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ABSTRACT In vitro motility (IVM) assays allow for the examination of the basic interaction between cytoskeletal filaments
with molecular motors and the influence many physiological factors have on this interaction. Examples of factors that can be
studied include changes in ADP and pH that emulate fatigue, altered phosphorylation that can occur with disease, and mu-
tations within myofilament proteins that cause disease. While IVM assays can be analyzed manually, the main limitation is
the ability to extract accurate data rapidly from videos collected without individual bias. While programs have been created
in the past to enable data extraction, many are now out of date or require the use of proprietary software. Here, we report the
generation of a Python-based tracking program, Philament, which automatically extracts data on instantaneous and average
velocities, and allows for fully automated analysis of IVM recordings. The data generated are presented in an easily accessible
spreadsheet-based, comma-separated values file. Philament also contains a novel method of quantifying the smoothness of
filament motion. By fitting curves to standard deviations of velocity and average velocities, the influence of different experi-
mental conditions can be compared relative to one another. This comparison provides a qualitative measure of protein inter-
actions where steeper slopes indicate more unstable interactions and shallower slopes indicate more stable interactions
within the myofilament. Overall, Philament's automation of IVM analysis provides easier entry into the field of cardiovascular
mechanics and enables users to create a truly high-throughput experimental data analysis.
WHY IT MATTERS Philament, specifically designed for in vitro motility assays and built on an open-source platform
(Python), decreases the barrier of entry to explore myofilament interactions. Philament can convert images to binary
scale (threshold), find and track filaments (objects), and report on the frame to frame instantaneous velocity. This is done
in a completely automated fashion, with only an initial input from the user to start the process, speeding up the analysis
pipeline, and allowing for high-throughput analysis of IVM data. Finally, Philament allows users to keep the program up-
to-date by updating the modules used by the Python script, greatly extending the lifespan and performance of Philament
for future use.
INTRODUCTION

In vitro motility (IVM) assay is a powerful approach to
evaluate the movement of fluorescently labeled fila-
ments (usually F-actin or microtubules) on a bed of
surface-immobilized motor molecules (myosin or kine-
sin/dynein, respectively). When attempting to deci-
pher functional properties of striated muscle, for
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example, IVM allows investigators to examine a
myriad of alterations in myofilament proteins (e.g.,
mutations, posttranslational modifications) on acto-
myosin interactions under precisely controlled condi-
tions. Experimental conditions can be altered within
the experimental chamber to mimic the in vivo myofil-
ament lattice in normal conditions and how the lattice
presents during other physiological conditions such
as disease, exercise, and fatigue. For example, the
levels of ATP/ADP/Pi that can mimic fatigue can be
altered (1). Specific purified contractile proteins can
be added to test their potential influence and direct
roles in actin-myosin interactions; as one example,
a-actinin can be added to increase frictional load
mimicking increased pressure in the heart (2). Other
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physiological components can be added thereby
mimicking conditions within the myofilament lattice
during exercise or disease progression (1). Further-
more, with the flexibility and ease of changing vari-
ables, this assay is ideally set up to create high-
throughput screening assays to evaluate the impact
new drugs and compounds have on actin-myosin
interactions.

In general, the major drawback of the IVM assay is
the inability to quickly and concisely analyze videos
to extract important information such as velocity,
fraction motile, and filament lengths. Most attempts
to analyze filament motion in IVM assays have
either utilized a point-and-click method of tracking
single filaments (e.g., mTrackJ and RETRAC) (1–3)
or one of a series of “batch” analysis algorithms
either purchased (4–6), custom written by individual
labs for use on MATLAB (7–11), or repurposed from
different experimental protocols (e.g., wrMTrck (12))
to extract data (13–15). There also exists a
wide array of tracking programs, whose intended
usages are similar to the IVM assay. These pro-
grams include the capabilities of tracking cytoskel-
etal filaments within cells (16), tracking in vitro
microtubule movement and analyzing kymographs
(17), and deformable objects (such as cells,
drosophila, or zebrafish) in a two-dimensional
recording setup (18). However, these software pack-
ages are written in Java or Cþþ, are designed and
optimized for different usages, or require the user
to purchase a program (MATLAB) to run the file or
use out-of-date software (wrMTrck) for batch data
analysis.

