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Abstract: Over the past decades, urbanization and industrialization have led to a change in air quality,
bringing researchers to a full realization of the damaging effects of human activities on the environ-
ment. This study focused on describing air quality during the initial phase of the Novel Coronavirus
disease (COVID-19) pandemic (since there were fewer anthropogenic activities) in 10 Chinese mega-
cities. Using the independent t-test, the means of air quality index (AQI) scores and individual air
pollutants concentration during the outbreak were compared with the means before the outbreak.
Cohen’s d was estimated to quantify how much difference was observed. Based on the AQI score,
the air quality in these 10 cities ranged from excellent (Shenzhen) to light pollution (Xi’an) with
44.8 µg m−3 and 119.7 µg m−3, respectively. In comparison to the 2019 air quality, Guangzhou and
Wuhan noted major differences in air quality during the outbreak. Indicators of traffic pollution,
particularly NO2, were significantly lower during the outbreak in all cities. Particulate matter pollu-
tion varied, with some cities observing lower concentrations and other higher concentrations during
the outbreak. There was a significant decrease in air pollution levels during the outbreak. More
researchers should observe changes in air quality during peculiar or major events. Implementation
of stringent regulation on vehicle use should be considered in mega-cities. Relevant findings should
be employed in emphasizing the detrimental effects of anthropogenic activities and support the need
for stringent emission control regulations.

Keywords: air pollution; COVID-19; mega-cities; particulate matter; air quality

1. Introduction

In the last three decades, the level of pollution in China has increased exponentially
due to extensive urbanization and mass industrialization. However, this rapid economic
rise feat also came with major environmental challenges, including degradation and pol-
lution (air, soil, and water). Regarding air pollution, six major pollutants are considered
as criteria air pollutants; these include fine particulate matter (PM2.5), inhalable particu-
late matter (PM10), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon
monoxide (CO). Particulate matter (PM2.5 and PM10) refers to microscopic solid or liquid
matter that is suspended in the atmosphere. Both are typically derived from either natural
sources (volcanoes, dust storms, sea sprays, etc.) or anthropogenic sources (fossil fuel,
coal combustion) and differ only in their sizes. Ozone is an inorganic gaseous molecule
occurring from natural sources (lightning) or the reaction between solar radiation and
nitrogen oxides (NOx) or volatile organic compounds. Sulfur dioxide is a toxic gas derived
from natural sources such as volcanoes, or anthropogenic sources (the combustion of sulfur-
containing fossil fuels and the oxidation of organosulfur compounds). Nitrogen dioxide
is a gaseous compound emitted from the combustion of fossil fuels (vehicles engines,
gas cookers, and heaters). Carbon monoxide is an odorless, colorless gas that is emitted
by combustion engines, such as cars, stoves, furnaces, etc. [1]. These air pollutants pose a
health hazard for individuals of all gender and ages, particularly those with compromised
immune systems. China is home to some of the world’s biggest and most populous cities
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(i.e., mega-cities), which often suffer severe air pollution due to major industrial activities,
continuous construction and infrastructural development, and high traffic volume [2].

Beyond a reasonable doubt, air pollution in China presents a serious health threat,
as shown in several ecological studies. Studies carried out in major Chinese cities have asso-
ciated air pollution exposure with illnesses ranging from common influenza to chronic dis-
eases, including mortality. To note a few, Shang et al. revealed overall daily mortality was
associated with exposure to ambient air pollution in several Chinese cities; Cao et al. linked
fine particulate matter and cardiopulmonary mortality in heavily polluted Chinese cities;
Mokoena et al. linked respiratory mortality and air pollution in Xi’an city; and Xu et al.
associated ischemic heart disease with particulate matter pollution in Beijing [2–5]. The risk
of air pollution exposure for citizens in urban areas remains high in comparison to their
rural counterparts. Moreover, if the air quality changes observed during the 2008 Beijing
Olympics and the annual Chinese New Year Celebrations are used as evidence, it shows
that major events tend to affect air pollution levels [6–8]. The hike or reduction in air
pollution levels can be attributed to change in traffic volume and industrial activities [6].
This directly proves that anthropogenic activities are major contributors to air pollution
levels in urban centers [9,10].

In December 2019, an outbreak of COVID-19, caused by severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2), was first reported in the Chinese city of Wuhan in
Hubei Province and quickly spread throughout China, leading to a complete lockdown of
Wuhan (the epicenter) and curfews in other Chinese cities for several weeks [11]. The sever-
ity of the epidemic led to travel restrictions, closure of workplaces including industries,
suspension or cancellation of schools, major events, and outdoor activities. The observance
of the imposed shutdown and restricted movement in most cities left a positive impact on
the environment. Several satellite images showed an obvious reduction in air pollution
levels in China [12,13]. Therefore, the current study aims to describe air quality and crite-
ria air pollutants concentration level during the COVID-19 lockdown period (January to
March 2020) in 10 Chinese mega-cities. The study hypothesizes that there is no difference
between air quality or air pollution concentration level before and during the COVID-19
lockdown periods.

