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a b s t r a c t

When ambulances’ turnaround time (TT) in emergency departments is prolonged, it not only affects
the victim severely but also causes unavailability of resources in emergency medical services (EMSs)
and, consequently, leaves a locality unprotected. This problem may worsen with abnormal situations,
e.g., the current coronavirus disease 2019 (COVID-19) pandemic. Taking this into consideration, this
paper presents a first study on the COVID-19 impact on ambulances’ TT by analyzing historical data
from the Departmental Fire and Rescue Service of the Doubs (SDIS 25), in France, for three hospitals.
Because the TTs of SDIS 25 ambulances increased, this paper also calculated and analyzed the number
of breakdowns in services, which augmented due to shortage of ambulances that return on service in
time. It is, therefore, vital to have a decision-support tool to better reallocate resources by knowing
the time EMSs ambulances and personnel will be in use. Thus, this paper proposes a novel two-
stage methodology based on machine learning (ML) models to forecast the TT of each ambulance
in a given time and hospital. The first stage uses a multivariate model of regularly spaced time series
to predict the average TT (AvTT) per hour, which considers temporal variables and external ones (e.g.,
COVID-19 statistics, weather data). The second stage utilizes a multivariate irregularly spaced time
series model, which considers temporal variables of each ambulance departure, type of intervention,
external variables, and the previously predicted AvTT as inputs. Four state-of-the-art ML models were
considered in this paper, namely, Light Gradient Boosted Machine, Multilayer Perceptron, Long Short-
Term Memory, and Prophet. As shown in the results, the proposed methodology provided remarkable
results for practical purposes. The AvTT accuracies obtained for the three hospitals were 90.16%, 97.02%,
and 93.09%. And the TT accuracies were 74.42%, 86.63%, and 76.67%, all with an error margin of
±10 min.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that the Emergency Department (ED) is one of
he most crowded departments in hospitals [1–5], where people
eek immediate attention given the severity of their problem and
ong lines are generated contributing to patient dissatisfaction.
hat is more, EDs’ overcrowding can have a knock-on effect on
ther external services, such as ambulances. Theoretically, when
n ambulance arrives at the hospital with patient(s), the crew
ransfers the patient’s care to the ED staff, completes the neces-
ary reports, and cleans and restocks the ambulance (e.g., replaces
tretcher linens) to return on service. This total time an ambu-
ance spends at the hospital for handing over patient(s) is referred

∗ Corresponding author.
E-mail address: selene_leya.cerna_nahuis@univ-fcomte.fr (S. Cerna).
ttps://doi.org/10.1016/j.asoc.2021.107561
568-4946/© 2021 Elsevier B.V. All rights reserved.
to as turnaround interval [6], which we interchangeably refer to as
the turnaround time (TT) of ambulances throughout this paper.

However, with EDs’ overcrowding, there is a problem referred
to as ambulance offload delay (AOD), which occurs when am-
bulances’ patients cannot be transferred for immediate care to
hospitals’ ED [1,7]. On the one hand, AOD risks patients’ life
due to delays to receive adequate treatment and/or diagnosis,
for example. Besides, AOD affects the emergency medical system
(EMS) as their ambulance and staff will be in use for more time.
That is, AOD directly increases the ambulances’ TT, which poses a
population at risk if other major incidents occur and they cannot
attend to them [2,4,8,9].

Fire departments are a key component of civil security that
ensures the well-being of the population. In some countries such
as France, they are also responsible for emergency medical ser-
vices and have been facing a continuous increase in the number
of interventions over the years, which represents a need for the

https://doi.org/10.1016/j.asoc.2021.107561
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107561&domain=pdf
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cquisition of more resources and the optimal reorganization
f them [10]. In this study, we analyzed the Departmental Fire
nd Rescue Service of the Doubs (SDIS 25) that currently has 71
enters deployed throughout the Doubs region. In total there are
73 cities and 440 districts. Its main cities are: Besançon, its cap-
tal, where the nearest hospital is Besançon Regional University
ospital Center (CHRU), Montbeliard in the north, near the North
ranche-Comté Hospital (HNFC), and Pontarlier in the south, near
he Hospital Center Intercommunal de Haute-Comté (CHIH).

