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Describing polyhedral tilings and 
higher dimensional polytopes by 
sequence of their two-dimensional 
components
Kengo Nishio & Takehide Miyazaki

Polyhedral tilings are often used to represent structures such as atoms in materials, grains in crystals, 
foams, galaxies in the universe, etc. In the previous paper, we have developed a theory to convert a 
way of how polyhedra are arranged to form a polyhedral tiling into a codeword (series of numbers) from 
which the original structure can be recovered. The previous theory is based on the idea of forming a 
polyhedral tiling by gluing together polyhedra face to face. In this paper, we show that the codeword 
contains redundant digits not needed for recovering the original structure, and develop a theory to 
reduce the redundancy. For this purpose, instead of polyhedra, we regard two-dimensional regions 
shared by faces of adjacent polyhedra as building blocks of a polyhedral tiling. Using the present 
method, the same information is represented by a shorter codeword whose length is reduced by up to 
the half of the original one. Shorter codewords are easier to handle for both humans and computers, 
and thus more useful to describe polyhedral tilings. By generalizing the idea of assembling two-
dimensional components to higher dimensional polytopes, we develop a unified theory to represent 
polyhedral tilings and polytopes of different dimensions in the same light.

Partitioning a space with points into polyhedra in such a way that each polyhedron encloses exactly one point 
and then characterizing the polyhedral tiling is a promising strategy to study a wide range of structures1–12. For 
example, in studying the atomic structure of a material, the space can be divided into the so-called Voronoi poly-
hedra1–9, where each polyhedron encloses its associated atom. By using this method, for example, a way of how an 
atom X is surrounded by its first and second nearest-neighbour atoms is represented by the local tiling structure 
composed of the Voronoi polyhedra associated with the atom X and its first nearest-neighbour atoms.

Since such a local tiling structure can be regarded as a part of a four-dimensional polytope (4-polytope) called 
a polychoron, a method to describe how a polychoron is constructed from its building-block polyhedra can 
be used to study the structure of materials. For this reason, we have recently developed a theory of polytopes13 
that is based on the hierarchy of structures of polytopes14–18: a polyhedron (3-polytope) is a tiling by polygons 
(2-polytopes), a polychoron (4-polytope) is a tiling by polyhedra (3-polytopes), and so on. Specifically, we have 
first created the p3-code for representing polyhedra. The p3-code consists of (1) an encoding algorithm for con-
verting a way of how polygons are arranged to form a polyhedron into a p3-codeword (p3 for short) and (2) a 
decoding algorithm for recovering the original polyhedron from its p3. By generalizing the p3-code, we have 
created the p4-code for representing polychora. By using the p4-code, a way of how polyhedra are arranged to 
form a polychoron can be converted into a p4-codeword (p4 for short), from which the original polychoron can 
be recovered. A polyhedral tiling can be characterized by distribution of p4s of local tiling structures of different 
central polyhedra. However, p4 is redundant as described below.

The p4-codeword contains p3(1), p3(2), p3(3), 


 , and p3(C), where p3(i) is p3 of the polyhedron i and C is the 
number of polyhedra of the polychoron. Each p3(i) contains p2(i1), p2(i2), p2(i3), 



, and p2(iF(i)), where each p2(ij) 
is the number of edges of the face j of the polyhedron i and F(i) is the number of faces of the polyhedron i. Here, 
we point out that p2(ij)s of all the faces of all the polyhedra are recorded in p4. However, since polyhedra are glued 
together face to face, the pair of faces glued each other have the same number of edges. p4 is thus redundant and 
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lengthy. For example, if the face y of the polyhedron x is glued to the face w of the polyhedron v, then 
p2(vw) =​ p2(xy), so that p2(vw) in p4 is redundant.

Redundant codewords mean the lack of knowledge of structures of polychora. In addition, redundant code-
words are practically unfavourable for both humans and computers. For humans, recognizing and writing down 
lengthy codewords are troublesome. For computers, larger hard drives are necessary to store codewords and more 
computation time is necessary to determine the equivalence of codewords.

In this paper, we develop a theory to reduce the redundancy in p4. For this purpose, we exploit the fact that the 
polyhedra are glued together face to face. Specifically, we regard two-dimensional regions shared by faces of adja-
cent polyhedra as building blocks of a polychoron. To distinguish between parts of a polychoron and parts of a 
polyhedra, we refer the two-dimensional building blocks of a polychoron to ridges. As the distinction between 
edges of a polyhedron and sides of a polygon was crucial for L. Euler to find his famous polyhedral formula, 
V −​ E +​ F =​ 214, the distinction between ridges of a polychoron and faces of a polyhedron is crucial for our theory. 
To represent a polychoron using ridges, we formulate a method to convert p4 into p rs

4
( ), where the superscript “rs” 

indicates the ridge-sequence. Note that p4 instructs how to construct a polychoron from its building-block poly-
hedra, while p rs

4
( ) instructs how to construct a polychoron from its building-block ridges. The length of p rs

4
( ) is as 

short as half of p4. By generalizing the method to higher-dimensional polytopes, we develop a unified theory of 
how a polytope is constructed from its two-dimensional components.

Results
Bare essentials of the p4-code.  We will formulate the p rs

4
( )-code consisting of (1) an encoding algorithm 

for converting p4 into p rs
4
( ) and (2) an decoding algorithm for recovering the original polychoron or p4 from p rs

4
( ). 

We start with the brief explanation of bare essentials of the p4-code needed to formulate the p rs
4
( )-code. Specifically, 

we explain how to recover a polychoron from p4. For reader’s convenience, the encoding algorithm is described in 
Supplementary Note. The full details of the p4-code has been given in the previous paper13. Since polychora asso-
ciated with disordered structures are simple, we deal with simple polychora. By a simple polychoron, we mean a 
polychoron whose 0-faces are all incident with four peaks. Here, 0-faces and peaks are zero- and one-dimensional 
components of a polychoron, respectively. Since a simple polychoron is composed of simple polyhedra, we first 
explain the p3-code for simple polyhedra. By a simple polyhedron, we mean a polyhedron whose vertices are all 
incident with three edges.

