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Model states for a class of chiral topological order
interfaces
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Interfaces between topologically distinct phases of matter reveal a remarkably rich phe-

nomenology. To go beyond effective field theories, we study the prototypical example of such

an interface between two Abelian states, namely the Laughlin and Halperin states. Using

matrix product states, we propose a family of model wavefunctions for the whole system

including both bulks and the interface. We show through extensive numerical studies that it

unveils both the universal properties of the system, such as the central charge of the gapless

interface mode and its microscopic features. It also captures the low energy physics of

experimentally relevant Hamiltonians. Our approach can be generalized to other phases

described by tensor networks.
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The Integer Quantum Hall (IQH) effect, characterized by
the quantization of the Hall conductance in units of e2/ħ,
can occur even in the absence of a uniform magnetic field

and requires neither flat bands nor Landau levels1. From a band-
theory point of view, the difference between a trivial band insu-
lator and the IQH phase stems from the subtle sensitivity to
boundary conditions. This is encoded in the first Chern integer
C2, which depends on the topology of the valence band bundle.
This quantized invariant forbids an IQH phase to be adiabatically
transformed into any trivial band insulator without undergoing a
quantum phase transition3. Such a transition occurs for instance
at the edge of an IQH droplet, which is nothing but an interface
with the vacuum. The closure of the gap is manifest in the pre-
sence of conducting channels at the edge, and the corresponding
Hall conductance Ce2=�h yields a measure of the Chern number C.
Strongly correlated phases with intrinsic topological order such as
the Fractional Quantum Hall (FQH) effect share the same fea-
tures: bulk global invariants control the nature of the possible
gapless interface excitations at the transition to a trivial phase.
Conversely, the Bulk-Edge Correspondence conjectures that the
gapless theory at such a transition governs the full topological
content of the FQH state (see for instance refs. 4–7 for in-depth
studies and discussions about the validity of this correspondence).
This conjecture was considerably substantiated by the pioneering
work of Moore and Read8 who expressed a large class of FQH
model Wave Functions (WFs) as Conformal Field Theory (CFT)
correlators. This CFT is chosen to match the one used to describe
the gapless edge modes of the target state, making the corre-
spondence between the bulk and edge properties transparent. It
provides many insights into the study of these strongly correlated
phases9–13.

At the interface between two phases with distinct intrinsic
topological order, the critical theory has no reason to be described
by the same formalism. Indeed, only the mismatch in topological
content of the two bulks is probed at such a gapless interface. For
instance, the Hall conductance at the interface between two IQH
plateaus is ΔCe2=�h, controlled by the difference in Chern numbers
ΔC. The notion of difference should be refined for strongly
interacting systems such as FQH states, but even for the IQH, it
cannot completely characterize the two bulks. As a consequence,
even the interfaces between Abelian states have not yet been
classified14–16. However, for interfaces with the same number of
left and right movers, the topologically distinct ways of gapping
the boundary were mathematically distinguished as Lagrangian
subgroups17,18.

Theoretical approaches to understand these interfaces mostly
rely on the cut and glue approach7, i.e., restricting the analysis to
coupled one-dimensional modes. In this effective picture, both
phases are solely described by their respective edge theories, and
the interface emerges from the coupling between the two edge
theories19,20. On the CFT side, this approach refines the notion of
difference in topological content with the help of coset con-
structions21–23. In this article, we aim to put the above effective
edge approaches on firmer ground by analyzing the full two-
dimensional problem for a certain class of topological
interfaces. To exemplify our method, we introduce model WFs
describing the interface between two Abelian states, the Laugh-
lin24 and Halperin25 states. Having a description of the full two-
dimensional system, we can unveil both the universal
properties and the microscopic features. We provide extensive
numerical studies to probe the full critical theory at the
interface, and to demonstrate that these WFs correctly capture
the low energy physics of full two-dimensional system (see also
ref. 26). We discuss possible experimental realizations and the
applicability of our method to other chiral topological order
interfaces.