It is important to note that there is one program we
identified, FASTrack, that was written within the Py-
thon coding language for use in analyzing the motility
of filaments (19) and, as such, is freely available. How-
ever, there are some potential limitations to this pro-
gram. FASTrack was written using Python 2.0 which
means that it cannot capitalize on future Python opti-
mizations (i.e., Python 2.0 support ended in 2020), and
the program's command line interface heightens the
learning curve for analysis.

The use of traditional batch analysis programs en-
ables users to quickly extract data from videos
without, for the most part, any biases in filament
shape or motion, allowing for a more complete and
quantitative analysis of the data collected. A draw-
back of this method to analyze data is the depen-
dence on software to determine what is or is not a
filament, and how to track motion. For the software
to accurately identify a filament from a video, the im-
ages must first be thresholded (converted to binary
images) to separate filaments from background
noise. Once thresholded, tracking the motion of the
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object is performed using a “centroid fitting” routine
to determine the area of the filament by placing a
“dot” on the midpoint of the filament (representing
its center of mass), which is then tracked from frame
to frame as the filament moves. This approach allows
for an accurate characterization of an object's mo-
tion, as changes in the shape of the filament are
weighted proportionally, minimizing the impact of fila-
ment bending in the final calculations as it tracks its
path over the coverslip. An issue that arises with
traditional batch analysis programs is the loss of fila-
ment tracking due to objects momentarily overlap-
ping. When objects being measured cross paths
(overlap), previous versions of available software
would immediately terminate tracking of the objects
(i.e., filaments) and, depending on filtering stringency
(the number of frames to qualify as a filament), re-
move the tracking data before the interaction. Loss
of these data could potentially result in having impor-
tant information left out from the experimental output
on velocity and fraction motile of functional filaments
since filaments crossing over is a relatively common
event.

In this report, we present a new Python-based auto-
mated batch analysis program for extracting velocity
and filament length information from IVM assays
that we refer to as “Philament.” The use of Philament
speeds up analysis by a factor of 10 in comparison
with wrMTrck, a tracking-only program used previ-
ously in this lab. Unlike Philament, wrMTrck does not
perform thresholding and requires an input of prethre-
sholded images, which are created using ImageJ's
built-in thresholding function. Philament's enhanced
thresholding and object-tracking capabilities enable
the inclusion of more data from a larger number of fil-
aments, resulting in more reliable results. Philament
also allows for the comparison of average velocities
to instantaneous velocities; this comparison of veloc-
ities allows for determining the possible impact treat-
ments or reagents (e.g., purified proteins) have on the
“smoothness” of motion, the standard deviation of the
instantaneous velocities. Philament allows new users
to quickly collect data without having to learn coding
or complex image analysis software, allowing for
easier entry into the field and reduced training times.
Furthermore, this program can be easily updated
with minimal knowledge of Python, not requiring
extensive rewrites to the software to keep the program
up to date (an issue we encountered with the ImageJ
plugin wrMTrck our group used previously). Overall,
the novel features of Philament software will allow
for the use of IVM as a truly high-throughput and
innovative screening mechanism for the investigation
of filament-motor interactions and myofilament
mechanics.



FIGURE 1 Philament data pipeline. Data are taken in as .tif or .avi
image sequences and the output .csv file contains the objects' initial
position, size, distance traveled, and instantaneous velocities. Phila-
ment mainly implements OpenCV, Pandas, and Trackpy packages.
METHODS

IVM

The solution composition and flow cell loading were as described in
Farman et al. (15). In brief, the flow is made by laying down strips of
double-sided sticky tape onto a glass slide creating two “lanes” that
will be enclosed by the glass coverslip. The coverslip was previously
coated with nitrocellulose to allow for myosin to bind to the surface.
Adding solutions into the flow channel of the experimental chamber,
gravity and capillary action will draw the solution into the flow cell.
For a 22� 22mm coverslip the volume of the flow cell is�20–25 mL
and is referred to here as 1 volume. To load the flow cell, first add
myosin and incubate for 1 min before the addition of 1 mg/mL of
BSA to coat nonmyosin-bound surfaces and to prevent nonspecific
binding of the actin filaments. Unlabeled actin is then added to the
flow cells to ensure that bound myosin can cycle actin properly and
“trap” improperly bound myosin, which would prevent labeled actin
filaments from sliding properly. Finally, the labeled actin is added
to the flow cells, and motility is induced with the addition of ATP
(1 mM, pH 7.3).