A polyhedron can be regarded as a tiling by polygons of the surface of a three-dimensional object that is top-
ologically the same as a sphere. According to the idea developed by L. Euler, A. M. Legendre, F. Möbius, and P. R. 
Cromwell14, we assume that polygons are glued such that (1) any pair of polygons meet only at their sides or cor-
ners and that (2) each side of each polygon meets exactly one other polygon along an edge. We stress that we distin-
guish between parts of a polyhedron and those of the building-block polygons. Specifically, vertices and edges are 
zero- and one-dimensional parts of a polyhedron, respectively. On the other hands, corners and sides are zero- and 
one-dimensional parts of a polygon, respectively. Since this idea plays a central role in our theory, we need a verb to 
briefly describe the relation between parts of a polyhedron and those of polygons. For this purpose, we use the verb 
“contribute”. For example, when we say that the corners contribute to the vertex or the vertex is contributed by the 
corners, we mean that the vertex is a point on a polyhedron at which the corners of polygons meet. We also say that 
a polygon (side) contributes to a vertex if one of its corners (endpoints) contributes to the vertex. Similarly, when 
we say that the edge is contributed by the sides, we mean that the edge is a line segment on a polyhedron along 
which the sides of polygons meet. The face of a polyhedron is a polygon. But when we call a polygon, we regard 
it as a building block of a polyhedron. So, we may say the edge of a face. But we cannot say the edge of a polygon.

Using the p3-code, a way of how polygons are arranged to form a polyhedron can be converted into p3, which 
instructs how to construct the polyhedron from its building-block polygons. The p3-codeword consists of the 
polygon-sequence codeword (ps2) and the side-pairing codeword (sp), and is denoted as

=p ps sp; , (1)3 2

where “;” is a separator. The ps2-codeword is denoted as

= .ps p p p p F(1) (2) (3) ( ) (2)2 2 2 2 2

Here, p2(i) is the number of sides of the polygon i, and F is the number of polygons of the polyhedron. We note 
that the number of sides of the polygon i is identical with the number of edges of the face i.

If we know all information of p2(i)s and all information about which side should be glued to which side, we 
can construct a polyhedron by gluing polygons side to side. The ps2-codeword contains not only all information of 
p2(i)s, but also all or almost all information about which side should be glued to which side. Many polyhedra are 
represented just by ps2, but there are some polyhedra that need additional information about which side should 
be glued to which side. Such additional information is recorded in sp, which is denoted as

= .sp y x y x y x y N x N(1) (1) (2) (2) (3) (3) ( ) ( ) (3)s s

Here, y(i) and x(i) are the identification numbers (IDs) of sides. The pair of sides y(i) and x(i) is what we call a 
non-curable additional pair (side-na-pair y(i)x(i)). By a side-na-pair y(i)x(i), we mean that the sides y(i) and x(i) 
should be glued together. Here, y(i) >​ x(i) and y(i) <​ y(i +​ 1). Ns is the number of side-na-pairs.

Decoding p3 is constructing its original polyhedron by gluing together polygons side to side. To instruct which 
side should be glued to which side, we assign IDs to sides. We assign ij to the jth side of the polygon i, and the 
side-ID ij represents an integer: = + ∑ =

−i j p x( )j x
i

1
1

2 . In constructing a polyhedron, if a side of a polygon of the 
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partial polyhedron is not glued to the other polygon, we call it a dangling side. We abbreviate the smallest-ID 
dangling side as the s-side. We regard that an isolated corner as well as two corners meeting at a point forms a 
vertex of a partial polyhedron. We also regard that a dangling side forms an edge. If the pair of dangling sides 
contribute to a vertex that is also contributed by three polygons, that vertex is said to be illegal. When an illegal 
vertex (i-vertex) is generated, we rectify it by gluing together the two dangling sides contributing to it. The poly-
hedron can be recovered from ps2;sp as follows:
1.	 (a)  The polygon 1 is a p2(1)-gon.

(b)  Assign IDs 
(1 , 1 , 1 , , 1 )p1 2 3 (1)2

 to its sides in a clockwise (CW) direction.

2.	 (a)  The next polygon i (2 ≤​ i ≤​ F) is a p2(i)-gon.
(b)  Assign IDs 

i i i i( , , , , )p i1 2 3 ( )2
 to its sides in a CW direction.

(c)  Glue the side i1 to the s-side of the partial polyhedron.
(d)  �If y(n) (1 ≤​ n ≤​ Ns) is the side ID of the polygon i, then glue the side y(n) to the side x(n) of the partial 

polyhedron.
(e)  If i-vertices are generated, then rectify them, and repeat this procedure until no i-vertices remain.

3.	 (a)  Repeat the procedure 2 until all polygons are placed.

The edge IDs are assigned as follows. Given that each edge is contributed by two sides, we tentatively assign 
the smaller side ID to the edge, and then relabel IDs so that the edge i is the one with the ith smallest tentative ID.

We note that the p3-code can be used to represent a tiling by polygons of a torus without modification. But to 
represent a toroidal polyhedron, we need to specify how to embed the torus in the 3-dimensional Euclidean space 
to form a toroidal polyhedron. The p3-code can also be generalized to non-orientable planes such as the Klein 
bottle19 by defining the clockwise direction for the polygon i, in which IDs are assigned to sides, depending on the 
clockwise direction for the polygon to which the side i1 is glued.