2. Materials and Methods
2.1. Data

The study area included 10 mega-cities in China, namely, Beijing, Shanghai, Xi’an,
Chongqing, Wuhan, Guangzhou, Harbin, Chengdu, Tianjin, and Shenzhen (Figure 1) [14].
These cities are densely populated, ranging from 10 million (Harbin) to 30 million
(Chongqing) people. All cities observe the same four seasons with slight differences,
such as extreme winter in Harbin and warmer winter in Guangzhou. Their main sources
of air pollutant emission are also similar, namely, coal combustion for heating, combus-
tion of fossil fuels from vehicles, and industrial fumes. All cities also observed similar
restrictions during the outbreak, namely, closure of offices, manufacturing industries,
educational institutions, commercial centers, leisure places, etc.
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was carried for all data (AQI scores and individual air pollutants). 

2.2.3. Third Phase: Independent t-Test Analysis 

Figure 1. Map of China displaying the 10 mega-cities observed in the study. The map was adopted
from Zhou et al. “Effects of spatial form on urban commute for major cities in China,” and modified
for use in this publication [14].

Air quality index score and air pollutants’ concentration levels were collected for
10 major cities in China. The data covered the initial period of the outbreak and a year
before the outbreak. Daily records for AQI (µg m−3), PM2.5 (µg m−3), PM10 (µg m−3),
O3 (µg m−3), SO2 (µg m−3), NO2 (µg m−3), and CO (mg m−3) were collected from
AQI China—a national online database. The main data covered from 1 January 2020,
to 31 March 2020 (initial COVID-19 outbreak period). In addition, similar data were col-
lected for the previous year, from 1 January 2019 to 31 December 2019. All data were
generated from environmental monitoring stations within each city. No dates were miss-
ing. Note that all air pollutants were measured in microgram per cubic meter (µg m−3)
except CO, which was measured in milligram per cubic meter (mg m−3).

2.2. Statistical Analysis

The main statistical test employed was the independent samples t-test.

2.2.1. First Phase: Data Categorization

To categorize the data into meaningful groups, the time of the year during which the
outbreak occurred and the seasons (winter, autumn, spring, and summer) observed in
China were taken into consideration. This is based on the fact that seasonality has been
noted to influence air pollution levels [2]. The entire data retrieved from January 2019 to
March 2020 was divided into five categories as follows:

Category A—1 month to 3 months before the outbreak (October 2019 to December 2019);
Category B—3 months to 6 months before the outbreak (July 2019 to September 2019);
Category C—6 months to 9 months before the outbreak (April 2019 to June 2019);
Category D—9 months to 12 months before the outbreak (January 2019 to March 2019);
Category K (constant)—during the outbreak (January 2020 to March 2020).

2.2.2. Second Phase: Descriptive Analysis

A descriptive analysis gives a summary of the data. It is divided into two main
categories, namely, (i) measure of central tendency (mean and median) and (ii) measure of
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variability (standard deviation, percentile, and ranges) [15]. The descriptive analysis was
carried for all data (AQI scores and individual air pollutants).

2.2.3. Third Phase: Independent t-Test Analysis

The independent t-test, also referred to as the two-sample t-test, is an inferential
statistical analysis that determines if there is a statistically significant difference between
the means of two unrelated groups. To carry out a t-test, the dependent variable should
assume a normal distribution [16]. In this regard, the data used in the study met the
assumption of normality; this was possible due to the size of the data (for each category
n = 90, 91, or 92; holistically n = 456). According to Piovesana and Senior, a sample size
of 50 is sufficient to obtain normality, while a sample size greater than 85 is sufficient
to obtain a stable means and standard deviation regardless of the level of skewness [17].
Therefore, the size of data in this study was sufficient to accord normality. Moreover,
the independent variables must be unrelated. This criterion was met on the basis that air
pollution concentration on lockdown days and non-lockdown days cannot be ideally the
same (since the dates).

The following comparisons were employed in the analysis: category A vs. category
K; category B vs. category K; category C vs. category K and category D vs. category K.
The mean difference was estimated as follows: before the outbreak (category A–D) and
during the outbreak (category K). The t-score and p-value were also derived from the test.
Statistical analysis was carried out using IBM SPSS 24.0 (IBM, Armonk, NY, USA).

2.2.4. Fourth Phase: Estimation of Effect Size

For further assurance that the differences observed from the t-test are reliable, the effect
size (i.e., the standardized difference between two means) was estimated using Cohen’s
d [18].