For the myosin dose-response curve, rabbit skeletal myosin was
diluted to a concentration range of 5–250 mg/mL. The resulting
data were fit to the following equation (20): Vobs ¼ VMax[1 �
(1 � r)p], where r equals the fraction of time myosin stays bound
to filamentous actin during the ATPase cycle (duty cycle) and p rep-
resents the loading concentration of myosin in the flow cell (21). All
videos were collected using XCAP software (v.3.8) with a PTI IC-300
camera running through a PIXCI SV7 Dual Analog Standard Video
card. The video card and software were purchased from EPIX (Buf-
falo Grove, IL).
Philament implementation

Philament was written in Python 3 (Python Software Foundation)
(22), with a simple graphical user interface (GUI) that allows for
quick changes to the thresholding and tracking parameters as well
as ease of use. Currently, Philament is offered as a Python-based
program capable of running on Windows or Linux/Unix machines,
or by using the Windows executable program converted by using
pyinstaller to appeal to those without coding experience. When us-
ing Philament as a Windows executable file, the multiprocessing
feature is disabled and therefore cannot capitalize on the increased
processing power and speed of multicore processors; however, in
our testing, this decrease in speed was minimal.

Upon opening Philament, the user is shown a GUI (see supporting
material, Fig. 1) that will allow the user to input basic information
about the video(s) to be analyzed including pixel size, frame rate,
and object size. Philament implements a set of Python packages de-
signed for scientific usage, mainly Open Computer Vision (OpenCV),
Trackpy, Pandas, and Numba. OpenCV is a robust and well-tested li-
brary and has been a gold standard for image classification and
recognition since first released by Intel in 2000 (23). Philament uti-
lizes the preprocessing and image handling functions (Fig. 1 A)
from the OpenCV library, while we opted to source a tracking work-
flow from the Trackpy library (Fig. 1 B). The main factors in choosing
Trackpy over other libraries such as OpenCV or Scikit-Image (24)
were its ease of implementation and multiprocessing integration,
which spreads tracking calculations over multiple CPU cores,
thereby decreasing computational time. This increase in speed is
further improved with the usage of Numba's just-in-time compiler
(25), which converts high-level Python code into optimized machine
code. The returned tracking data are formatted and summary statis-
tics, such as instantaneous velocity, are calculated with the Pandas
library (26) (Fig. 1 C), similar to how one would write formulas by
hand with Microsoft Excel, but performed in fractions of a second,
for hundreds of files per run. Output is saved as a comma-separated
values (CSV) file, which can be opened easily with spreadsheet appli-
cations for further analysis and/or filtering. More details regarding
how the videos are handled and how the data are extracted are pro-
vided in the results and discussion sections.
Statistics

Statistical analysis and figure creation were performed in GraphPad
Prism 10 (GraphPad Software 225 Franklin Street. Fl. 26 Boston, MA
02110). Filament speed, fraction motile, and length filtering were
calculated using Excel (see supporting material). Data are shown
as mean 5 SE. Statistical significance was set at p < 0.05
*p < 0.05 **p < 0.01 ***p < 0.001.
RESULTS

Data preprocessing/thresholding

Videos can be inputted into the program as either 8-bit
Tag Image File Format (TIFF) or Audio Video Inter-
leaved (AVI) files, and files are selected using the Win-
dows default “file explorer window.” After the desired
videos are chosen, Philament begins the analysis
Biophysical Reports 4, 100147, March 13, 2024 3



FIGURE 2 Graphical user interface (GUI) for thresholding images in Philament. When Philament is first started the user will be shown the first
frame of the raw image (A), the automatic thresholded image (B), and a slider bar (C) that allows the user to adjust the thresholding value for
that single image. In the case of multiple movies, Philament will randomly select 1 movie for every 50 movies imported (maximum 5movies to
threshold) for setting the thresholding values. When all images have been assessed a thresholded value, those values are then averaged, and
that number is applied to all images that are analyzed.
pipeline (Fig. 1 A) by preprocessing the videos for the
object-tracking algorithms. This is accomplished by
applying a median blur and thresholding the frames
to separate objects from the background (Fig. 2).