The SDIS 25 is equipped with specialized engines for each type
f intervention and the firefighters have various skills in operat-
ng these engines. If there are not enough resources available for a
ong period to attend to an intervention, either because of the lack
f firefighters, the lack of engines or both, a service breakdown
ccurs, i.e., the inability to assist within the time limits, which
uts the safety of a certain area or population at risk. For instance,
ver the years, it has been observed that most of the breakdowns
ave occurred in July, since more people go on vacation during
his time, including firefighters, i.e., there could be an increase in
he number of interventions and with reduced personnel more
reakdowns would be generated [11]. If we add to this the impact
f a natural phenomenon, epidemic or pandemic, centers would
e more affected, as well as their resilience if resources are scarce.
On 12th January 2020, the World Health Organization (WHO)

nnounced [12] a novel Coronavirus [13–18], which was officially
amed as ‘COVID-19’ (coronavirus disease 2019) [19] on the 11th
f February. Further, with the spread of COVID-19 across the
orld, it was declared as a pandemic [20] on 11th March 2020. In
eneral, multiple measures have been reported for dealing with
his novel Coronavirus across the world [21–24]. In France, as
tated in [25], strengthened surveillance of COVID-19 cases was
mplemented on 10th January 2020. In their paper, the authors
arefully described the real-time surveillance system for the first
hree cases, which were detected on 24th January 2020. For the
cope of this paper, the first official cases in the Doubs region
ave been reported on 18th March 2020 as shown in daily statis-
ics published by Santé Publique France in [26]. Nevertheless, the
DIS 25 early started to attend interventions in which patients
ad symptoms of the disease by 29th February 2020.
Although numerous measures were taken to secure peoples’

ealth and well-being, the COVID-19 pandemic has proven to
e quite a challenge, particularly to the public health sector [24,
7,28]. For instance, in several parts of the world, numerous
ews reported an increment to the ambulances’ waiting time in
ospitals. In the Texas county US, there are reports of ambulances
aiting about 4–12 h as hospitals are crowded with coronavirus
ases [29]. There is also a report in France, in which ambulances
ad to wait about 3 h in a hospital [30]. This increment could
ead sometimes to the worst-case scenario, i.e, patients’ death,
s every minute count in such a situation. This is a case, which
as reported in Australia, where two patients have died for long
aiting time in ambulances outside hospitals [31].

.1. Description of the intervention process

The process of dealing with an intervention by SDIS 25 is
riefly described as follows:

(a) First, an emergency call is received and the required arma-
ment is gathered to go to the scene.

(b) Once arrived at the scene, if necessary, the victim is taken
to the hospital.

(c) At the hospital, the firefighters wait to transfer the victim
to the hospital and to do the corresponding administrative
process.

(d) Finally, they return to their center and are available again
to attend other interventions.
2

Each performed step requires a record of the firefighter’s sta-
tus, which is done manually by pressing a button. The firefighter
crew chief makes a record to indicate that they are going to
the hospital, another record to indicate when they arrive at the
hospital, and another one to indicate that they are leaving it.
However, there is the possibility of human error, where the
firefighter may have forgotten to record the status and registered
it a long time later, or on the contrary, where the firefighter may
have accidentally recorded too soon.

In addition, an intervention can have several ambulances de-
parting at different times from the scene, depending on the
number of victims, or either, sometimes in the same hour we can
have several simultaneous interventions but of different types.
If firefighters spend more time in hospitals, i.e., high TT, there
will be fewer resources available at the centers to respond im-
mediately to an incident. Notice that the terms ambulance and
firefighter’s ambulance are used interchangeably throughout this
paper.

1.2. Purpose and contributions

With these elements in mind, the present work proposes a
novel methodology based on machine learning (ML) to make pre-
dictions for the TT of each ambulance in a given time and hospital,
aiming to provide a decision support tool for SDIS 25 and EMSs, in
general. This way, EMSs can activate various proactive mediations
according to the time their personal and resources will be in use,
aiming to mitigate service breakdown and, consequently, being
able to save more lives. In other words, for the short-term, such
predictions could allow better allocation of the remaining and
available resources if known a priori the time each ambulance
will spend in hospitals. For the medium- to long-term analysis,
such a system can be improved to re-calculate a better hospital
option considering the predicted TT. To summarize, this article
proposes 3 main contributions described in the following.

(a) Analysis of the COVID-19 impact on ambulances’ TT and the
breakdowns generated in the fire service. We provide an
in-depth analysis of the COVID-19 impact on the average
turnaround time (AvTT) per day in each hospital during the
first semester of 2020 in the Doubs region. Further, we de-
scribe the already existing breakdown problems in the fire
service due to long TTs in hospitals. Finally, we show how
this problem worsens with the arrival of COVID-19, demon-
strating the need for a system to prevent breakdowns in
the fire service in the face of a pandemic.