The p3-code is generalized to the p4-code for polychora as follows. We regard a polychoron as a tiling by polyhe-
dra of the surface of a four-dimensional object that is topologically the same as a 3-sphere. We assume that polyhe-
dra are glued together such that (1) any pair of polyhedra meet only at their faces, edges, or vertices and that (2) each 
face of each polyhedron meets exactly one other polyhedron along a ridge. We distinguish parts of a polychoron 
and parts of its building-block polyhedra. The 0-face, peak, and ridge are a point, line segment, and area on a poly-
choron, where the vertices, edges, and faces of polyhedra meet, respectively. The cell of a polychoron is a polyhedron.

The p4-codeword consists of a polyhedron-sequence codeword (ps3) and a face-pairing codeword (fp), and is 
denoted as

= .p ps fp; (4)4 3

Here,

= .ps p p p p C(1) (2) (3) ( ) (5)3 3 3 3 3

C is the number of polyhedra of the polychoron. p3(i) =​ ps2(i);sp(i) is p3 of the polyhedron i.
The fp-codeword consists of what we call face-na-pairs wzv, and is denoted as

= .fp w z v w N z N v N(1) (1) (1) ( ) ( ) ( ) (6)f f f

Here, w(i) and v(i) are face IDs. w(i) >​ v(i) and w(i) <​ w(i +​ 1). z(i) is the global side ID of a side of the polygon 
w(i). The global side IDs will be explained latter. By a face-na-pair w(i)z(i)v(i), we mean that the faces w(i) and v(i) 
should be glued together in such a way that the edge of the face w(i) contributed by the side z(i) is glued to the 
smallest-ID edge of the face v(i). Nf is the number of face-na-pairs of the polychoron. Note that, in order to for-
mulate p rs

4
( ), fp of the present work is slightly modified from the original definition13. For the original definition, 

z(i) is the edge ID of the edge of the face w(i) glued to the smallest-ID edge of the face v(i).
In decoding p4, if a face of a polyhedron of the partial polychoron is not glued to the other face, we call it a dan-

gling face. By the edge ij (face ij), we mean the jth edge (face) of the polyhedron i. We abbreviate the smallest-ID 
dangling face as the s-face. We regard that an isolated edge as well as two edges meeting along a line segment 
forms a peak of a partial polychoron. We also regard that a dangling face forms a ridge. In a partial polychoron, 
if the pair of dangling faces contribute to a peak that is also contributed by three polyhedra, we call that peak an 
illegal peak (i-peak). When an i-peak is generated, we rectify it by gluing together the two dangling faces contrib-
uting to it. The polychoron can be recovered from ps3;fp as follows:

1.	 (a)  Decode p3(1) to obtain the polyhedron 1, assigning face and edge IDs.

2.	 (a)  Decode p3(i) to obtain the next polyhedron i (2 ≤​ i ≤​ C), assigning face and edge IDs.
(b)  �Glue the face i1 to the s-face of the partial polychoron in such a way that the edge i1 is glued to the small-

est-ID edge of the s-face.
(c)  �If w(n) (1 ≤​ n ≤​ Nf) is the face ID of the polyhedron i, then glue the face w(n) to the face v(n) of the partial 

polyhedron in such a way that the edge of the face w(n) contributed by the side z(n) is glued to the small-
est-ID edge of the face v(n).

(d)  If i-peaks are generated, then rectify them, and repeat this procedure until no i-peaks remain.

3.	 (a)  Repeat the procedure 2 until all polyhedra are placed.
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Ridge IDs are assigned as follows. Given that each ridge is contributed by two faces, we tentatively assign the 
smaller face ID to the ridge. We call the ID thus assigned the tentative ridge ID. We then relabel IDs so that the 
ridge i is the one with the ith smallest tentative ID. The tentative ridge IDs and ridge IDs play a key role in reduc-
ing the redundancy in p4. Peak IDs are also assigned similarly.

Preliminary arrangements.  An outline of converting p4 into p rs
4
( ) is illustrated in Fig. 1. We will first break 

p4 down into its ps2s and sps, and reconstruct =⁎ ⁎ ⁎p ps sp fp; ;g
4 2 , which provides us a good perspective for reducing 

the redundancy. We will then reduce the redundancy by converting ⁎p4  into = ⁎p rs sp fp; ;rs g
4
( ) # . Finally, to make 

our theory more beautiful, we unify spg* and fp into a part-pairing codeword (pp), and obtain =p rs pp;rs
4
( ) .

To formulate ⁎p4 , we distinguish local IDs and global IDs. When we call the polygon j of the polyhedron i, the 
number j is what we call the local polygon ID associated with the polyhedron i. We can designate the same poly-
gon as the polygon ij. The symbol ij is what we call the global polygon ID of the polychoron. The symbol ij also 
represents the number: = + ∑ =

−i j F k( )j k
i

1
1 , where F(k) is the number of polygons of the polyhedron k. Similarly, 

by the side mn of the polyhedron i, we mean the nth side of the polygon m of the polyhedron i. The number n is the 
local side ID associated with the polygon m of the polyhedron i, while the symbol mn is the local side ID associated 
with the polyhedron i and is also the number, = + ∑ =

−m n p i( )n k
m

k1
1

2 . Here, p2(ik) is the number of sides of the 
polygon ik. Using the global side ID, we can designate the side mn of the polyhedron i as the side imn

. The symbol 
imn

 also represents the number: = + ∑ =
−i m E k2 ( )m n k

i
1
1

n
, where E(k) is the number of edges of the polyhedron k.

The sp(i)-codeword of p3(i) =​ ps2(i);sp(i) is written using the local side IDs associated with the polyhedron i. 
Using the global side IDs, we rewrite p3(i) as =p i ps i sp i( ) ( ); ( )g g

3 2 . Here, =sp i y i x i y i x( ) ( ) ( ) ( )g g g g g
1 1 2

i y i x i( ) ( ) ( )g
N i

g
N i2 ( ) ( )s s

 is obtained by translating = sp i y i x i y i x i y i x i( ) ( ) ( ) ( ) ( ) ( ) ( )N i N i1 1 2 2 ( ) ( )s s
 from local 

side ID into global side ID. =y i x i i i( ) ( )g
j

g
j y i x i( ) ( )j j

. y(ij) and x(ij) are the local side IDs for the jth side-na-pair of 
the polyhedron i. Ns(i) is the number of side-na-pairs of the polyhedron i. For example, p3(i) =​ 46565475543; 
7444 =​ 46565475543;34 19 is rewritten as = =p i i i i i( ) 46565475543; 46565475543;g

3 7 4 34 194 4
. Reversely, p3(i) can 

be recovered from p i( )g
3  just by translating the global side IDs iyix into their corresponding local side IDs yx.