Median filtering (blur) is a common technique in im-
age preprocessing, it is an edge-preserving filtering
method that excels at smoothing spikey noise (also
called “salt-and-peppering noise”) (27). Median
filtering works by finding the median value within a
small predetermined area of pixels (called a search
kernel) and replacing a pixel's original brightness
with the median value. The size of this search kernel
(5 pixels) is not adjustable from the GUI; however, if
desired, it may be changed within the source code
(see supporting material). The blurred frame is then
thresholded, where any pixel value below the set
threshold is set to the minimum brightness (0), with
all other numbers set to the maximum brightness
(255). This process is referred to as “binarization,”
and it allows for much simpler tracking because the
objects (set at brightness ¼ 255) are easily separated
from the background (set at brightness ¼ 0). This
combination of image-processing techniques allows
for automated batch thresholding with greatly reduced
noise compared with manual thresholding via ImageJ.

In Philament, a randomized sample of videos is
used to find an accurate threshold value for all files,
eliminating the need to threshold every video manu-
4 Biophysical Reports 4, 100147, March 13, 2024
ally. After selecting the files, Philament selects a
random video and displays the processed and thresh-
olded frame beside the raw first frame (Fig. 2). This is
accompanied by a slider bar that changes the
threshold value, allowing the users to pick the best
value to obtain the most “clean filaments” with little
background noise for the selected images. When
thresholding, for every 50 videos entered into the pro-
gram, one random video is selected, and the first frame
is shown to the user to manually set the thresholding
values. For every additional 50 videos selected for
analysis, an additional video is shown to the user
(with a maximum of 5 images, 250þ videos). The
thresholding values chosen by the user are then saved
after each image is processed, these values are aver-
aged, and this average is used to threshold all the
selected files. Once the process of determining the
thresholding value is completed, Philament becomes
fully autonomous and requires no further user input.

Fig. 3 illustrates the difference between the auto
thresholding features of ImageJ (Fig. 3, A and B.II)
versus Philament (Fig. 3, A and B.III) of a sample image
(Fig. 3, A and B.I). As shown in these panels, Philament
can cleanly render the particles in the movie, providing
a sharper image with less background noise in com-
parison with automatic ImageJ thresholding. It should
be noted that ImageJ can closely approximate the
level of thresholding (Fig. 3 A.IV) seen in Philament;



FIGURE 3 Comparison of different thresholding values for ImageJ versus Philament. Thresholding of raw image (A.I) by ImageJ (A.II auto
scale, A.IV scaled to match Philament object sizes) demonstrates that, although ImageJ can get the thresholding close to Philament's level,
this requires manual adjustment for each recording (A.IV). Thus, while ImageJ can slowly threshold each image to get possibly cleaner results,
Philament offers the advantage of increasing the output of image processing without a great loss in data (A.III). (B) Presents the zoomed-in
section of I, II, and III (white box) to better illustrate the difference between ImageJ and Philament's auto thresholding capabilities. (B.II) Dem-
onstrates that there is significant salt and pepper noise in the image that is not visible using Philament. All downstream analyses with
wrMTrck started with the hand-adjusted ImageJ thresholded recordings. Note that the filament pointed out by the red arrow is the object
referred to in Fig. 4.
however, it requires longer user input, slowing down
the analysis and data extraction. Also note, that
thresholding by Philament (Fig. 3 B.III) does not record
very small particles, which could be submicron-sized
filaments. These submicron filaments are prone to
tracking errors and are excluded from tracking via
the minimum size parameter (supporting material,
section object diameter).
Centroid tracking, path linking, and data processing

Once the movie has been thresholded, and thus the
objects have been differentiated from the background,
they can be tracked. We utilized the common centroid
tracking method within Trackpy, where the circumfer-
ence of the object is determined and then the “center
of mass” of the object is determined. An example of
this is shown in Fig. 4, A–E, which show the filament
highlighted in Fig. 3 outlined and the center of mass
of the object in each frame included. Fig. 4 F contains
a Z-projection of these five frames showing the rela-
tive movement of the centroid between each frame.
The calculation of the distance is done using basic
Euclidean distance calculations and the velocity for
each frame is reported (see Tables 1 and 2) based
on the frames per second.