(b) Creation of a regularly spaced time series model that repre-
sents the average hourly turnaround time at each hospital.
The model is based on the history of TTs reported by SDIS
25 ambulances since 2015 for CHRU and CHIH hospitals,
and since 2017 for HNFC, in order to recognize hourly,
daily and weekly trends. To this was added internal ex-
planatory variables such as the number of interventions by
firefighters (a greater increase in interventions in a certain
period of time may indicate a greater number of victims
attending the hospital) and the suspected cases of COVID-
19 registered by the SDIS 25. External variables such as
the number of COVID-19 cases officially reported in the re-
gion; keywords most searched in Google to retrieve trends;
traffic predictions, since a very congested day can generate
accidents and victims to transport; and meteorological data
were also considered, since many floods usually occur in
the region, which generates material damage and victims.
Four state-of-the-art ML models were considered in this
task, i.e., a decision-tree based model (LGBM - Light Gradi-
ent Boosted Machine), a feedforward type neural network
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(MLP - Multilayer Perceptron), a recurrent neural network
(LSTM - Long Short-Term Memory), and a decomposable
time series model (Prophet).

(c) Creation of a irregularly spaced time series model to predict
the turnaround time for each intervention and its ambulances.
One or more ambulances belong to an intervention, if the
intervention has a long duration, the ambulances could
go to the hospital at different times of the day. It is here
where the first model described in (b) will provide us with
predicted information on the AvTT in a given hour as an
explanatory variable. Along with the type of intervention
(to recognize the degree of severity of the incident) and
other variables mentioned previously we propose to fore-
cast the TT for each ambulance. Because in the previous
task (b) the LGBM model consistently and considerably
outperformed the other ML models, for this task of pre-
dicting each ambulance’s TT (not average TT per hour), we
performed experiments with only LGBM.

To the authors’ knowledge, this is the first work that inves-
igates the impact of COVID-19 on ambulances’ TT. With our
indings, we noticed that SDIS 25 ambulances’ TT increased dur-
ng the outbreak, which led to more breakdowns in service due to
he shortage of ambulances that would normally return to service
n less time. This way, aiming at providing a decision support
ool for SDIS 25 and EMSs, in general, this paper also proposes
novel ML-based methodology to forecast the TT of each ambu-

ance in a given time and hospital. More precisely, considering
hat ambulances can arrive at hospitals anytime, our problem (c)
efers to irregularly spaced time series [32], i.e., the spacing of
bservation times is not constant (e.g., per day). Thus, we first
ropose to reconstruct a regularly spaced time series (i.e., AvTT
er hour), which gives us a reference on the average time that
everal ambulances could have been waiting, and thus, recognize
daily or weekly seasonality. Since not every hour nor every day
DIS 25 ambulances went to hospitals, a linear interpolation was
pplied to complete the dataset. This is because SDIS 25 is not the
nly institution to transport victims to hospitals. Finally, besides
he prediction of AvTT per hour/hospital (b), with the second
odel (c), we can refine the predictions for each ambulance,

.e., an irregularly spaced time series problem.
The present paper is organized as follows. Section 1.3 reviews

ontributions from related works. Section 2 details the construc-
ion of datasets (Section 2.1); the data analysis performed to
nderstand the normal and abnormal behaviors in the collected
ata (Section 2.2); the breakdowns generated due to long TT
eriods (Section 2.3); the proposed methodology composed of
wo forecasting models and their baselines (Section 2.4); finally,
e describe the metrics used to evaluate our models (Section 2.6).
ection 3 presents the results of the predictive models. Section 4
iscusses this research and its impact in fire brigade services.
inally, Section 5 shows our conclusions and future work.

.3. Literature review

ED overcrowding has been reported as one of the main causes
f AOD [1,3–5] since ED staff may not prioritize ambulances’
atients. AOD may lead to several risks to patients’ care and
irectly increases the ambulances’ TT in hospitals, which puts
population at risk if other major accidents occur and ambu-

ances are still in use. In [8], the authors conducted a prospective
ongitudinal study to analyze the impact of ED overcrowding on
irefighters’ AOD. The study identified 21,240 cases where their
mbulances were out of service due to AOD, which may have
significant effect on their ability to respond to other calls. As
oticed in the survey work on AOD from Li et al. [7], the impact
3

of AOD on EMS resource availability has received less attention
from the research community.