Cohen’s d is given by Equation (1):

d =
M1 − M2

Spooled
, (1)

where M1 and M2 are the means for groups 1 and 2 respectively and Spooled is the pooled
standard deviation for the two groups. Cohen’s d was calculated using the Rstats effect
size calculator [19]. In addition, 1 Cohen’s d = 1S (standard deviation); 1S = 1 z score;
and 1 z-score is equivalent to a defined value on the z-score table. The Rstats normal
distribution table was used to determine the defined value of the z-scores. The final
value shows, in reality, by how many points one group’s mean is lesser or higher than
another (mean ± z) [20]. Cohen’s d can be interpreted using its rule of thumb (convention).
Cohen and Sawilowsky’s convention for effect size (d ≤ 0.01—very small; d = 0.01–0.2—
small; d = 0.2–0.5—medium; d = 0.5–0.8—large; d = 0.8–1.2—very large; d = 1.2–2—huge)
equate effect sizes to the amount of actual difference between two groups [18,21].

3. Results
3.1. Descriptive Statistics

Table 1 shows some characteristics of AQI during the outbreak/lockdown period. The av-
erage AQI scores for the 10 cities ranged from 44.8 µg m−3 (Shenzhen) to 119.7 µg m−3 (Xi’an).
Although Xi’an recorded the highest average AQI score over the lockdown period, Harbin,
however, recorded the highest daily AQI score of 327 µg m−3 and the most dispersed
measure of air pollution concentration (SD = 78.9; range = 289). Shenzhen on the other
hand maintained the least average (44.8 µg m−3) and daily (19 µg m−3) AQI scores and
the least dispersed measure of air pollution concentration (SD = 10.8; range = 56) over
the outbreak period. Table S1 (Supplementary Materials) shows descriptive statistics for
individual air pollutants. Shenzhen and Harbin recorded the least (22.5 µg m−3) and
highest (85.9 µg m−3) average PM2.5 concentrations during the lockdown, respectively.
Shenzhen and Xi’an recorded the least (37.7 µg m−3) and highest (117.5 µg m−3) average
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PM-10 concentration, respectively. Beijing and Harbin recorded the least (4.8 µg m−3)
and highest (28.6 µg m−3) average SO2 concentration, respectively. Shenzhen had the
least average CO concentration of 0.6 mg m−3, while Xi’an, Wuhan, and Tianjin had the
highest average CO concentration of 1.0 mg m−3 each. Shenzhen and Tianjin recorded the
least (21.9 µg m−3) and highest (43.9 µg m−3) average NO2 concentration, respectively.
Chongqing and Shanghai recorded the least (51.8 µg m−3) and highest (84.1 µg m−3)
average O3 concentration, respectively.

Table 1. Descriptive statistics for air quality index (AQI; µg m−3) in 10 mega-cities during the COVID-19 outbreak.

City Mean(SD) Median Min Max IQR Range P25 P75 Skewness Kurtosis

Beijing 79.1 (53.4) 62 30 257 49 227 40 89 1.80 2.67
Shanghai 64.5 (28.5) 56 30 173 28 143 45 73 1.82 3.53

Xi’an 119.7 (60.3) 98 33 278 77 245 78 155 0.91 0.13
Chongqing 66.1 (20.0) 64 29 119 24 90 53 77 0.49 −0.03
Wuhan 65.4 (28.3) 60 20 142 35 122 43 78 0.97 0.51

Guangzhou 55.6 (19.4) 54 20 122 24 102 41 65 0.63 0.53
Chengdu 78.3 (28.2) 72 29 156 42 127 58 100 0.60 −0.27
Harbin 115.5 (78.9) 83 38 327 113 289 52 165 1.12 0.23
Tianjin 98.8 (65.0) 76 32 289 71 257 51 122 1.44 1.41

Shenzhen 43.8 (10.8) 44 19 75 12 56 38 50 0.15 0.13

Table 2 shows the descriptive statistics (central tendency) of AQI scores before the outbreak;
similar results for individual air pollutants are available in the Supplementary Material (Table S2).
AQI scores and individual air pollutant concentration levels in all cities varied prior to
the outbreak. Cities such as Xi’an, Harbin, and Tianjin, which recorded high AQI scores
during the outbreak also had similar scores before the outbreak.

Table 2. Descriptive statistics for AQI (µg m−3) in 10 mega-cities before the COVID-19 outbreak.

City 1–3 Months b/o 3–6 Months b/o 6–9 Months b/o 9–12 Months b/o

Mean Med Min Max Mean Med Min Max Mean Med Min Max Mean Med Min Max

Beijing 72.5 b 67 23 233 92.1 a 94.5 28 178 99.0 a 94 36 195 82.0 a 69.5 30 267
Shanghai 70.9 a 65 20 148 67.4 a 64 23 181 76.5 a 68 36 202 75.5 a 69 34 260

Xi’an 103.8 87 25 319 83.0 b 84 32 150 93.5 b 83 33 482 137.1 a 110 54 346
Chongqing 64.2 b 57 27 149 79.2 a 72 32 203 64.9 b 54 30 153 78.4 a 74 28 175
Wuhan 81.7 a 83 25 180 92.9 a 91.5 35 171 81.7 a 79 26 141 95.9 a 89 28 214

Guangzhou 91.3 a 87.5 38 164 80.4 a 72 24 167 62.5 a 57 36 168 63.3 a 58.5 25 122
Chengdu 77.0 a 67 32 183 71.4 b 60 33 185 74.6 b 67 30 171 84.2 a 79 36 152
Harbin 73.9 b 53 23 298 45.3 b 42 18 103 68.8 b 56 20 459 106.1 b 86 35 414
Tianjin 89.9 a 77 25 225 100.8 a 98 28 191 106.6 a 95 37 282 102.3 a 80 33 298

Shenzhen 77.3 b 73 41 180 62.1 a 42 19 176 43.4 b 38 20 110 47.7 a 45 21 99
a Average AQI scores higher than during the outbreak; b Average AQI scores lower than during the outbreak; b/o: before the outbreak.