Philament's tracking module (Fig. 1 B) is built
around an “engine” that implements the Trackpy
Biophysical Reports 4, 100147, March 13, 2024 5



TABLE 1 Raw object positional data returned by TrackPy

Frame Particle x y Mass

0 0 597.1512 6.948615 4481.702
1 0 596.34 7.233352 4124.727
2 0 596.1169 7.173213 4005.06
. . . . .
49 0 597.5523 5.953089 3637.708
0 1 307.174 284.2719 4402.076
1 1 306.3991 282.4232 4364.779
2 1 306.1741 280.5712 4504.637
. . . . .
10 1 300.9601 273.8124 3876.593
0 2 630.4716 293.7787 4507.463
1 2 641.7049 290.708 4768.711
2 2 648.5296 289.3021 4912.127
. . . . .

This is a sample of the Full Object Data Output showing how the
data are compiled before being processed. Note, the values for the
x and y columns are in pixels (not microns).

FIGURE 4 Measurement of object velocity via centroid tracking.
Examination of the filament highlighted in Fig. 3 B reveals how the
program calculates the area of the object and positions the centroid
within each frame of the first five frames of the movie (A–E, respec-
tively). (F) Demonstrates the overlay of all five frames and the posi-
tion of the centroid within each frame. The distance for each frame
is determined by using Euclidean distance to calculate the distance,
with the assumption that the filament, and thus the centroid, trav-
eled in a relatively straight line from one frame to the next (colored
arrows).
package to calculate the object positions and attri-
butes, such as size and paths of motion, while also
taking advantage of multithreaded processing to
decrease the time spent doing these calculations
(28). The Trackpy package simplifies centroid tracking
into three distinct steps using Python code. First, ob-
jects are located and defined with parameters such
as minimum size and shape (Fig. 5). Second, the coor-
dinate locations of the objects are obtained and saved
as a temporary data frame. Third, the object coordi-
nates are linked together into paths with the Crocker-
Grier linking algorithm (29). At this point, the object's
positional coordinates from frame to frame, as well
as the object's size, and various attributes are stored
in memory for use in calculating Philament's output
(Table 1). As shown in Fig. 5, this improved object-
tracking and path-linking algorithm produces a stark
increase in the length and number of objects tracked
when compared with objects tracked by wrMTrck.
6 Biophysical Reports 4, 100147, March 13, 2024
When comparing the paths (the linking of the motion
of the centroid pointed out in Fig. 4) derived from
either wrMTrck (Fig. 5 D) or Philament (Fig. 5 E) anal-
ysis to that of the averaged thresholded image
(Fig. 5 C), the paths tracked by wrMTrck do not always
line up with the movements of the filaments (Fig. 5 D,
red arrows). Meanwhile, using Philament, nearly all of
the motions of the filaments are accounted for by lines
being drawn over the tracks (Fig. 5 E, green arrows).
Note, paths drawn in Fig. 5 E were selected by the
blue arrows to mark a single filament in each case
that Philament initially “lost” but then regained. This
feature of Philament, which is not possible with
wrMTrck, is the ability to “remember” objects that
are momentarily lost from view. If the particle is re-
gained within a certain time frame (set in the Object
Tracking Memory on the opening GUI, see supporting
material), Philament resumes tracking the object.
This is possible because Philament can remember
the object size and, for the number of frames set,
will “look” for that object within the set search radius
until it has been found or the number of frames has
been reached. In the path file, this is shown by a break
in the colored path line indicating that the filament
was “lost,” and then reacquired. Philament recognizes
these regained objects as the same object that was
previously lost, and subsequently continues their
tracking, without inserting empty instantaneous veloc-
ities, the frame to frame velocity, for the frames that
were untracked. Since the lost objects do not remain
stationary while they are being reacquired by Phila-
ment, the instantaneous velocity would be artificially
high due to the distance covered while the program
looks for the filament again. This is corrected by
dividing the distance covered between the frame lost
and the frame recaptured by the time it was lost,
assuming the filament traveled in a straight line.
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Similarly, for filaments that break into two separate
filaments, Philament can continue tracking the original
object and begin a new path for the fragment. The
tracking algorithm identifies the filament fragment
that most “resembles” the intact object, using object
position, size, and shape as parameters. If the separa-
tion is so drastic that neither filament resembles the
previously tracked object, Philament begins new paths
for both objects. This functionality is also used for two
separate filaments that momentarily overlap. As
described above with filaments that are momentarily
lost from view, Philament will “look” for the objects un-
til they separate or until the number of frames is
reached.
Data analysis, filtering