By putting together spg(i)s, spg* is defined as follows:

=
=

= _ _ .

�

�

�
�

�

⁎sp sp sp sp C
y x y x y x

y x y x y x

y C x C y C x C y C x C

y x y x y Sum N x Sum N

(1) (2) ( )
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

(2 ) (2 ) (2 ) (2 ) (2 ) (2 )

( ) ( ) ( ) ( ) ( ) ( )

(1) (1) (2) (2) ( ) ( ) (7)

g g g g

g g g g g
N

g
N

g g g g g
N

g
N

g g g g g
N C

g
N C

g g g g g g

1 1 2 2 (1) (1)

1 1 2 2 (2) (2)

1 1 2 2 ( ) ( )

s s

s s

s s

s s

Here, _ = ∑ .=Sum N N i( )i
C

s 1 s
Similarly, ⁎ps2  is defined by putting together ps2(i)s as follows:

Figure 1.  Overview of the p rs
4
( )-code. Three-dimensional Schlegel diagrams13,15,18 (a projection from four- to 

three-dimensional space) are used to illustrate the polychoron. Note that the interior of the polyhedron abcd on 
the polychoron in four-dimensional space (not shown) is mapped to the exterior of the outside polyhedron abcd 
on the Schlegel diagram.
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=
=

=

�
�
�

�
�

�

⁎ps ps ps ps C
p p p
p p p

p C p C p C
p p p R

(1) (2) ( )
(1 ) (1 ) (1 )
(2 ) (2 ) (2 )

( ) ( ) ( )
(1) (2) (2 ) (8)

F

F

F C

2 2 2 2

2 1 2 2 2 (1)

2 1 2 2 2 (2)

2 1 2 2 2 ( )

2 2 2

In the last transformation, we translated the symbols ij into the corresponding numbers. R is the number of 
ridges of the polychoron.

By putting ⁎ps2 , spg*, and fp together, =⁎ ⁎ ⁎p ps sp fp; ;g
4 2 . For example, for a polychoron A shown in Fig. 1, 

= = .⁎ ⁎p A ps A[ ] [ ] 33333444334443344433444333334 2
We can recover p4 from ⁎p4  as follows. By construction, the first F(1) digits of ⁎ps2  form ps2(1). However,  

we do not know F(1) beforehand. To find out F(1), we regard ⁎ ⁎ps sp; g
2  as p3, and decode it until a  

polyhedron is completed. Suppose that a polyhedron is completed when the αth digit of ⁎ps2  is decoded.  
Then F(1) =​ α, and α= ps p p p p(1) (1) (2) (3) ( )2 2 2 2 2 . If the sides of the polyhedron are found in spg*,  
r e c o r d  t h e m  i n  s p g ( 1 ) .  We  t h e n  r e m o v e  p s 2 ( 1 )  f r o m  ⁎ps2 ,  a n d  o b t a i n 

α α α= + + +−


⁎ps p p p p R( 1) ( 2) ( 3) (2 )2
( 1)

2 2 2 2 . As with ⁎ps2 , the first F(2) digits of −⁎ps2
( 1) form ps2(2). To 

find out F(2), we decode −⁎ ⁎ps sp; g
2

( 1)  using the p3-code. Suppose that a polyhedron is completed when the βth 
digit of −⁎ps2

( 1) is decoded. Then F(2) =​ β, and α α α α β= + + + +ps p p p p(2) ( 1) ( 2) ( 3) ( )2 2 2 2 2 . If the sides 
of the polyhedron are found in spg*, record them in spg(2). We then remove ps2(2) from −⁎ps2

( 1), and obtain 
α β α β α β= + + + + + +−



⁎ps p p p p R( 1) ( 2) ( 3) (2 )2
( 2)

2 2 2 2 . By repeating this procedure, we can deter-
mine 

p p p(1), (2), (3),g g g
3 3 3 , and therefore p4. As an example, we illustrate the procedures of recovering p4[A] 

from ⁎p A[ ]4  in Supplementary Note.

Reveal and remove redundancy in ⁎p4
.  To reveal the redundancy in ⁎p4 , we observe how the polychoron 

A shown in Fig. 1 is recovered from =⁎ ⁎p A ps A[ ] [ ]4 2 . After determining p4[A], we construct the polyhedron 1 
(3333) and polyhedron 2 (34443), and then glue them together in such a way that the face 21 is glued to the face 11.  
Therefore, p2(21) must be equal to p2(11). Thus, p2(21) is redundant. Next we attach the polyhedron 3 (34443) to 
the partial polychoron in such a way that the face 31 is glued to the face 12 of the partial polychoron. Therefore, 
p2(31) must be equal to p2(12), and p2(31) is redundant. In addition, to rectify an i-peak, we glue together the faces 
32 and 22. Therefore, p2(32) must be equal to p2(22), and p2(32) is redundant.

In general, when two faces ij and mn (m >​ i) are glued together, p2(mn) is redundant, while p2(ij) is essential. 
Since the face mn meets the face ij along the ridge with the tentative ID ij, p2(mn) =​ p2(ij) =​ rt(ij). Here, rt(xy) is the 
number of peaks of the ridge with the tentative ID xy. Thus, the number of peaks of every ridge is doubly recorded 
in ⁎ps2 .