In [6], the authors coined the term turnaround interval for the
otal time an ambulance spends at the hospital, i.e., transferring
atient(s)’ care, completing paperwork, and reestablishing the
quipment for the next call. The authors conducted a prospective
tudy by analyzing firefighters’ ambulances’ activity on trans-
erring 122 patients to a hospital. In [33], the authors designed
discrete event simulation model to evaluate the change on
OD by having dedicated ED nurses for ambulances’ handover.
lthough the authors identified that this practice may reduce
he ambulances’ TT, this would also lead to low staff utiliza-
ion. In [34], the authors investigated the relationship between
mbulances’ TT with patients’ acuity, destination hospital, and
ime of the day, using one-year data from 61,094 patients. In [2],
he authors have analyzed the impact of ED overcrowding and
mbulances’ turnaround interval.
Notice that most aforementioned works have been performed

o highlight the importance of the topic and to identify the
elationship between ED overcrowding and ambulances’ TT, for
xample. To the authors’ knowledge, there is no research trying
o forecast the TT of ambulances in hospitals, as we present
n this paper, but rather for the prediction of patients’ waiting
ime in ED [35–37]. On the other hand, within the context of
OVID-19, multiple works have investigated machine-learning-
ased solutions to help to fight the outbreak, e.g., forecasting of
D volume [38] and forecasting the number of confirmed COVID-
9 cases [39–42]; we refer the readers to recent survey works on
L forecasting models and COVID-19 in [17,18].
In research directly related to firefighters and their processes,

irklbauer and Dieter [43] proposed a data-driven forecasting
odel for the type of firefighter interventions. The models were
uilt using two-years data, which achieved a preliminary accu-
acy of about 61%. On the other hand, our group has proposed
multi-forecasting model to the number of firefighter inter-

entions per region in [10]. In that work, it was noticed that
hile the number of interventions is increasing each year, fire
epartments’ resources are reduced. For this reason, there is
need to optimize the use of firefighters’ personnel and re-

ources, which could relieve the pressure on this emergency
edical transport system. The complete methodology also allows
privacy-preserving publication/sharing of interventions’ loca-

ion data, where the Extreme Gradient Boosting technique was
sed to forecast the number of interventions per region each day
ith both original and privatized data. Also, it is necessary to
now the current status of the fire department’s resources and
ervices in order to develop long and short-term reorganization
trategies. Thus, in [11], a methodology was created for the calcu-
ation of service ruptures, which allows identifying the types and
uantity of ruptures, as well as the unavailability of resources at
given time. In addition, with breakage data calculated in the

ast 3 years, predictive models were built for the number of daily
reakdowns, considering the number of firefighters and available
ngines as the main variables.

. Material and methods

In this section, we describe the collection process of internal
nd external variables. Besides, we analyze the recorded ambu-
ances’ TT through the years and the impact of COVID-19 on
mbulances’ TT; and, consequently, the impact of COVID-19 and
igh TTs on the fire service. Further, we present our proposed
ethodology for forecasting the TT of each ambulance and AvTT
er hour, and the metrics used to evaluate our models.
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.1. Data collection

The main source of data comes from the Departmental Fire
nd Rescue Service of the Doubs department, France. It contains
history of ambulances arrivals collected from January 2015 to

une 2020 for CHRU and CHIH hospitals, and from February 2017
o June 2020 for HNFC. For each hospital, two types of datasets
ere created:

• Arrivals dataset (Arr-DS). The samples represent the TT of
each ambulance in a hospital at any time of the day. The
features are: year, month, day, day of the week, day of the
year, and hour. Also, an indicator to recognize if it is the
beginning or end of the week, month, and year. In addition,
it was added three variables that jointly describe the type
of intervention, where each variable represents a set of sub-
categories. The first variable represents the 5 main activities
that firefighters cover, for example: rescue people, fires,
among others. For each activity, there are subcategories that
describe the level of urgency (second variable), for example,
in rescue people, we found 6 subcategories, two of them
are ‘‘Emergency situation" and ‘‘Special Circumstances of
the emergency (public road)". The third variable reports the
state of the victim, for example, in ‘‘Emergency situation",
there are 10 subcategories, two of which are ‘‘Severe exteri-
orized or external hemorrhage" and ‘‘Respiratory distress".
Finally, the TT in minutes (min) recorded was included. In
some records, we found TTs less than 5 min, which is very
rare, and it is possible that they were caused by a bad
manual recording. Therefore, if the TT is less than 5 min, we
clipped it at 5. Similarly, there were five unusual samples
with TT between 4–7 h, which were clipped at 90 min, since
most TTs (99.7%) had less than or equal to 90 min.

