA-G levels was observed, which can be partly attributed to the low number
of plasma samples available, but also to a variety of additional mechanistic factors affecting soluble
molecule concentrations.
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Taken together, in the context of transplantation the immunosuppressive checkpoint molecule
HLA-G plays an eminent role and may discrepantly affect transplant outcome: while on the one
hand HLA-G is involved in tolerogenic responses and high levels of HLA-G are associated with
better allograft acceptance [11], on the other hand HLA-G promotes viral immune evasion and as
showed in our study HLA-G expression is significantly increased during CMV infection [9,10]. Thus,
the immunosuppressive properties of HLA-G create an anti-inflammatory environment and in doing so,
contribute to increased susceptibility to CMV infection. Although the precise mechanisms contributing
to the immunological hazards of CMV infection after transplantation have not been fully elucidated,
the results of clinical studies clearly identify the presence of CMV infection as a risk factor for allograft
rejection and loss [2,31–34]. Therefore, enhanced HLA-G expression upon CMV infection in the
allogeneic setting of transplantation may indirectly contribute and predict a worse transplant outcome.

In summary, the results of our study suggest that the +3142 CC recipient genotype and enhanced
soluble HLA-G levels are associated with a greater susceptibility to CMV infection after living-donor
kidney transplantation. Thus, the HLA-G +3142 C>G polymorphism seems to represent a promising
novel genetic biomarker for CMV infection after transplantation that is worth of being verified in
future studies.

4. Materials and Methods

4.1. Study Population and Outcome Parameters

In total, 178 living-donor kidney transplant recipients and their 178 corresponding donors from the
transplant program at the University Hospital Essen, Germany, were enrolled in this study. Occurrence
of CMV infection was monitored during the first year after transplantation. The following clinical
data were collected from electronic patient records: demographic and transplant-related characteristics
of recipient and donor, underlying renal disease, CMV serostatus of recipient and donor, incidence
of first episode of CMV viremia or disease within 12 months after transplant, and biopsy-proven
acute cellular rejection within 12 months after transplant and 5 year allograft loss. CMV high
risk patients (grafts derived from CMV-seropositive donor [D+] transplanted in CMV-seronegative
recipients [R-] n = 38) and patients with a lymphocyte-depleting induction therapy received CMV
prophylaxis for 100 days before the end of 2011. Because of emerging data suggesting that the
incidence of CMV infection was lower among patients receiving a prolonged antiviral prophylaxis
in 2012 the duration of the prophylactic CMV regimen was prolonged to 200 days for the high-risk
population [35]. All other patients were pre-emptively monitored for CMV viremia weekly for the
period of 3 months and afterwards monthly. CMV infection or disease was classified according
to recent recommendations [36]: CMV infection was defined as CMV viremia (polymerase chain
reaction >400 copies/mL or >1/100 pp65/pUL83 antigen positive cells); CMV disease was defined
as CMV viremia in combination with attributable symptoms, such as fever, malaise, leukopenia,
thrombocytopenia, or elevation of liver enzymes. CMV complications were analyzed within the first
12 months after transplantation. Incidence of first episode of clinically significant CMV viremia/disease
within the 12 months follow-up was 10% (N = 18).

Additional clinical outcome parameters of this study were biopsy-proven rejection events within
the first year and five year allograft loss. Allograft loss was defined as return to dialysis or estimated
Glomerular filtration rate <15 mL/min/1.73 m2. Detailed cohort characteristics are shown in Table 3.

Signed informed consent was obtained from all patients in accordance with the Declaration of
Helsinki, and the ethics committee of the University Hospital Essen approved the study (12-5312-BO;
April 2013) .
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Table 3. Demographic and clinical characteristics of living-donor transplant recipients and
corresponding donors at baseline. Abbreviations are as follows: y: years; SD: standard deviation, HLA:
human leukocyte antigen, CMV: cytomegalovirus, R: recipient, D: donor, KTx: kidney transplant.