Having extracted the data from the movies, it is neces-
sary to compile the data into a usable format that will
allow for further manipulation. The tracking “engine”
extracts the positional data for each tracked object
(x, y position), as well as the object brightness (mass
multiplied by the object size in pixels), object eccen-
tricity (a measure of circularity), and radius of gyration
of its Gaussian-like profile that is exported in the Full
Data Object when selected. These raw data contain
all the positional information for each frame of the
video and are not processed or altered, except for sort-
ing the data in increasing order, where particle 1 frame
1 is the first row, followed by particle 1 frame 2, etc.

Since Philament has been designed to extract data
from IVMmovies, no attempts were made to introduce
filters to help eliminate unwanted filaments. The only
filtering this program does is to eliminate filaments
(referred to as particles in the program) if they are
tracked for a single frame. These dropped objects
and their single positional datum is still available in
the full object data set but otherwise eliminated
from the final compiled data sheet.

As such, the end user will have to develop a filtering
system, on their own, to eliminate “bad” filaments; for
example, ones that are stalled, those that are moving
in a small region of space, or those that are only on
screen for a small amount of time. To aid in process-
ing the data, Philament has been designed to output
the data in a spreadsheet-compatible CSV file format
for ease of opening in spreadsheet applications. Phila-
ment presents the final data as shown in Table 2.

The object size (column Avg Obj Size, Std Obj Size)
refers to the filament size and is reported in pixels. It is
derived from the output column “mass” and refers to
the brightness of the particle. This value is obtained
by averaging the “mass” values from each frame the
particle was tracked and dividing that number by
255 (the value of the pixel brightness after
Biophysical Reports 4, 100147, March 13, 2024 7



FIGURE 5 Object tracking and path generation. (A) Shows the first frame from a representative raw movie. (B) The first frame of the Philament
thresholded image. (C) The 50-frame average of this movie. (D and E) The “Paths” files that are created by either wrMTrck (D) or Philament (E)
overlaid on the 50-frame average. As can be seen, Philament is able to track more filaments and for a longer period of time than can wrMTrck (red
arrows in Dmark the identical filaments detected using Philament in E, which are marked with green/blue arrows). Note, the paths marked by the
joined blue arrowsmark the same filament showing examples of where Philament lost and then regained detection of the filament to continue to
track it. Overall, the use of Philament leads to more objects being found per movie than with wrMTrck (F), error bars are mean 5 SD.
binarization). Since filaments in Philament are consid-
ered roughly elliptical with the area of the ellipse being
[a*b*pi]: a and b are one-half the length and width axes
of the ellipse, respectively. Measuring, and averaging,
the long axis (a) of the filaments from a sample of
videos provides an averaged b*pi value which can
then be used to accurately estimate the filament
lengths of the filaments in pixels within the movie.
This value then can be converted to microns by multi-
plying that by the size of the pixels for the camera be-
ing used.

The next two columns (File and Particle) refer to
the movie number of the experimental condition, in
this case, movie 6 out of 10, and the Particle number
is the filament number. Continuing to the right the
“FirstX” and “FirstY” columns refer to the centroid
position of that particle on the first frame it was
found. The Avg Speed and Speed Std columns are
derived from the instantaneous velocities and are
the average and standard deviation of all the instan-
taneous velocities obtained while tracking the fila-
ment. The Path Length column is the total distance
the filament traveled, regardless of the direction,
while the Displacement column is purely the dis-
tance of the centroids from the first frame the fila-
ment was tracked to the last frame the filament
was tracked. These two columns are offered to allow
users the ability to calculate the Length over
Displacement (L/D) value as a means of isolating fil-
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aments that are “stuck” on a region of the coverslip.
When the (L/D) value is close to 1, the filaments are
traveling in a straight line. Conversely, as this num-
ber approaches 0, the filaments are going in smaller
and smaller circles and may therefore need to be
filtered out.