• Average turnaround time dataset (AvTT-DS). This dataset
has been organized by hour, where each hour represents
the average TT of all ambulances that arrived at the hospital
in that hour. For example, if between 15 h and 16 h there
were 3 ambulances with TTs: 20 min, 15 min, and 30 min,
the mean was 21.67 min for 15 h. In addition, each sample
includes the following features: year, month, day, day of the
week, day of the year, hour, an indicator to recognize if it
is the beginning or end of the week, month, and year. And,
since 90% of all hospital arrivals have had an AvTT between
10 and 60 min, we set the average minimum and maximum
with these values. The hours in which there were no arrivals
and, therefore, there was no recorded TT and AvTT, were
completed by linear interpolation since the TT over the years
has been constantly increasing.

In order to discover possible influential external variables, we
uilt another dataset (External-DS) by hour from ‘‘01/01/2015
0:00:00" to ‘‘30/06/2020 23:00:00", where we incorporated vari-
bles from the following sources:

• Google Trends. We used the Pytrends1 library to get the
hourly trends in a scale from 0 to 100 for the keywords in
french: ‘H1N1’, ‘coronavirus’, ‘SARS’, ‘Influenza’, ‘COVID-19’,
‘diarrhee’ (diarrhea), ‘grippe’ (flu), ‘varicelle’ (chickenpox),
‘incendie’ (fire), ‘inondation’ (flood), ‘greve’ (strike), ‘samu’,
and ‘suicide’.

• Bison-Futé [44]. This source gives us the prediction of the
traffic level for the Doubs region, as indicators from 1 to
4, where 1 means a regular circulation and 4 means an
extremely difficult circulation.

1 https://github.com/GeneralMills/pytrends.
 m

4

• Météo-France [45]. It provides us with historical weather
information such as: precipitation, temperature, barometric
trend, pressure, humidity, dew point, wind direction, wind
speed and gust speed.

• Data Gouv [26]. It is a platform for the diffusion of public
data from the French government, from which we extracted
information on the situation of the COVID-19 pandemic
from March 2020 to June 2020 to the region of Doubs
(Department 25). Data prior to this date were completed
with zeros, as there were no statistics reported.

Other variables included from the primary source were the
total number of interventions recorded in a given hour over the
6 years, and the number of cases attended with a suspect of
COVID-19 per hour from February 2020 to June 2020. This last
variable was completed with zeros before February 2020 too.

2.2. Data analysis

The dataset at our disposal has 78,777 interventions where
firefighters transported victims to one of the three aforemen-
tioned hospitals. The frequency on the number of times each
hospital received a victim is 55.44% (CHRU), 18.27% (CHIH), and
26.29% (HNFC), respectively. In order to understand how the
ambulances’ TT are distributed in our dataset, Fig. 1 illustrates, for
each hospital, a histogram with bins of 1 min and the cumulative
number of TT in hours (y-axis) for each day of the week and hour
in the day (x-axis).

In the first column of Fig. 1, CHRU, CHIH, and HNFC have right-
skewed distributions with mean and standard deviation (std)
values as 18.43±10.68, 14.91±8.66, and 22.61±11.26, respec-
tively. In the second column of Fig. 1, one can notice a similar
pattern for the cumulative sum of TT in hours that firefighters’
ambulances spend in the three hospitals with different peak
values, which depends on the frequency of times each hospital
received victims. This pattern is also noticed in the works [2,34].
In our case, from 8 h in the morning on, the TT starts to increase
and remains high up to 19 h when it starts to decrease. Also,
between 0–6 h, the highest cumulative TT is during the weekend,
i.e., Friday, Saturday, and Sunday. This is because at weekends
people tend to go out more and until the wee hours of the
morning, which might lead to more accidents, more patient visits
to hospitals during on-call hours with reduced staff, and results
in a slight increase in ambulances’ TT.

In addition, as stated in the introduction (Section 1.2), this
work aims to study the COVID-19 impact on ambulances’ TT in
the three aforementioned hospitals. First, Table 1 exhibits for each
semester (Sem.) of the analyzed years (2015–2020) and hospital,
the following statistics: the total number of arrivals (Arr.) and the
mean±std TT values in minutes.