3.2. Graphical Presentation of AQI Scores and Key Air Pollutants Concentration Level

Figure 2 graphically displays some characteristic features of AQI scores and individ-
ual air pollutants concentration in the 10 cities observed. The figure also reveals Beijing,
Shanghai, and Tianjin had more outliers and extreme values than other cities, indicat-
ing there were several days of extreme pollution within these cities. All cities except
Chengdu had outliers for particulate matter pollution (PM2.5 and PM10), while Beijing and
Guangzhou had extreme values for inhalable particulate matter only. There were more
outliers for particulate pollution than gaseous pollution (O3, SO2, NO2, and CO) in the
10 cities observed. In other words, there were more days of extreme particulate pollution
than gaseous pollution.
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Figure 2. A visual summary of AQI scores and air pollutants concentration in 10 major Chinese cities during the initial phase of the COVID-19 outbreak (lockdown period), showing 
the minimum, median, maximum, lower quartile, and upper quartile value of each parameter. 
Figure 2. A visual summary of AQI scores and air pollutants concentration in 10 major Chinese cities during the initial
phase of the COVID-19 outbreak (lockdown period), showing the minimum, median, maximum, lower quartile, and upper
quartile value of each parameter.

Figure 3 displays the quality of air in the 10 cities before and during the COVID-19
outbreak based on average AQI scores and air pollutants concentration level. The patterns
for all air pollutants were similar in the 10 cities. PM2.5, PM10, NO2, and SO2 observed
high concentration levels from 9 months to 12 months before the outbreak, followed by a
decrease from 9 months to 3 months before the outbreak, a slight increase from 1 month to
3 months before the outbreak, and a final decrease during the outbreak. A closer look at the
matching months (January–March 2019 and 2020) provides a definite revelation that the
lockdown to a great extent curtailed the emission of these air pollutants; hence, there was
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a lower concentration of air pollution. Ozone on the other hand had an opposite pattern;
it noted low concentration from 9 months to 12 months before the outbreak, followed
by a major increase from 9 months to 3 months before the outbreak, then a decrease
from 1 month to 3 months before the outbreak, and a slight increase during the outbreak.
This was noted for all cities except Shenzhen and Guangzhou; O3 concentration in both
cities did not increase during the lockdown—it dropped considerably in comparison to
three months before the lockdown. Focusing only on matching months (January–March
2019 and 2020), the graph shows that ozone concentration in all cities had a minimal
difference between both time frames. Carbon monoxide had an almost linear pattern prior
to and during the outbreak.
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Figure 3. Graphical display of air pollution level in 10 major Chinese cities several months before and during the initial phase of the COVID-19 outbreak (lockdown period), highlighting 
the difference in air quality at different periods. A—1 month to 3 months before the outbreak (October 2019 to December 2019); B—3 months to 6 months before the outbreak (July 2019 
to September 2019); C—6 months to 9 months before the outbreak (April 2019 to June 2019); D—9 months to 12 months before the outbreak (January 2019 to March 2019); K (constant)—
during the outbreak (January 2020 to March 2020)

Figure 3. Graphical display of air pollution level in 10 major Chinese cities several months before and during the initial phase
of the COVID-19 outbreak (lockdown period), highlighting the difference in air quality at different periods. A—1 month to
3 months before the outbreak (October 2019 to December 2019); B—3 months to 6 months before the outbreak (July 2019 to
September 2019); C—6 months to 9 months before the outbreak (April 2019 to June 2019); D—9 months to 12 months before
the outbreak (January 2019 to March 2019); K (constant)—during the outbreak (January 2020 to March 2020).
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3.3. Description of Air Quality

Based on the average AQI analyzed, air quality in each city before and during the
outbreak was labeled according to the standard AQI range (China’s and WHO air qual-
ity guidelines), that is, excellent: 0–50 µg m−3, good: 51–100 µg m−3, light pollution:
101–150 µg m−3, moderate pollution: 150–200 µg m−3, heavy pollution: 201–300 µg m−3,
and severe pollution: >300 µg m−3 [10]. Table 3 shows the corresponding description
for the average AQI scores estimated for each city. The air status during the outbreak
ranged from excellent (Shenzhen) to light pollution (Xi’an and Harbin). In comparison to
the few months before the outbreak and the same interval of the previous year (January–
March 2019), little difference is noted. According to the description presented below,
air quality in many cities remained the same during the outbreak as they were before
the outbreak; this is only because the description of AQI relies on a range of numbers and
not a specific number. However, in-depth statistical analysis of individual air pollutants
shows there are differences between the air quality before and during the outbreak.