The Halperin (m, m, m− 1) state with m integer (even for
bosons and odd for fermions) appears at a filling factor ν ¼ 2

2m�1.
It describes a FQH fluid with an internal two-level degree of
freedom25,27 such as spin, valley degeneracy in graphene or layer
index in bilayer systems. In the following, we use the terminology
of the spin degree of freedom irrespectively of the actual physical
origin. Such a state is the natural spin singlet28–30 generalization
of the celebrated, spin polarized, Laughlin state24,31. The latter
describes an FQH state at filling factor ν= 1/m. From now on, we
will focus on bosons and m= 2, as this already realizes all the
non-trivial physics we put forward in this article. Both the Hal-
perin (221) and the Laughlin 1/2 states are the densest zero
energy states of the following Hamiltonian projected onto the
Lowest Landau Level (LLL)32,33:

Hint ¼
Z

d2r
X

σ;σ′¼";#
: ρσðrÞρσ′ðrÞ : þ μ"ρ"ðrÞ; ð1Þ

respectively, for μ↑=∞ and μ↑= 0. Here μ↑ is a chemical
potential for the particles with a spin up, ρσ denotes the density of
particles with spin component σ, and :.: stands for normal
ordering. Hence, creating an interface between these two topo-
logically ordered phases can be achieved by making μ↑ spatially
dependent without tuning the interaction21.

The Laughlin and Halperin model WFs can also be defined by
CFT correlators8,34. Both states are Abelian, and the primaries
appearing in the correlators are vertex operators13,35–38. The
mode expansion of the primaries in the correlators allow for an
exact MPS description of the WFs over the Landau orbitals39–41.
On the cylinder geometry, Landau orbitals are shifted copies of a
Gaussian envelope whose center is determined by the momentum
along the compact dimension (see Fig. 1). Because of this trans-
lation symmetry on the cylinder geometry, the exact MPS
representation of the model WFs can be made site independent
which enables the use of efficient infinite-MPS (iMPS)
algorithms42,43. The auxiliary space, i.e., the vector space asso-
ciated to the matrix indices, is the truncated CFT Hilbert space
AuxH used for the Halperin state, a compactified two-component
boson44. Similarly, the CFT Hilbert space for the Laughlin state
AuxL is made of a single compactified boson. By choosing the
same m for the two model WFs, it is possible to embed the
auxiliary space of the Laughlin state in that of the Halperin state.
More precisely, up to compactification conditions26,44 we have
AuxH=AuxL⊗Aux⊥ where Aux⊥ is the CFT Hilbert space for a
free boson φ⊥. Representing the vertex operators in the same
product basis for AuxH leads to the Halperin and Bðn#;n"Þ

H and

Laughlin ðBðn#Þ
L � IÞ iMPS matrices44 (here the physical indices n↑

and n↓ denote the orbital occupation for particles with a spin ↑
and ↓).

This embedding is the key to our approach to the interface
between two distinct topological orders. Indeed, the canonical
choice of basis for the CFT Hilbert space of a free boson35,41,44

allows to identify all auxiliary indices at the transition such that
the gluing of the two phases becomes a mere matrix multi-
plication in the MPS language. Similarly, we can keep track of the
quantum numbers at the interface and hence use the block
structure of the iMPS matrices with respect to the U(1)-charges
and momentum of the bosons. This provides an additional
refinement and enhances the efficiency of the iMPS
machinery39,42,43. Finally, the truncation of the auxiliary space is
constrained by the entanglement area law45, the bond dimension
should grow exponentially with the cylinder perimeter L to
accurately describes the model WFs.
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Results
Model wavefunction. Our ansatz may be understood as an
abrupt change of the chemical potential μ↑ from zero to infinity in
orbital space, which maps to a smooth Gaussian ramp in real
space over a distance 2π‘2B=L, ‘B being the magnetic length.
Polarizing the system in its spin down component amounts to
using the Laughlin iMPS matrices for any Landau orbitals in the
polarized region x ≥ 0, while Halperin iMPS are used when x < 0.
Thus our MPS, schematically depicted in Fig. 1, reads

hfn#kgk2Z; fn"kgk<0jΨH�Li ¼ hηLj � hη?j|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
hηj