For purposes of the data reported here, we used
three filters to eliminate filaments that we deemed
as not acceptable for inclusion into the data set.
These filters were: a frame number filter (to eliminate
filaments tracked for less than 5 frames; i.e., 1/10th
of total frames), an L/D filter (to eliminate filaments
that were either stuck in a small loop or were moving
via Brownian motion), and, lastly, a “stall” filter used
to eliminate filaments that were not moving or moving
very slowly. For our experimental purposes, the stall
filter was chosen to be 1 pixel per second
(0.139 mm/s) as the lower limit. The values of these fil-
ters can be adjusted by the user or can also include
other parameters not used by our group.

Using these filters, we get the results as shown in
Fig. 6, where the velocities of the Philament-analyzed
movies (Fig. 6 A) are faster on average than the
wrMTrck-analyzed movies (Fig. 6 B), with a more
tightly clustered fraction motile (Fig. 6, C versus D).
Based on the results shown in Fig. 5, this disparity in
velocity and fraction motile is due to wrMTrck's
inability to accurately track all the objects in the
movie.



FIGURE 6 Philament reports faster filament velocities, and more uniform fraction motile versus wrMTrck. Due to enhanced object detection
and tracking capabilities, Philament can capture faster average videos (A) than wrMTrck (B) while still maintaining the same trends. As shown in
(C) (Philament) and (D) (wrMTrck), Philament has improved capabilities to find and track all the objects in the frame. Thus, the fraction motile is
more uniform and consistent between runs providing the user more confidence in the velocity values reported. Error bars are mean 5 SD.
Instantaneous velocity versus average velocity

Although previous experiments using IVM have elimi-
nated filaments with staggered motion (frequent
starts and stops) under the assumption that they
were “stuck” filaments (6,7), it can be argued that the
inclusion of these data is vital to accurately describe
the interaction of myosin with actin. For example,
in the case of myosin, because it needs to “search”
for the next binding site as it walks along the actin fila-
ment, the movement of myosin along the actin fila-
ment is inherently Brownian motion in nature. In IVM
analysis, for actin filaments to continue moving for-
ward, a critical number of myosin heads must bind
and pull with enough force to move the filament while
simultaneously detaching previously bound myosin
heads. The probability of binding is therefore depen-
dent on a variety of factors such as the distance to
the actin filament, binding site distance, the orienta-
tion of the myosin head(s) with respect to the direction
of actin filament motion, and the number of myosin
heads near the actin filament (30–33). Thus, anything
that alters the fluidity/smoothness of actin filament
motion may influence the probability of actomyosin in-
teractions and be physiologically important. The
fluidity of a filament's motion can be described as
the relationship between the filament's average of
the instantaneous velocity versus the standard devia-
tion of the instantaneous velocity for each particle. As
shown in Fig. 7, when plotting the standard deviation
of the sliding velocity to the average velocity of each
filament we observe that, as myosin concentration in-
creases, the slope of this relationship goes down
(Fig. 7 B). This agrees with the proposed concept
that having more myosin heads available to bind and
interact with actin increases the smoothness of
motility, leading to a shallower slope.
Accuracy of filament tracking

To ensure that Philament can accurately locate and
identify fluorescently labeled actin filaments, we
initially compared the tracking ability of Philament
with either hand measuring (mTrackJ) or semiauto-
mated tracking using wrMTrck, a plugin for ImageJ.
We randomly selected five movies from our portfolio
of more than 3000 previously recorded movies that
Biophysical Reports 4, 100147, March 13, 2024 9



had a wide range of sliding velocities and filament
sizes. As shown in Fig. 8, over all five movies, Phila-
ment was able to find nearly the same number of ob-
jects (filaments) as mTrackJ (Fig. 8 A) and report
back similar velocities (Fig. 8 B) as the hand measure-
ment. Conversely, wrMTrck had issues in both finding
objects (�25% reduction, Fig. 8 C) and getting accu-
rate velocity measurements, in comparison with
hand measuring (�56% reduction, Fig. 8 D), indicating
that Philament can find more objects and track them
better than wrMTrck.
FIGURE 7 An increase in myosin concentration results in
smoother-moving filaments. (A) Illustrates the linear relationship
of one representative experimental run between the SD of the instan-
taneous velocity versus the average velocity of the filaments
referred to here as the “smoothness of motion.” In (B) the average
of all the slopes from every video collected demonstrates that
when the myosin concentration was increased to 20 mg/mL or
higher, the slope of the linear comparison decreased, suggesting
that the smoothness of motion increased, indicating fewer starts
and stops in the motion of the filaments. Error bars are mean 5