Table 3. Air quality in 10 mega-cities during the COVID−19 outbreak, prior to the outbreak, and at a similar time in the
previous year (based on average AQI score).

Period During the Outbreak 1–3 Months b/o 9–12 Months b/o

City AQI (µg m−3)
Score Description AQI (µg m−3)

Score Description AQI (µg m−3)
score Description

Beijing 79.1 Good 72.5 Good 82.0 Good
Shanghai 64.5 Good 70.9 Good 75.5 Good

Xi’an 119.7 Light pollution 103.8 Light pollution 137.1 Light pollution
Chongqing 66.1 Good 64.2 Good 78.4 Good

Wuhan 65.4 Good 81.7 Good 95.9 Good
Guangzhou 55.6 Good 91.3 Good 63.3 Good

Chengdu 78.3 Good 77.0 Good 84.2 Good
Harbin 115.5 Light pollution 73.9 Good 106.1 Light pollution
Tianjin 98.8 Good 89.9 Good 102.3 Light pollution

Shenzhen 43.8 Excellent 77.3 Good 47.7 Excellent

b/o—before the outbreak.

3.4. Independent t-Test Result

Table 4 shows the estimated mean difference and its 95% CI, t score, and effect size for
comparison of air pollution averages during the lockdown and before the lockdown.

A statistically significant difference in air pollution concentration was observed for
comparison between the shutdown period and prior to the shutdown; however, this was
not noted in all 10 cities. Therefore, we reject the null hypothesis. The differences between
both periods were positive (indicating AQI was lower during the outbreak) in some cities,
while others were negative (indicating AQI was higher during the outbreak). The air
quality in Beijing, Shanghai, and Shenzhen during the lockdown was significantly different
when compared to their air quality in only a few months in 2019. Harbin and Xi’an
noted a different air quality during the outbreak in comparison to most months in 2019,
while Guangzhou and Wuhan had significantly different air quality during the lockdown in
comparison to the air quality throughout 2019. Tianjin observed no statistically significant
difference between its air quality during the outbreak and in 2019.
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Table 4. Independent t-test comparing the means of AQI (µg m−3) during and before the COVID-19 outbreak.

City A vs. K B vs. K C vs. K D vs. K

Mean Diff
(95% CI) t-Value Effect Size Mean Diff

(95% CI) t-Value Effect Size Mean Diff
(95% CI) t-Value Effect Size Mean Diff

(95% CI) t-Value Effect Size

Beijing −6.6 (−20.0, 6.8) 0.975 −0.144 13.0 (−0.9, 26.9) 1.847 0.273 19.9 (5.8, 34.1) c 2.775 0.411 * 2.9 (−12.1, 17.9) 0.386 0.057
Shanghai 6.4 (−1.5, 14.3) 1.592 0.236 2.9 (−5.9, 11.7) 0.646 0.096 11.9 (3.1, 20.8) c 2.657 0.394 * 11.1 (2.9, 19.2) c 2.662 0.396 *

Xi’an −15.8 (−33.4, 1.7) −1.780 −0.236 −36.7 (−50.7, −22.7) −5.163 −0.763 * −26.2 (−43.7, −8.7) −2.961 −0.439 * 17.5 (−1.8, 36.7) 1.791 0.266
Chongqing −1.9 (−9.1, 5.3) −0.526 −0.078 13.1 (3.9, 22.2) c 2.835 0.419 * −1.1 (−8.3, 6.0) −0.313 −0.047 12.4 (4.8, 19.9) c 3.223 0.479 *

Wuhan 16.4 (7.9, 24.8) c 3.822 0.565 * 27.5 (18.3, 36.7) c 5.893 0.871 * 16.3 (8.1, 24.6) c 3.890 0.577 * 30.5 (20.4, 40.7) c 5.944 0.884 *
Guangzhou 35.7 (28.2, 43.1) c 9.414 1.392 * 24.8 (15.8, 33.9) c 5.421 0.802 * 6.9 (1.0, 13.0) c 2.266 0.336 * 7.7 (1.7, 13.7) c 2.532 0.377 *

Chengdu −1.3 (−10.8, 8.2) −0.268 −0.040 −6.9 (−16.1, 2.3) −1.486 −0.220 −3.7 (−12.2, 4.8) −0.854 −0.127 5.9 (−2.1, 13.9) 1.464 0.218
Harbin −41.6 (−61.7, −21.5) −4.089 −0.605 * −70.1 (−86.6, −53.5) −8.324 −1.231 * −46.7 (−66.2, −27.1) −4.705 −0.697 * −9.4 (−31.0, 12.1) −0.860 −0.128
Tianjin −8.9 (−25.1, 7.2) −1.090 −0.161 2.0 (−14.0, 17.9) 0.243 0.036 7.7 (−8.8, 24.3) 0.923 0.137 3.5 (−15.6, 22.4) 0.368 0.055