� � �Bðn#�2;n
"
�2Þ

H B
ðn#�1;n

"
�1Þ

H

ðBðn#0Þ
L � IÞðBðn#1Þ

L � IÞ � � � jμLi � jμ?i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
jμi

;
ð2Þ

where jfn#kgk2Z; fn"kgk<0i is the many-body orbital occupation
basis. Here 〈η| and |μ〉 are the two states in the auxiliary space
fixing the left and right boundary conditions. Due to its block
structure, our MPS naturally separates the different charge and
momentum sectors all along the cylinder44. In particular, it dis-
tinguishes the different topological sectors through the U(1)-
charges of the MPS boundary states of Eq. (2). While for the
Halperin state, the U(1)-charge of both 〈ηL| and 〈η⊥| should be
fixed to determine the topological sector, only the one of |μL〉 is
required to fix the topological sector of the Laughlin phase. The
remaining bosonic degree of freedom, |μ⊥〉 at the edge of the
Laughlin bulk constitutes a knob to dial the low-lying excitations
of the one-dimensional edge mode at the interface (remember
that due to the specific product-basis choice, the Laughlin iMPS
matrices act as the identity on |μ⊥〉 and propagate the state all the
way to the interface—see Fig. 1).

A direct probe of the interface is the spin resolved densities ρ↑
and ρ↓ of the model state presented in Fig. 2a for the transition
between the Halperin (221) and the Laughlin 1/2 states. They
smoothly interpolate between the polarized Laughlin bulk at
filling factor νL= 1/2 and the Halperin unpolarized bulk at filling
factor νH ¼ 1

3 þ 1
3. We recover the typical bulk densities and the

spin SU(2) symmetry of the Halperin (221) state after a few
magnetic lengths, which is much larger than the distance between

orbitals. This is not an artefact of our ansatz since Exact
Diagonalization (ED) simulations of Eq. (1) for a half polarized
system with delta interactions show the same behavior. The
density inhomogeneity at the interface is a probe of the interface
reconstruction due to interactions (see Eq. (1)).

Numerical results. A crucial feature that our ansatz should
reproduce is the topological order of the Halperin and Laughlin
bulks away from the interface, i.e., when jxj � ‘B. Local operators
such as the density cannot probe the topological content of the
bulks. We thus rely on the entanglement entropy (for a review,
see ref. 46) to analyze the topological features of our model WF.
Consider a bipartition A� B of the system defined by a cut
perpendicular to the cylinder axis at a position x. The Real-Space
Entanglement Spectrum (RSES)47–49 and the corresponding Von
Neumann EE SAðL; xÞ are computed for various cylinder peri-
meters L using techniques developed in refs. 39,41,44. Two-
dimensional topological ordered phases satisfy the area law45

SAðL; xÞ ¼ αðxÞL� γðxÞ; ð3Þ
where α(x) is a non universal constant and γ(x) is the Topological
Entanglement Entropy (TEE). The latter is known to characterize
the topological order50,51. Since the cylinder perimeter is a con-
tinuous parameter in our simulations, we extract these constants
by numerically computing the derivative ∂LSAðL; xÞ as depicted in
Fig. 2b for γ(x). Deep in the bulks, our results match the theo-
retical prediction for the Laughlin γðx ! þ1Þ ¼ log

ffiffiffiffi
m

pð Þ and
Halperin γðx ! �1Þ ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1

p� �
states. This proves the

validity of our ansatz away from the interface.
Near the interface, the EE still follows Eq. (3) as was recently

predicted for such a rotationally invariant bipartition19. The
correction γ(x) smoothly interpolates between its respective
Laughlin and Halperin bulk values (see Fig. 2b). Hence, it
contains no universal signature of the critical mode at the
interface between the two topologically ordered phases. The same
conclusion holds for the area law coefficient α(x) (see
Supplementary Fig. 3).