As one can notice in Table 1, CHIH has fewer arrivals and a
shorter AvTT per semester whereas CHRU presents more arrivals
than the other two hospitals since it is located in the capital of
the territory, and a lower AvTT than HNFC. Besides, when looking
at the number of arrivals for the first semester, it can be detected
that there was a higher workload in the firemen department for
the years 2018 and 2019 compared to the other years. In the
case of 2020, the reduced workload was due to a lockdown pe-
riod,2 which decreased the movement of people and reduced the
number of firefighters’ interventions, for example, fewer traffic
accidents. The second semester of each year normally presents a
higher AvTT, which could be due to two holiday periods (Jul-Aug
and Dec), where people travel more due to vacations. Although

2 https://en.wikipedia.org/wiki/COVID-19_pandemic_in_France#Lockdown_
easures.

https://github.com/GeneralMills/pytrends
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_France#Lockdown_measures
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_France#Lockdown_measures
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Fig. 1. Statistical analysis for the TT of ambulances: each row illustrates a histogram with bins of 1 min to the TT frequency distribution (left side) and the cumulative
sum of TT in hours for each day of the week and hour in the day (right side), considering each hospital. On the left side, the frequencies for the three hospitals
follow a positively skewed distribution, where more than 80% of cases were less than one hour. On the right side, we can deduce that between 8 h and 22 h the
accumulated time follows the intense human activity while awake, which is translated as more workload and longer TTs.
Table 1
Data analysis, for each hospital, on the number of arrivals (Arr.) and Mean ± std TT values in minutes per semester during 2015–2020.
Sem. Year CHRU CHIH HNFC

Arr. Mean ± std TT Arr. Mean ± std TT Arr. Mean ± std TT

1st

2015 3,114 17.72 ± 10.24 1,230 14.50 ± 7.84 – –
2016 3,125 17.68 ± 10.36 1,176 14.33 ± 7.64 – –
2017 3,676 17.55 ± 10.31 1,288 13.99 ± 7.43 2,272 22.97 ± 11.12
2018 5,233 18.75 ± 11.37 1,548 15.05 ± 9.41 3,824 22.91 ± 12.18
2019 4,672 18.94 ± 11.66 1,368 15.63 ± 9.80 2,994 22.92 ± 11.90
2020 3,899 20.67 ± 12.57 1,184 15.96 ± 10.51 2,136 24.42 ± 13.19

2nd

2015 2,893 17.59 ± 10.28 1,174 14.69 ± 8.91 – –
2016 3,320 17.77 ± 10.32 1,222 13.88 ± 7.32 – –
2017 4,829 18.93 ± 11.76 1,556 15.04 ± 9.41 3,454 22.07 ± 10.90
2018 5,182 18.56 ± 11.35 1,440 15.50 ± 9.32 3,600 22.04 ± 11.55
2019 3,730 20.08 ± 13.03 1,208 16.52 ± 11.23 2,430 23.25 ± 12.37
the AvTT normally increased for each hospital throughout the
years according to its workload, the AvTT for 2020 is higher than
all years and for the 3 hospitals, even with a reduced workload
compared to 2018 and 2019. For instance, hospital CHRU pre-
sented about 9.13% more AvTT in the first semester of 2020 than
in the first semester of 2019, which is 9 times higher comparing
the increment for the same period for the years 2019 and 2018
(1%). Similarly, hospital HNFC presented about 6.54% more AvTT
in the first semester of 2020 than in the first semester of 2019,
while the years 2017–2019 presented similar AvTTs. This proves
the impact of the pandemic on the increase in ambulances’ TT.

Furthermore, we now try to comprehend how the on-going
andemic has made an impact on the ambulances’ AvTT per day
n hospitals for 2020 only. For this purpose, the plot on the top
f Fig. 2 illustrates for each day (x-axis) the AvTT in minutes
y-axis) for each hospital. Additionally, at the bottom of this
igure, the plot illustrates the official COVID-19 statistics from
wo data sources, i.e., Data Gouv and the ones reported by the
DIS 25, to search for evident patterns. More specifically, this
lot illustrates the current number of hospitalized individuals
hosp.), the number of patients in reanimation or critical care
rean.), the cumulative number of individuals who returned home
ret. home), and the cumulative number of individuals who died

dead) regarding the Data Gouv source, and the number of cases

5

per day attended by the SDIS 25 with a suspicion of COVID-19
(Susp. COVID-19). For both data sources, there is an indication of
the first day with COVID-19 cases.