Shenzhen −15.8 (−33.4, 1.7) −1.780 1.751 −36.7 (−50.7, −22.7) −5.163 0.597 * −26.2 (−43.7, −8.7) −2.961 −0.024 * 17.5 (−1.7, 36.7) 1.791 0.300

* p < 0.05; c AQI scores during the outbreak were lower than before the outbreak. Category A—1 month to 3 months before the outbreak (October 2019 to December 2019); Category B—3 months to 6 months
before the outbreak (July 2019 to September 2019); Category C—6 months to 9 months before the outbreak (April 2019 to June 2019); Category D—9 months to 12 months before the outbreak (January 2019 to
March 2019); Category K (constant)—during the outbreak (January 2020 to March 2020).
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4. Discussion

The descriptive summary highlights certain features of air pollution concentration in
each city. Firstly, the most polluted city observed in this study, during the shutdown period
was Xi’an, followed by Harbin, Tianjin, Beijing, and Chengdu. (Table 1). Nevertheless,
it does not imply that Xi’an, Harbin, or Tianjin experienced more air pollution emissions
during the lockdown than other cities. The reason is that these three cities are known
for usually experiencing steeper air pollution than others. Hence, even with a lockdown,
the reduction of air pollution concentration might not be very drastic to bring about
better air quality than cities that usually have less air pollution. The rationale behind
this is that air pollutants (especially particulate matter) last several days to weeks in the
atmosphere [22]. Therefore, the typical air quality of a city played a role in determining
the air quality observed during the lockdown. The descriptive analysis also revealed
several cities recorded spikes in air pollution concentration levels. However, it made no
difference in the ranking of air quality for each city. Since the mere description of the
air pollutants concentration does not shed sufficient light on the quality of air during the
COVID−19 outbreak, a comparison of air quality during different periods prior to the
outbreak was logical to derive a broader and better understanding [22,23].

From the independent t-test analyses, a positive mean difference indicates the AQI
(µg m−3) score during the outbreak was lower than the score before the outbreak. Positive
mean differences were noted in nine cities for comparison of air quality during the lock-
down and category D, (January–March 2019); in five cities for category C (April–June 2019);
in seven cities for category B (July–September 2019) and in four cities for comparison
with category A (October–December 2019) (Table 4). However, these are only statistically
important if the estimates are statistically significant.

In the interpretation of results, it is crucial to be cautious and take into consideration
the typical concentration levels of air pollutants at certain periods of the year. For instance,
ozone is typically low during cold periods and high during warm periods (Figure 3).
Hence, an expected difference would be noted between concentration levels during the
outbreak and prior to the outbreak (April–September, since these months typically have
high ozone concentration). Therefore, we might consider an actual decrease in ozone
concentration during the outbreak (January–March 2020) when compared with the con-
centration level during the same period of the previous year (January–March 2019) simply
because both periods observe the same meteorological characteristics (i.e., high wind speed,
low relative humidity, low temperature, high atmospheric pressure, etc.); hence, any differ-
ence observed is void of time/season bias. As shown above (Figure 3), ozone concentration
from the matching months had very minimal difference. A similar rationale goes for
particulate matter, which is notably low in warm months and high in cold months. Thus,
focusing on the comparison of matching months gives a simple yet accurate understanding
of any difference noted. Nonetheless, if air pollutants concentration that should have
been typically low during the outbreak surpassed the concentration level of previous
months (especially for months that typically have a high concentration level), this indicates
air pollution during the outbreak was remarkably high. In this regard, no air pollutant
was noted.