Total HLA-G +3142 GG
or GC carrier

HLA-G +3142
CC carrier

p Value HLA-G +3142
GG/GC vs. CC

Recipient N = 178 N = 136 N = 42
Gender (men/women) 106/72 85/51 21/21 0.15
Age (y ± SD) 41.9 ± 15.9 41.1 ± 15.6 44.6 ± 9.5 0.96
CMV positive recipient (R+) 91 73 18 0.22
Donor N = 178 N = 133 N = 45
Gender (men/women) 71/107 56/77 15/30 0.29
Age (y ± SD) 51.4 ± 9.7 50.8 ± 9.6 53.0 ± 9.9 0.19
CMV positive donor (D+) 97 70 27 0.39

Cause of end-stage renal disease

Diabetes mellitus 9 6 3 0.44
Chronic glomerulonephritis 56 42 14 0.85

Polycystic kidney disease 24 18 6 0.80
Other or unknown 89 70 19 0.60

Transplant related characteristics

Mean cold ischemia time (minutes ± SD) 133.5 ± 49.4 131 ± 51.2 140.6 ± 42.9 0.67
Lymphocyte-depleting induction therapy
(yes/no) 12/166 8/128 4/38 0.41

AB0 incompatible transplant (yes/no) 20/158 14/122 6/36 0.47
HLA A, B mismatches (mean ± SD) 2.0 ± 1.2 2.01 ± 1.15 2.0 ± 1.1 0.78
HLA-DR mismatch (mean ± SD) 1.1 ± 0.7 1.1 ± 0.7 1.2 ± 0.6 0.85

Transplantation outcome parameters

CMV infection first year after KTx total
group (yes/no) 21/157 12/124 9/33 0.027

5 year Allograft loss (yes/no) 11/167 5/131 6/36 0.013
Acute cellular rejection (yes/no) 36/142 28/108 8/34 0.82

4.2. HLA-G +3142 C>G SNP Typing and Soluble HLA-G Enzyme-Linked Immunosorbent Assay (ELISA)

Genotyping of the HLA-G +3142 C>G SNP was performed as previously described [37]. Briefly,
for +3142 C>G polymorphism 50 ng of genomic DNA of genomic DNA was amplified in a reaction
tube, with final concentrations as follows: PCR buffer 1.5 mM MgCl2; 1.8 mM of dNTP; Taq
DNA polymerase and 100 pmol of each primer (GMIRNAF–5′-CATGCTGAACTGCATTCCTTCC-3′,
GMIRNAR–5′-CTGGTGGGACAAGGTTCTACTG-3′). Thermocycling conditions were as follows:
94 ◦C for 5 min; 32 cycles of 94 ◦C for 30 s, 65.5 ◦C for 30 s and 72 ◦C for 60 s followed by a final
extension step at 72 ◦C for 5 min. The amplified PCR products were cleaved with 3 U of the restriction
enzyme BaeGI (New England Biolabs, Inc., Ipswich, MA, USA), according to the manufacturer’s
instructions. RFLP products were analyzed by electrophoresis in a 2% (w/v) agarose gel stained
with ethidium bromide, with amplicon sizes of 406 bp for the C allele and 316 and 90 bp for the G
allele. The distribution of HLA-G +3142 C>G SNP genotypes and alleles for recipients and donors
is summarized in Table 3. The HLA-G +3412 genotype and allele frequencies were similar among
recipients and donor. The observed allelic distribution was in accordance with expectations indicated
by the Hardy-Weinberg equilibrium (p > 0.05).

A sHLA-G-specific enzyme-linked immunosorbent assay (ELISA) was performed as previously
described [38]. Briefly, plasma samples were used in a dilution of 1:2 in PBS. Purified HLA-G5
served as standard reagent. The sHLA-G levels were determined by four-parameter curve fitting.
The ELISA detection limit of sHLA-G was 0.25 ng/mL. Plasma soluble HLA-G levels were
determined in 57 patients before and consecutively in 34 recipients in a longitudinal follow-up after
kidney transplantation.

4.3. Statistical Analysis

Baseline characteristics of donors and recipients were compared with two-sided Fisher’s
exact test or the Wilcoxon rank-sum test, as appropriate. The occurrence of CMV infection was
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estimated by the method of Kaplan-Meier and survival curves were compared using the log-rank test.
We used multivariate Cox proportional hazards modeling to assess the risk of CMV infection after
transplantation. A two-sided p-value of 0.05 or lower was considered statistically significant.
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NK cell Natural killer cell
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