SD. All data points in the shaded area are significantly different
from 5 and 10 mg/mL myosin with a p value of %0.0001, except
for the 200 mg/mL with a p value of %0.01.
DISCUSSION

Here, we describe a new batch analysis program for
the rapid analysis of IVM recordings that vastly in-
creases the speed of the analysis of sliding filaments
over a bed of motor proteins. Philament can analyze
videos more than 10 times faster than wrMTrck, a
powerful plugin for ImageJ that was last updated in
2011 (�5.6 vs. �79.0 s/recording, respectively) allow-
ing for truly high-throughput analysis of IVM videos.
An easy-to-use Windows compiled version (�7
s/recording) is also available for those who prefer. Phi-
lament will open investigatory angles as users unfa-
miliar with coding or IVM analysis may enter the
field with a lower barrier of entry and can utilize IVM
to efficiently examine a plethora of mechanisms
contributing to and regulating cell motility. Further-
more, Philament offers a simpler way to eliminate
user bias in selecting and analyzing filaments thereby
allowing for more reliable and reproducible data re-
porting among different users. Finally, the ability to
plot the standard deviation of the instantaneous ve-
locity to the average velocity (i.e., smoothness of mo-
tion) will allow users to directly examine the impact an
intervention has on actomyosin interactions.

Overall, while there are other programs available
that have more extensive features (e.g., FASTrack),
we contend that the ease of use and the ability to up-
date or customize Philament provides an appealing
and compelling option for both experienced users
and new users interested in IVM analysis.
Limitations of Philament

While automated program analysis software for IVM
is preferred to manual tracking programs, due to its
elimination of user bias in selecting filaments and
the significant increase in throughput, limitations to
Philament exist. The main limitation, and the most
important one, is that image quality must be kept uni-
form for the entire data set. Since Philament does the
thresholding in a batch manner, if there are videos
that differ substantially with respect to intensity,
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that is, are brighter or dimmer than most videos being
collected, Philament will have trouble analyzing the
data. As such, for accuracy, attention must be given
to the image brightness during the data collection,
to ensure that videos have uniform brightness
throughout the entire experimental run. Note that if
the images have drastically different brightness, the
data is not lost, since these videos can be analyzed
separately.

To account for unequal brightness between files,
Philament has built-in error handling and skips any
files whose object paths cannot be accurately pre-
dicted from frame to frame. As path linking is a prob-
ability-based calculation, complete certainty is
impossible, therefore this is another limitation. When



FIGURE 8 Philament offers a similar level of object capture asmanual handmeasurements. Fivemovieswere analyzed to obtain the number of
objects (A) and unfiltered velocities (B). As shown in (C andD), Philament (in blue) returns similar results as foundby performing themeasurements
by hand (mTrackJ, black). Interestingly, the plugin wrMTrck (orange) had difficulty measuring speeds and the number of objects in the same five
movies. As shown in (C), wrMTrck found significantly fewer filaments, compared with mTrackJ; approximately 25% fewer objects were identified
while Philament identified�11% fewer filaments. In addition, wrMTrck returned significantly slower velocities (�56%) (D) as compared with Phila-
ment's�4% faster filament velocities. The values in (A and B) were normalized within eachmovie by dividing output velocities/no. of objects from
wrMTrck or Philament by the MTrackJ values for each of the five movies. These five normalizations are grouped into (C and D). Bars¼5SD.
first using Philament, care must be taken to optimize
the fitting parameters. It is recommended that users
pick one high-quality recording and experimentally
determine the best parameters, focusing on Object
Diameter and Search Radius first, and using the
“Create Path Files” option. By analyzing one file and
comparing the object paths to the tracked paths by
eye, users can adjust the parameters until the output
paths match the true object paths. For example, if
the Object Diameter is set too high, smaller filaments
may be missed and will be absent in the paths file.
Failure to tune parameters may result in inaccurate
data. Finally, to obtain rapid throughput on the data
analysis, the program was created to handle an equal
number of videos per condition. While convenient for
our purposes, if the goal is for high-throughput
screening, the user will need to ensure each condition
has the same number of videos.
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