We now focus on the critical mode that should lie at the
interface. Effective one-dimensional theories similar to the ones
of refs. 21,23 predict that the gapless interface is described by the
free bosonic CFT φ⊥, of central charge c= 1 and compactification
radius R? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mð2m� 1Þp
, which is neither an edge mode of the

Halperin state nor of the Laughlin state. It may be understood as
follows: the edge of the Halperin FQH droplet is a spinful
Luttinger liquid in which spin and charge excitations separate
into two independent bosonic excitations denoted as φc and φs.
Because the interface presented is fully transmissive to spin down
bosons, backscattering processes52 gap out the combination of
spin and charge bosons relative to spin down particles. What
remains is the non-trivial bosonic field

φ? ¼
ffiffiffiffiffiffiffi
1
2m

r
φc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1
2m

r
φs : ð4Þ

To test this one-dimensional effective theory, we compute the
RSES for a bipartition for which the part A consists of a
rectangular patch of length ‘ along the compact dimension and
width w along the x-axis, i.e., we break the rotational symmetry
along the cylinder perimeter. To fully harness the power of the
iMPS approach, it is convenient to add a half infinite cylinder to
the rectangular patch (see Fig. 3a). The technical challenges
inherent to such a computation breaking spatial symmetries are
presented in ref. 26. We isolate the contribution of the interface
edge mode from the area laws and corner contributions with a
Levin–Wen addition subtraction scheme51 depicted in Fig. 3a.
Note that it counts the contribution of the gapless interface to the

Halperin matrices Laughlin matrices

BH

L
L

0

x

�L �L

�⊥ �⊥
BH BH BH

BL BL BL BLΨH–L

2π  2B

Fig. 1 Model Wavefunction for the Interface: Schematic representation of
the MPS ansatz |ΨH−L〉 for the Halperin 221–Laughlin 1/2 interface on a
cylinder of perimeter L (i.e., we assume periodic boundary condition along
the y-axis). The momentum along the compact direction labels the Landau
orbitals and determines the center of their Gaussian envelope on the
cylinder (schematically depicted on top of the cylinder). The Halperin iMPS
matrices BH (red) are glued to the Laughlin iMPS matrices BL � I (blue) in
the Landau orbital space. Due to the embedding of one auxiliary space into
the other, the quantum numbers of |μ⊥〉 (see Eq. (2)) are left unchanged by
the Laughlin matrices all the way to the interface. It constitutes a direct
access controlling the states of the interface chiral gapless mode,
graphically sketched here with a double arrow
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EE twice and that a spurious contribution due to short range
entanglement along the cut parallel to the x-axis may appear. We
vary the length ‘ along the compact dimension of the cylinder
while keeping w constant. In Fig. 3b, we observe that the EE
SAð‘;wÞ resulting from the Levin–Wen scheme shown in Fig. 3a
follows the 1D prediction for a chiral c= 1 CFT with periodic
boundary conditions53

SAð‘;wÞ � SAðL=2;wÞ ¼ 2
c
6
log sin

π‘

L

� �� 	
: ð5Þ

To be more quantitative, we fit the numerical derivative
∂‘SAð‘;wÞ with the theoretical prediction using the central
charge c as the only fitting parameter (the derivative removes the
area law contribution arising from the cut along x). We minimize
finite size effects by keeping only the points for which ‘ and L� ‘
are both greater than four times the Halperin bulk correlation
length44. Fitting the data obtained for a perimeter L ¼ 12‘B (the
largest L that reliably converges with the the largest reachable
auxiliary space), we find c≃ 0.987(1) (see Fig. 3). We verified that
the rectangular patch was covering entirely the gapless mode by
checking that the results hold for a large range of w (see
Supplementary Fig. 4). Moreover, performing the same calcula-
tion far away in the gapped Laughlin phase leads to a fitted value
of c ≤ 0.13 (see Methods).