Returning to the polyhedron A, we will remove all the redundant p2(mn)s from ⁎ps A[ ]2  and construct the 
sequence of essential p2(ij)s,

= .
p p p p p p p p p p p p p p(1 ) (1 ) (1 ) (1 ) (2 ) (2 ) (2 ) (2 ) (3 ) (3 ) (3 ) (4 ) (4 ) (5 )

33334443443433 (9)
2 1 2 2 2 3 2 4 2 2 2 3 2 4 2 5 2 3 2 4 2 5 2 3 2 5 2 5

The sequence of essential p2(ij)s is identical with the sequence of rt(ij)s,

=

.

p p p p p p p p p p p
p p p r r r r r r r r

r r r r r r

(1 ) (1 ) (1 ) (1 ) (2 ) (2 ) (2 ) (2 ) (3 ) (3 ) (3 )
(4 ) (4 ) (5 ) (1 ) (1 ) (1 ) (1 ) (2 ) (2 ) (2 ) (2 )

(3 ) (3 ) (3 ) (4 ) (4 ) (5 ) (10)
t t t t t t t t

t t t t t t

2 1 2 2 2 3 2 4 2 2 2 3 2 4 2 5 2 3 2 4 2 5

2 3 2 5 2 5 1 2 3 4 2 3 4 5

3 4 5 3 5 5

By rewriting the sequence using the ridge IDs (not tentative ridge IDs), we obtain what we call the 
ridge-sequence codeword (rs),

=
≡ .

r r r r r r r r r r r r
r r r r r r r r r r r r

r r r r rs A

(1 ) (1 ) (1 ) (1 ) (2 ) (2 ) (2 ) (2 ) (3 ) (3 ) (3 ) (4 )
(4 ) (5 ) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(10) (11) (12) (13) (14) [ ] (11)

t t t t t t t t t t t t

t t

1 2 3 4 2 3 4 5 3 4 5 3

5 5

Here, r(i) is the number of peaks of the ridge with the ID i. The number of peaks of every ridge is recorded just 
once in rs, and the redundancy is thus reduced. In general, the redundancy can be reduced by modifying p4 into 

= .⁎p rs sp fp; ;rs g
4
( ) #  Here, rs =​ r(1)r(2)r(3) 



 r(R).

How to recover p4 from #p rs
4
( ) .  The p rs

4
( ) #-codeword contains information about how to assemble ridges to form  

a polychoron in the sense that p4 can be recovered from p rs
4
( ) #. As is summarized in Fig. 2, to recover p4, we determine  

p p p p C(1), (2), (3), , ( )3 3 3 3  step-by-step. To determine p3(i), we deduce 
p i p i p i p i( ), ( ), ( ), , ( )F i2 1 2 2 2 3 2 ( )  

step-by-step. To deduce p2(ij), we examine whether the face ij should be glued to an existing face of the partial 
polychoron or create a new ridge.
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We first describe how to determine p3(1) =​ ps2(1);sp(1) from p rs
4
( ) #. All faces of polyhedron 1 create new ridges. 

By construction, the first F(1) digits of r(1)r(2)r(3) 


 r(R) form ps2(1). However, we do not know F(1) beforehand. 
To find out F(1), we regard r(1)r(2)r(3) 



 r(R);spg* as p3, and decode it until a polyhedron is completed. The poly-
hedron thus obtained is the polyhedron 1. Suppose that a polyhedron is completed when the αth face is decoded. 
Then F(1) =​ α, and ps2(1) =​ r(1)r(2)r(3) 



 r(α). Every time we recover a polygon in the decoding process, we 
search spg* for side-na-pairs of the polyhedron 1. If side-na-pairs are found, we record their corresponding local 
side IDs in sp(1). By combining ps2(1) and sp(1), we obtain p3(1) =​ ps2(1);sp(1).

For 2 ≤​ i, p3(i) can be determined from p rs
4
( ) # and p3(1)p3(2)p3(3) 



 p3(i −​ 1). Our first task is to deduce p2(i1). 
For this purpose, we construct a partial polychoron D4(i − ​ 1), which is obtained by decoding 
p3(1)p3(2)p3(3) 



 p3(i −​ 1);fp. Since the face 1 of the polyhedron i should be glued to the s-face of D4(i −​ 1), 
p2(i1) =​ p2(IDs−face(i −​ 1)). Here, IDs−face(k) is the global face ID of the s-face of D4(k).

For 2 ≤​ j, p2(ij) can be determined from p rs
4
( ) #, p3(1)p3(2)p3(3) 



 p3(i −​ 1), and p2(i1)p2(i2)p2(i3) 


 p2(ij−1). To 
deduce p2(ij), we examine whether the face ij should be glued to an existing face or create a new ridge. We first 
search the w part of fp for ij. If ij is found, the faces ij( =​ w) and v form a face-na-pair. Since those faces should be 
glued together, p2(ij) =​ p2(v). If ij is not found, we construct a partial polyhedron D3(ij−1), which is obtained by 
decoding p2(i1)p2(i2)p2(i3) 



 p2(ij−1); ⁎spg  using the p3-code. We then glue the face i1 (of D3(ij−1)) to the s-face of 
D4(i −​ 1) in such a way that the edge i1 is glued to the smallest-ID edge of the s-face. If w(n) (1 ≤​ n ≤​ Nf) is the face 
ID of D3(ij−1), then glue the face w(n) to the face v(n) of D4(i −​ 1) in such a way that the edge of the face w(n) 
contributed by the side z(n) is glued to the smallest-ID edge of the face v(n). If i-peaks are generated, then we 
rectify them until no i-peaks remain. We write D3(ij−1) & D4(i −​ 1) for the partial polychoron thus obtained. The 
peak contributed by the s-side of D3(ij−1) plays a key role in determining whether the face ij should be glued to an 
existing face or create a new ridge, therefore we call that peak the key peak (k-peak). We write IDk−peak(ij−1) for the 
global peak ID of the k-peak. There exists one dangling face contributing to the k-peak, which we call a candidate 
face (c-face). We write IDc−face(ij−1) for the global face ID of the c-face. The face ij will be glued to the face IDc−face 
(ij−1) or create a new ridge. Now, we need to consider two cases:

(case 1)	� The k-peak of D3(ij−1) & D4(i −​ 1) is contributed by three polyhedra (D3(ij−1) and two from D4(i −​ 1)). 
In this case, in constructing D3(ij) & D4(i −​ 1), when the peak IDk−peak(ij−1) is contributed by three pol-
yhedra and the face ij is not glued to the face IDc−face(ij−1), that peak will be illegal. To rectify the i-peak, 
the faces ij and IDc−face(ij−1) should be glued together. Thus, p2(ij) =​ p2(IDc−face(ij−1)).