Based on the average AQI score, Beijing’s overall air quality during the initial phase
of the outbreak (lockdown) did not differ significantly from air quality of the same months
in 2019 (January–March). However, analysis of individual air pollutants reveals that PM10,
SO2, and NO2 concentrations during the lockdown were significantly different (lower)
than concentrations for the same months in 2019. For comparisons with other months
in 2019, overall air quality in Beijing during the lockdown differed significantly from air
quality between April–June of 2019. The effect size (0.411) and the corresponding value
(0.1591) indicate the difference was small. Moreover, NO2 pollution dropped drastically
during the outbreak compared to its concentration between October–December 2019; its
effect size was large (0.811) (Table 4 and Table S3–Supplementary Materials). This was
similar to the observation of NO2 pollution during the Beijing 2008, Olympics [8]. In Shang-
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hai, the average AQI during the outbreak was significantly lower than the average AQI
recorded between January 2019 to March 2019 and April 2019 to June 2019, with effect sizes
of 0.394 and 0.396, respectively. Particulate matter pollution was significantly lower during
the lockdown than in the same months in 2019, although PM10 had a larger effect size
(0.792) than PM2.5 (0.348). CO and NO2 also noted a small and large difference, respectively,
during the outbreak in comparison to the matching months. Overall, air pollution in Xi’an
during the lockdown showed no statistical difference from pollution between January
2019 to March 2019. The same outcome was noted for PM2.5 concentration, insinuating
that the shutdown period did not affect Xi’an’s fine particulate matter pollution and its
overall air pollution. To buttress this point further, the average AQI score and PM2.5
concentration in Xi’an during the outbreak were significantly higher than the concentration
observed from April 2019 to September 2019. However, observation of other air pollutants
revealed that there was a large difference between NO2 pollution during the outbreak and
before the outbreak (precisely between January–March 2019 and October–December 2019),
indicating traffic-related pollution was reduced. Using Magnusson’s interactive visual-
ization of effect size reveals that 81.9% and 83.4% of daily NO2 concentration recorded
during the outbreak was lower than daily NO2 concentration for both periods (Table 4
and Table S3—Supplementary Materials) [24]. In Chongqing, overall air quality during the
lockdown differed significantly from air quality for matching months in 2019. Individual
air pollutants such as fine and inhalable particulate matter were also lower during the
outbreak in comparison to the same period. For other months in 2019, particulate pollution
was significantly higher during the outbreak. However, that is expected considering partic-
ulate matter concentration increases during cold seasons and reduces during warm seasons.
As with particulate pollution, gaseous pollution was also lower during the outbreak than
between January–March 2019; the significant effect sizes for SO2, CO, and NO2 were 0.559,
0.512, and 0.770, respectively.

Wuhan, which was the epicenter of the COVID-19 outbreak in China, experienced a
thorough and longer shutdown period than other cities [25,26]. Consequently, the air qual-
ity improved because individual air pollutants concentration levels decreased. The average
AQI in Wuhan during the shutdown period was lower than the average AQI observed from
January 2019 to December 2019. The effect sizes of the difference ranged from medium
(0.565) to large (0.884) (Table 4). As indicated by the effect sizes, PM2.5 (0.862) and PM10
(1.034) noted large differences during the shutdown period when compared with particu-
late pollution from January 2019 to March 2019. Additionally, indicators of traffic-related
pollution showed a decrease in concentration level during the outbreak. NO2-, in particular,
showed a very large significant decrease in concentration levels when compared to levels
noted for January 2019 to June 2019 and October 2019 to December 2019. Similar to Wuhan,
the average AQI in Guangzhou during the outbreak was significantly lower than before the
outbreak (for all of 2019). CO and NO2 concentrations were significantly different when
compared to concentrations for January 2019 to March 2019. Particulate matter pollution
observed a very large decrease during the outbreak in comparison to its pollution between
October–December 2019 only. Opposite to Guangzhou, the average AQI and concentration
of most air pollutants in Harbin were significantly higher during the outbreak than before
the outbreak (for all of 2019). Only ozone concentration was significantly lower during
the lockdown when compared to the concentrations between April 2019 to June 2019.
Particulate matter pollution during the lockdown had no statistically significant difference
with its pollution between January 2019 to March 2019. Its concentration level between
July 2019 to September 2019 was also lower than during the outbreak, with an effect size
of −1.466 and −1.253 for PM2.5 and PM10, respectively. Given that Harbin experiences
extreme winter, PM2.5 levels are often high in winter since the combustion of coal used
for heating purposes is a major source for PM2.5 emission. This has been noted in some
previous studies [27]. In light of this fact, we can deduce the shutdown had no significant
effect (decrease) on particulate pollution since no statistical difference was observed when
compared to January–March 2019. Tianjin’s average AQI during the outbreak was not
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significantly different from before the outbreak. However, PM10, SO2, and NO2 noted
lesser concentration levels during the outbreak. The decrease was significantly different in
comparison to concentration levels between January 2019 to March 2019. For comparison
with concentration levels between April 2019 to September 2019, only ozone showed a
significant difference. In Shenzhen, air quality during the outbreak was only significantly
different for comparison to categories B and C. The indicator for the air quality during
the outbreak was more or less the same as all January to March periods. Nonetheless,
during the outbreak, individual air pollutants—PM10, CO, and NO2—noted small (0.293),
medium (0.479), and large differences (0.833), respectively, when compared with their
counterparts for January–March 2019. Other air pollutants were higher during the outbreak
than before it.