In order to fully characterize the gapless mode circulating at
the interface, we now extract the charges of its elementary
excitations which are related to the compactification radius
R? ¼ ffiffiffi

6
p

. As previously mentioned, excited states of the critical
theory are numerically controlled by the U(1)-charge N⊥ which is
part of the MPS boundary condition on the Laughlin side. For
each of these excited states, we compute the spin resolved

densities and observe that the excess of charge and spin are
localized around the interface (see inset of Fig. 4). They stem from
the gapless interface mode observed in Fig. 3b and we plot the
charge and spin excess as a function of N⊥ in Fig. 4. The linear
relation indicates that the interface critical theory hosts excita-
tions carrying a fractional charge e/6. Physically21, a Laughlin 1/2
quasihole carrying an electric charge e/2 passing through the
transition region can excite an elementary Halperin 221 quasihole
of charge e/3 but e/6 charge has to be absorbed by the gapless
mode at the interface.

Discussion
While our ansatz has the desired features to describe the low
energy physics of Eq. (1), we can provide a more quantitative
comparison. As opposed to a Halperin state with a macroscopic
number of quasiholes in the polarized region (as discussed in
ref. 21) which completely screens the Hamiltonian Eq. (1), the
critical edge mode at the interface now acquires a finite energy.
But this low energy mode clearly detaches from the continuum,
allowing us to compare it to our ansatz in finite size studies using
exact diagonalization. The largest accessible system size involves
13 bosons, 9 with spin down, and 4 with spin up, interacting with
delta potentials over 21 orbitals, 9 of which are completely
polarized. We find extremely good agreement between the ED
ground state and our MPS ansatz in finite size with vacuum
boundary conditions at the edge, with an overlap of 0.9989. This
provides a clear evidence of its physical relevance. To capture the
low energy features above the ground state, we can change the
interface gapless mode momentum by choosing the correct level
descendant P⊥ of the φ⊥ boson on the Laughlin side. We are able
to reproduce the first few low-lying excitations of the system above
the finite size ground state with great accuracy26. Using matrix

0.5
a

b

0.4
1/3

TEE Halperin: –log 3
TEE Laughlin: –log 2

Halperin bulk Laughlin bulk
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0.22�
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EE correction L = 11 B

S
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) 
– 

L
L 

S
   

(L
,x

)

Fig. 2 An interface between two toplogical orders: a Spin resolved densities of the MPS ansatz state along the cylinder axis. They smoothly interpolate
between the Laughlin (2πρ↓= 1/2 and ρ↑= 0) and the Halperin (2πρ↓= 2πρ↑= 1/3) theoretical values. The persistent density inhomogeneity is an edge
reconstruction due to interactions (see Eq. (1)). b Constant correction of the EE to the area law for a rotationally symmetric bipartition at position x. The
correction is found to be constant (see Eq. (3)). The extraction of the TEE deep in the Laughlin and Halperin bulks shows that the MPS ansatz correctly
captures the topological properties away from the interface
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product operators and our ansatz, we can actually focus on and
evaluate the dispersion relation of the gapless interface mode26.

We also considered the fermionic interface between the
Laughlin 1/3 and Halperin (332) states which is more relevant for
condensed matter experiments26. It exhibits the same features as
the bosonic case previously discussed: the gapless mode at the
interface is described by a bosonic c= 1 CFT φ⊥ whose ele-
mentary excitations agree with the value of R? ¼ ffiffiffiffiffi

15
p

. In the
latter case, experimental realization of this interface can be
envisioned in graphene. There, the valley degeneracy leads to a
spin singlet state at ν= 2/554,55 while the system at ν= 1/3 is
spontaneously valley polarized55–57. Thus, changing the density
through a top gate provides a direct implementation of our setup.

Our model WF not only captures the bulk topological content
of the FQH states glued together, but it also faithfully describes
the gapless interface theory, as shown by the extensive
numerical analysis presented in this article. This gapless c= 1
theory hosts fractional elementary excitations, which are neither
Laughlin nor Halperin quasiholes, a probe of the interface
reconstruction due to interactions. Although the universal
properties can be inferred from one-dimensional effective
theories14,17,52, our ansatz validates such an approach while
granting access to a full microscopic characterization. It also
accurately matches the low energy physics of experimentally
relevant microscopic Hamiltonians.

Our approach can be extended to topologically ordered phases
described by MPS or any tensor network method, as long as there
is an embedding of one auxiliary space into another. It paves the
way to a deeper understanding of interfaces between such phases.