(case 2)	� The k-peak of D3(ij−1) & D4(i −​ 1) is contributed by two polyhedra (D3(ij−1) and one from D4(i −​ 1)). 
In this case, the face ij should create a new ridge. Thus, p2(ij) =​ r(Nridge(ij−1) +​ 1). Here, Nridge(mn) is the 
number of ridges of D3(mn) & D4(m −​ 1).

Part-pairing codeword and p rs
4
( ).  To make our theory more beautiful, we modify the way to record 

na-pairs. The side-na-pairs yx are recoded in spg*, while the face-na-pairs wzv are in fp. To distinguish them, there 
is a separator “;” between spg* and fp as = ⁎p rs sp fp; ;rs g

4
( ) # . To remove the separator, we will unify spg* and fp into pp.  

Finally, we will obtain =p rs pp;rs
4
( ) . As a result, both polyhedra and polychora are represented by codewords of the 

same format, namely two number sequences separated by “;”.
To formulate pp, we introduce the notion of parts. We regard the sides of a polygon are parts of that polygon. 

We also regard the polygon itself is the part of that polygon. We define the set of parts of the polygon i as

= S i i i i[polygon ] {polygon , side , , side } (12)p i1 ( )2

Similarly, for j >​ 2, we define the set of parts of the polyhedron j as

= . S j j S j S j j j[polyhedron ] {polyhedron , [polygon ], , [polygon ], edge , , edge } (13)F j E j1 ( ) 1 ( )

We assign IDs to parts such that we can identify side-na-pairs yx and face-na-pairs wzv in recovering the orig-
inal polychoron. To meet this requirement, we assign IDs to parts of the polychoron in the order of S[polygon 1],  
polyhedron 1, S[polygon 2], …​, S[polygon F(1)], edges of polyhedron 1, polychoron 1, S[polyhedron 2], …​, 
S[polyhedron C], ridges of polychoron 1, peaks of polychoron 1.

The pp-codeword is obtained as follows. We first translate spg*;fp into part ID. Then we remove the separator “;”.  
Finally, we obtain

= .p rs pp; (14)
rs

4
( )

The side- and face-na-pairs can be identified from pp as follows. Let p(i) be the ith digit of pp. If the part p(i) is 
a side Y, the part p(i +​ 1) is a side X, and Y >​ X, then the pair p(i)p(i +​ 1) is a side-na-pair. If the part p(i) is a face 
W and the part p(i +​ 2) is a face V, then the pair p(i)p(i +​ 1)p(i +​ 2) is a face-na-pair.

Note that the amount of tasks needed to generate p rs
4
( ) is comparable to that needed to generate p4. This is 

because converting p4 to p rs
4
( ) amounts to just assigning IDs to ridges and parts of the polychoron. We also note 

that the length of p rs
4
( ) is shorter than that of p4 by R*, where R* is the number of ridges contributed by two faces. 

R* =​ R for a polychoron, while R* <​ R for a partial polychoron. Therefore, the compression efficiency gets worse 
for partial polychora. As described above, by converting 3333 34443 34443 34443 34443 3333 into 
33334443443433, data of the polychoron is compressed to half. On the other hand, for example, p4 and p rs

4
( ) of a 
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partial polychoron composed of one 3333-polyhedron and one 34443-polyhedron are 3333 34443 and 33334443, 
respectively. Just one number “3” is removed by converting p4 into p rs

4
( ).

The p4-codeword can be recovered from p rs
4
( ) by modifying the procedure for recovering p4 from p rs

4
( ) # as fol-

lows (Fig. 3):

1.	 Determine p3(1) =​ ps2(1);sp(1) as follows: 

(a)	Decode r(1)r(2)r(3) ··· r(R);pp using the the p3-code.
(b)	 If a polyhedron is completed when the αth face is decoded, then ps2(1) =​ r(1)r(2)r(3) … r(α).
(c)	 If side-na-pairs of the polyhedron are found in pp, record their corresponding local side IDs in sp(1).

Figure 2.  Procedures for recovering p4 from = ⁎p rs sp fp; ;rs # g
4
( ) .
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2.	 Determine the next p3 =​ ps2(i);sp(i)(2 ≤​ i) as follows: 

(a)	 p2(i1) =​ p2(IDs-face(i −​ 1)).
(b)	 To determine the next p2(ij) (2 ≤​ j), we search pp for the part ID of the face ij. Here, two cases arise: 

(I)	 If the part p(k) is the face ij and the part p(k +​ 2) is a face, then let mn be the face-ID of the part 
p(k +​ 2), and p2(ij) =​ p2(mn).

(II)	Otherwise, we examine the k-peak, and then additional two cases arise: 

(i)	 If the k-peak is contributed by three polyhedra, then p2(ij) =​ p2(IDc-face(ij−1)).
(ii)	Otherwise, p2(ij) =​ r(Nridge(ij−1) +​ 1).