Overall, the following changes in air quality were observed. The concentration levels
for indicators of traffic-related air pollution (NO2 and CO) were remarkably reduced in
most cities during the outbreak. The major reason for this amount of decrease is that the
restriction on the outdoor movement led to fewer cars being on the road, directly resulting
in lesser emission of these pollutants. In a preliminary analysis, National Aeronautics
and Space Administration (NASA) researchers compared NO2 concentration in early 2020
with the average concentration detected at the time of year from 2005–2019. They noted
NO2 concentrations in 2020 in eastern and central China were significantly lower (from
10% to 30% lower) than what is normally observed for that period [28]. As of 2018,
China’s car parc stood at 240 million (car parc refers to the number of vehicles in use
in a region) [29]. The lockdown ultimately caused a large percentage of these cars to be
off the road. The decrease in traffic-related air pollution has several health advantages,
many of which are related to respiratory wellness (given that pollutants such as NO2 are
absorbed entirely along the entire respiratory tract and are deposited peripherally in the
lungs). NO2 is known to induce inflammation of the airway after at least one exposure;
precisely, bronchial responsiveness occurs at concentrations of ≥1800 µg m−3 in healthy
persons and ∼200–500 µg m−3 in asthmatic patients or those with chronic obstructive
pulmonary disease (COPD). The pollutant also amplifies the asthmatic response to allergen
exposure. In highly trafficked areas, 15 minutes at 500 µg m−3 exposure can intensify
allergic inflammatory reactions in the airways without causing symptoms or pulmonary
dysfunction [30]. Therefore, a drastic reduction in traffic pollution is of great health benefits
to both healthy and compromised individuals.

Since industrial activities (such as oil shale mining, power generation, steel min-
ing, etc.) and the use of heavy machinery had come to a standstill in compliance with
the shutdown. A major indicator of industrial pollution (SO2) also noticed a moderate
reduction in concentration level during the outbreak. Satellite imagery shows cities such
as Shanghai and Wuhan noted a 31.3% and 3.9% reduction in SO2, respectively [31,32].
Another study covering 366 urban areas in China revealed SO2 concentration had dropped
by 12% between January 2020 to April 2020, in comparison to concentration at the same
time in 2019 [33]. Although moderate, the decrease in SO2 is advantageous to health
and the economy. According to Zen et al., industrial air pollution causes an increase in
medical expenses. Therefore, any decrease noted from its major constituent will directly
or indirectly lower medical budgets [34]. Regarding health, residents of industrial areas
more frequently reported wheezing, chest tightness, shortness of breath, hypertension,
heart diseases, etc. than non-industrial residents [35].

In contrast, particulate pollution, especially PM2.5, did not note much decrease in
concentration in most cities. The study by Silver et al. noted that PM2.5 and PM10 concen-
trations in China were lower by 10.5% and 21.4%, respectively, during the lockdown [36].
This is understandable, given that the combustion of coals for heating purposes and the
use of indoor burners did not stop during the shutdown. Additionally, the secondary
particulate matter, which is generated from reactions of sulfur dioxide and nitrogen diox-
ide, was still emitted, even though their sources were reduced. Hence, a fairly high
concentration of particulates in the atmosphere was maintained during the entire period



Int. J. Environ. Res. Public Health 2021, 18, 3172 13 of 15

of the shutdown. In as much as every decrease in particulate matter pollution is seen
as positive, a difference in health can only be achieved if concentration levels are within
the recommended health limits. Some sources have estimated 3–5 µg m−3 as the lowest
concentration level at which adverse effects due to PM2.5 start to manifest [23]. At or above
these levels, particulates can penetrate the bloodstream, lungs, tissues, and other organs,
causing a wide range of adverse health effects. According to Cohen et al., particulate matter
causes about 3% of mortality from cardiopulmonary disease, about 5% of mortality from
cancer of the trachea, bronchus, and lung, and about 1% of mortality from acute respiratory
infections in children under five years old worldwide. [37]. Unlike other air pollutants,
ozone noted a consistent increase (though small) in most cities during the lockdown. Given
that it is a secondary pollutant (from solar radiation and NOx), it would be expected that
a decrease in NO2 would also facilitate a decrease in ozone. Unfortunately, this was not
the case. A study on China’s air quality attributed O3 increase to nitrogen oxide titra-
tion effect (in the reduction of NOx (NO2 + NO), O3 is removed in the presence of high
concentrations of NO [36]. This outcome does not favor the public, especially the elderly,
given that the effect of ozone has been established to be more prominent in this category of
people. Its adverse effect on health ranges from mild respiratory illnesses to circulatory
diseases to chronic disorders [3].

The study has strengths and limitations. This is a novel study describing the impact
a major event or occurrence can have on the air. In plain terms, the study highlights the
effect of daily activities (such as the use of vehicles) on air quality. The study creates a
window of opportunities for different related studies (for example, understanding the
health implications of the change in air quality). Aside from its strength, the study is
limited in few aspects. Firstly, all cities in the study did not commence the shutdown on
the same date and with the same intensity. Secondly, the analysis only describes the quality
of air in these cities; the data were not correlated with health data to assess exposure risk.

5. Conclusions

In conclusion, there was a difference in air quality (an improvement) for some cities
during the outbreak, indicating that the shutdown positively affected the air quality status
in these cities. Exploration of individual air pollutants further revealed that the kind
of event or circumstance will determine which air pollutants concentration increases
or decreases. Additionally, people’s daily activities contribute immensely to the quality of
air in our environment. Hence, there is a need for more observations of air quality during
certain periods (for example, festive seasons) to determine strategies that will be useful in
curtailing the emission of air pollutants.
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level during and prior to the COVID-19 outbreak (independent t test result).
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