Methods
Levin–Wen subtraction scheme. We come back to the RSES for a bipartition
consisting of a rectangular patch of width w= x2− x1 > 0 along the cylinder axis
and a length ‘ 2 ½0; L� around the cylinder perimeter, y2 ¼ �y1 ¼ ‘=2. A half
infinite cylinder is added to the patch (see Fig. 3a) in order to be able to switch
from a site-dependent and weighted MPS to the iMPS matrices far from the
transition. We first would like to qualitatively enumerate the possible contributions
to the EE for such a cut. We see three possible contributions for the left topmost
cut of Fig. 3a:

● Area law terms45

αðx1Þ‘þ αðx2ÞðL� ‘Þ þ 2
Z x2

x1

αðuÞdu; ð6Þ

where the linear coefficient at position x is denoted as α(x) (see Eq. (3)).
● Possible chiral critical mode contributions53

c
6
log sin

π‘

L

� �� 	
; ð7Þ

where c is the central charge.
● Other constant corrections to the area law or corner contributions.

The addition subtraction scheme described in the main text, which is nothing
but a Levin–Wen type cut51, removes the area law terms at x1 and x2 together with
the corner contributions. Hence, up to a constant f(w) which depends on w, we
expect the resulting EE SAð‘;wÞ to have the following form:

SAð‘;wÞ ¼ 2
c
6
log sin

π‘

L

� �� 	
þ f ðwÞ: ð8Þ

By considering SAð‘;wÞ � SAðL=2;wÞ, we get rid of f(w) and we obtain Eq. (5) in
the main text. We find a very good agreement with the numerical results, presented
in Fig. 3. The numerical extraction of SAð‘;wÞ is detailed in ref. 26, and additional
results on the convergence of the EE can be found in the Supplementary Note 2.
Another way to get rid of the constant corrections or of any pure function of w is to
focus on the derivative ∂‘SAð‘;wÞ. It allows a one-parameter fit of the numerical
data on the theoretical prediction Eq. (5). We exemplify the fitting procedure
described above in Fig. 5 where we clearly see that the critical contribution to
∂‘SAð‘;wÞ is only present when the patch covers the interface. Deep in either of the
two bulks, we only expect no critical contributions to the EE and the extraction of
the central charge indeed gives cFit= 0.072 (resp. cFit= 0.127) deep in the Halperin
(resp. Laughlin) phase. This consistency check indicates that the features observed

2
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Fig. 4 Spin and charge fractionalization: Charge and spin excess are
localized at the interface when excited states are addressed via the MPS
boundary U(1) charge N⊥. Inset shows how to extract the charge excess
(gray shaded area) from the charge densities ρc at different N⊥. Each excess
follows a linear relation with extremely good accuracy. The charge (resp.
spin) excess has a slope 0.166662(5)≃ 1/6 (resp. 0.500005(5)≃ 1/2).
This indicates that the elementary excitations of the c= 1 critical theory (cf.
Fig. 3) at the interface carry a fractional charge e/6 and a fractional spin 1/2
in unit of the bosonic spin
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Fig. 3 Chiral interface edge mode: a Levin–Wen subtraction scheme to get
rid of the spurious area law coming from the patch boundaries along the
cylinder perimeter together with corner contributions to the EE. The
position and width w of the rectangular extension are selected to fully
include the gapless mode at the interface. The critical EE coming from the
gapless mode at the interface is counted twice. b SAð‘;wÞ for different
cylinder perimeters. They all fall on top of the CFT prediction Eq. (5) with
c= 1 (black line), pointing toward a chiral Luttinger liquid at the interface.
The inset shows the derivative ∂‘SAð‘;wÞ and its agreement with the
theoretical prediction
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at the interface are not a mere artifact of our numerical analysis but the actual
signature of a critical mode.

Data availability
Raw data and additional results supporting the findings of this study are included
in Supplementary Notes and are available from the corresponding author on request. The
exact diagonalization data for finite size comparisons have been generated using the
software “DiagHam” (under the GPL license).
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