(c)	 Decode p2(i1)p2(i2)p2(i3) … p2(ij);pp using the the p3-code. Two cases then arise: 

(i)	 If a polyhedron is completed, then ps2(i) =​ p2(i1)p2(i2)p2(i3) … p2(ij). If side-na-pairs of the polyhe-
dron are found in pp, record their corresponding local side IDs in sp(i). p3(i) is thus determined.

(ii)	Otherwise, repeat the procedure 2b.

3.	 Decode p3(1)p3(2)p3(3) … p3(i);pp using the the p4-code. Two cases then arise:

(a)	 If a polychoron is completed, then ps3 =​ p3(1)p3(2)p3(3) 


 p3(i). If face-na-pairs are found in pp, record 
their corresponding global face, side, and face IDs in fp. Thus, p4 =​ ps3;fp is determined.

(b)	 Otherwise, repeat the procedure 2.

As an example, we illustrate how to recover p4[A] from = =p A rs A[ ] [ ] 33334443443433rs
4
( )  as follows:

1.	 We decode rs[A] using the p3-code. When the 4th digit is decoded, a 3333-polyhedron is obtained, thereby it 
turns out p3(1) =​ 3333 (Fig. 4).

2.	 We determine p3(2) as follows:

(a)	 The 3333-polyhedron is the partial polychoron D4(1). The s-face of D4(1) is the face 11 (Fig. 4). Since 
the face 1 of the polyhedron 2 will be glued to the face 11, p2(21) =​ p2(11) =​ 3.

(b)	 We construct the partial polyhedron D3(21), glue it to the partial polychoron D4(1), and obtain the 
partial polychoron D3(21) & D4(1) (Fig. 5). Since the k-peak ab is contributed by two polyhedra 
(polyhedron 1 and D3(21)), the face 22 will create a new ridge. Since D D(2 ) & (1)3 1 4  has four ridges abc, 
bad, cbd, and acd, Nridge(21) =​ 4. Thus, p2(22) =​ r(Nridge(21) +​ 1) =​ r(5) =​ 4.

(c)	 For the same reason, p2(23) =​ r(6) =​ 4, p2(24) =​ r(7) =​ 4, p2(25) =​ r(8) =​ 3.
(d)	When we decode p2(21)p2(22)p2(23)p2(24)p2(25) =​ 34443, a polyhedron is completed, thereby it turns 

out p3(2) =​ 34443.

3.	 We determine p3(3) as follows:

(a)	 We construct D4(2) from the partial p4-codeword: p3(1)p3(2) =​ 3333 34443 (Fig. 6). The s-face of D4(2) 
is the face 12. Therefore, p2(31) =​ p2(12) =​ 3.

(b)	 We construct D3(31) & D4(2) by gluing D3(31) to D4(2) (Fig. 7). Since the k-peak is contributed by three 
polyhedra (polyhedra 1 and 2, and D3(32)), the face 32, should be glued to the face IDc−face(31) (face 
abfe). Thus, p2(32) =​ p2(IDc−face(31)) =​ p2(22) =​ 4.

(c)	 We construct D3(32) from the partial p3-codeword 34, glue it to D4(2), and obtain D D(3 ) & (2)3 2 4  
(Fig. 8). Since the k-peak is contributed by two polyhedra (polyhedron 1 and D3(32)), the face 33 will 
create a new ridge. Thus, p2(33) =​ r(Nridge(32) +​ 1) =​ r(9) =​ 4.

(d)	For the same reason, p2(34) =​ r(10) =​ 4, and p2(35) =​ r(11) =​ 3.
(e)	 When we decode p2(31)p2(32)p2(33)p2(34)p2(35) =​ 34443, a polyhedron is completed, thereby it turns 

out p3(3) =​ 34443.

4.	 In a similar way, p3(4) is determined to be p2(13)p2(24)r(12)p2(33)r(13) =​ 34443. p3(5) =​ p2(14)p2(23)p2(34)p2 
(43)r(14) =​ 34443. p3(6) =​ p2(25)p2(35)p2(55)p2(45) =​ 3333.

5.	 When we decode p3(1)p3(2)p3(3)p3(4)p3(5)p3(6), a polychoron is completed, thereby it turns out p4[A] =​  
3333 34443 34443 34443 34443 3333.

Generalization to higher dimensional polytopes.  The p4-code can be generalized to the pn-code for 
n-polytopes (see Supplementary Note and Supplementary Table S1). The pn-codeword instructs how to construct 
the n-polytope from its building block (n −​ 1)-polytopes. However, as in the case of p4, pn is redundant. By reduc-
ing the redundancy, we can obtain =p f s pp;n

f s( )
2

2 . Here, pn
f s( )2  is the n-dimensional generalization of p rs

4
( ). The 

superscript “fs2” indicates the 2-face-sequence codeword. The i-face is the i-dimensional face of an n-polytope. 
For example, a 2-face of a polychoron is a ridge, and a 1-face of a polychoron is a peak.

As an example, we explain pns for n-dimensional cubes (n-cubes), and then demonstrate how the pns are con-
verted into their corresponding pn

f s( )2 s. The 3-cube is an ordinary cube, and p3[3-cube] =​ 444444 =​ 46. The 4-cube 
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is composed of eight 3-cubes, and p4[4-cube] =​ 46 46 46 46 46 46 46 46 =​ p3[3-cube]8. The 5-cube is composed of ten 
4-cubes, and − = −p p[5 cube] [4 cube]5 4

10. In general, an n-cube consists of 2n (n −​ 1) −​ cubes20, and pn[n-cube
] =​ pn−1[(n −​ 1) −​ cube]2n (for n ≥​ 3).

The number of 1-faces of each 2-face of an n-polytope is (n −​ 2)! times recorded in pn, so that reducing the 
redundancy has a greater impact for higher dimensional polytopes. The redundancy can be reduced by using fs2 
(see Supplementary Note and Supplementary Figure S1), which is denoted as

= .fs f f f f N(1) (2) (3) ( ) (15)2 2 2 2 2 2

Figure 3.  Procedures for recovering p4 from =p rs pp;rs
4
( ) . The differences from the algorithm for p rs

4
( ) # is 

highlighted in yellow.
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Here, f2(i) is the number of 1-faces of the 2-face i. N2 is the number of 2-faces of the n-polytope. For example, 
pn(n-cube) can be recovered from − = ‐p n[ cube] 4n

f s N n( ) ( cube)2 2 . Here, N2(n -​ cube) is the number of 2-faces of the 
n-cube: N2(n-cube) =​ n(n −​ 1)2n−3.

Moreover, we can rewrite pn
f s( )2  as p. In other words, we unify 

p p p, , ,f s f s f s
3
( )

4
( )

5
( )2 2 2  into p. Although the sub-

script “n” is removed, the dimension n of the polytope can be determined as a result of decoding p. We stress that 
polytopes of different dimensions can be represented by codewords of the same format, namely two number 
sequences separated by “;”.

Discussion
E. A. Lazar, et al. introduced the Weinberg code to describe single Voronoi polyhedra11. But the Weingberg 
code does not allow for describing complexes of Voronoi polyhedra. On the other hand, our p-code allows us to 
describe complexes of Voronoi polyhedra, which would reveal the longer-range order of amorphous materials 
that cannot be seen from single Voronoi polyhedra. Our methods can be used to study a wide range of systems 
which are represented by polytopal tilings such as atoms in materials, grains in crystals, foams, galaxies in the 
universe, hyperspheres in higher-dimensional spaces, etc.1–12,21.

Conclusion
We have developed a unified theory for representing polyhedral tilings and polytopes of different dimensions by 
brief codewords. Specifically, we have first formulated a method to deduce how to assemble ridges to form a pol-
yhedral tiling or a polychoron from rs =​ r(1)r(2)r(3) 



 r(R). This has been achieved by reducing the redundancy 
in p4. Many polychora can be constructed just from rs, but there are some polychora that need pp which contains 
additional information about how to assemble ridges. It is remarkable that a mere sequence of r(i)s contains all or 
almost all information about how to assemble r(i)-gonal ridges to form a polychoron. Since a polychoron can be 
constructed from =p rs pp;rs

4
( ) , the polychoron can be represented by p rs

4
( ). The local tiling structure composed of 

Figure 4.  How to determine p3(1) from 33334443443433. The dashed lines are the edges contributed by 
one polygon. The solid lines are the edges contributed by two polygons. Each s-side to which the next polygon 
is glued is coloured red. For the completed polyhedron 1, global edge IDs are shown near their edges. The 
polyhedron 1 is D4(1), and its s-face is coloured yellow.
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a central polyhedron and polyhedra surrounding the central polyhedron can also be represented by p rs
4
( ), for it can 

be regarded as a part of a polychoron. Therefore, a polyhedral tiling can be characterized by distribution of p rs
4
( )s 

of different central polyhedra. The idea of assembling two-dimensional components has been generalized to 
higher dimensional polytopes. Using the present method, pn of an n-polytope can be converted into p whose 
length is as long as 1/(n −​ 2)! times  of that of pn. Therefore, the impact of the present method factorially increases 

Figure 5.  Partial polychoron D3(21) & D4(1). D3(21), D4(1), and D3(21) & D4(1) are illustrated using three-
dimensional Schlegel diagrams. The polyhedron abcd is the outside polyhedron. The dotted and dashed bold 
lines of the partial polychora indicate peaks contributed by one and two polyhedra, respectively. The face 21 
(of D3(21)) and the s-face of D4(1) (face 11) are coloured blue. By gluing together the blue faces, D3(21) & D4(1) 
is obtained. The s-side b′​a′​ of D3(21) (red dashed line) contributes to the peak ab of D3(21) & D4(1) (red-bold-
dashed line), so that the peak ab is the k-peak. The dangling face bad is the c-face, for it contributes to the 
k-peak. The c-face is coloured green. The k-peak is contributed by two polyhedra (polyhedron 1 and D3(21)). 
Global face and side IDs of D3(21) are shown near D3(21) for reference. Note that since the polyhedron 2 is an 
inside polyhedron, a counter CW direction such as b′​ →​ a′​ →​ c′​ around the face b′​a′​c′​ of the polyhedron 2 on 
the Schlegel diagram corresponds to a CW direction around the corresponding face of the polychoron in four-
dimensional space.

Figure 6.  Partial polychoron D4(2). By gluing the blue face 21 (of polyhedron 2) to the blue s-face of D4(1), 
D4(2) is obtained. The s-face of D4(2) (face 12) is coloured yellow.
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as the dimension of a polytope increases. The amount of tasks needed to convert pn to p is negligible compared to 
that needed to generate pn. We stress that no subscript “n” that indicates the dimension of a polytope is attached 
to p. The dimension of the polytope is determined as a result of decoding p. In other words, the p3-code, p4-code, 
p5-code, 



, and pn-code have been unified into the p-code. Since shorter codewords are easier to handle for both 
humans and computers, our unified theory of polytopes would be a powerful tool to study a wide range of struc-
tures such as atoms in materials, grains in crystals, foams, galaxies in the universe, hyperspheres in 
higher-dimensional spaces, etc1–12,21.

Figure 7.  Partial polychoron D3(31) & D4(2). By gluing the blue face 31 (of D3(31)) to the blue s-face of D4(2), 
D4(31) & D4(2) is obtained. The red-bold-solid peak ab of D4(31) & D4(2) is the k-peak, for it is contributed by 
the s-side a′​b′​ of D3(31). The green dangling face 22 is the c-face, for it contributes to the k-peak. Three polyhedra 
(polyhedra 1 and 2 and D3(31)) contribute to the k-peak.

Figure 8.  Partial polychoron D3(32) & D4(2). The k-peak bd (red-bold-dashed line) is contributed by two 
polyhedra (polyhedron 1 and D3(32)).
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