In Fig. 2, while the first day with suspicious cases of COVID-
19 is 29/02/2020 reported by the SDIS 25, the date with official
cases is almost three weeks later, on 18/03/2020. However, one
can notice that as soon as the SDIS 25 starts to take a signif-
icant number of people with the symptoms of the disease to
hospitals in March (after 10/03/2020), the AvTT per day starts
to increase for CHRU and HNFC. This increment is more remark-
able, for the three hospitals, after the first official cases have
been reported. Furthermore, the peak period of hospitalized cases
occurred approximately from the middle to the end of April. In
such conditions, there were more hospitalized patients in which
some of them started to need more and even intensive care as
the number of cases in reanimation indicates. When comparing
the AvTT distributions of the 3 hospitals and the number of
discharged cases (Ret. home), we find an inverse correlation,
given that as hospital resources are freed up, AvTTs decrease.
The opposite case can be found when comparing the AvTT of
the 3 hospitals and the number of hospitalized cases (Hosp.),
where the 4 distributions follow a similar pattern, indicating that
there is a positive correlation between the variables, i.e., as the

number of hospitalized patients increased, the hospitals became
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Fig. 2. Statistical analysis for the AvTT per day considering the COVID-19 impact. The plot on the top illustrates statistics on the average turnaround time in minutes
er day for 2020 and each hospital. The plot on the bottom illustrates the COVID-19 related statistics provided by Data Gouv and the SDIS 25.
aturated and their response time to receive new patients was
ffected. This generated larger TTs for the ambulances, leaving
hem unavailable to attend other interventions and limiting the
esources of the fire brigade. In short, a chain effect on the
vailability of resources.
To complement Fig. 2, Table 2 exhibits the AvTT per hospi-

al and month for 2020 highlighting in italic font the highest
alue per hospital. Comparing the highest AvTT and the low-
st one per hospital, considerable increments were noticed. For
nstance, hospital CHRU presented about 24.96% more AvTT in
pril than in January, hospital CHIH present about 42.68% more
vTT in April than in February, and hospital HNFC presented
bout 29.13% more AvTT in May than in February. In general,
or each hospital, the period pre-pandemic (January and Febru-
ry) presented low AvTT while months March, April, and May
during-peak-pandemic) had peak-values, which is in accordance
ith the number of hospitalized cases and reanimation ones

n Fig. 2. Subsequently, in June (post-peak-pandemic) and for
ach hospital, the AvTT had an intermediate value between the
wo aforementioned periods. This can be due to the increasing
umber of patients that returned home and did not need special
are as the ‘ret. home’ curve in Fig. 2 indicates. Proportionally, the
umber of hospitalized and reanimation cases started to decrease,
hich alleviates the healthcare system.
With these elements in mind, it is now evident that the

OVID-19 pandemic has affected the ambulances’ TT in hospitals
f Doubs-France. This increment might affect the SDIS 25 service
o the population as their staff and resources would be in use for
ore time. That is, as a chain-like effect, this would increment

he number of breakdowns for the fire brigade when needing to
repare for future interventions, as presented in the work [11].
n the next Section 2.3, we present and discuss an analysis of the
ervice breakdown during 2020 to validate the negative impact
f the COVID-19 pandemic to SDIS 25.

.3. Service breakdown analysis

Besides an in-depth analysis of the COVID-19 impact on am-
ulances’ TT in hospitals of Doubs France, we also present an
tudy on the chain-like effect that high TT had on the fire ser-
ice. Following the work in [11], we applied the methodology
or the breakage calculation for the months of March to June
020, considering only the public service breakdowns of the type
‘Rescue People". Public service breakdowns occur when there are
o adapted engines, firemen, or both in the centers. This means
6

that no adapted armament is available for a certain period of time
to respond to an incident.

Fig. 3 shows the average breakage time in seconds per day
for the months mentioned above comparing the years 2019 and
2020. One can notice small peaks during the months of March
and June, which are periods before and after the peak of the
pandemic, respectively. However, in the first week of April, there
is a peak break of almost 2 h, which corresponds to the increased
TT for ambulances in hospitals presented in Fig. 2. What is more,
April and May have more days with longer breakdown times.
As previously analyzed, during these 2 months there were more
cases of COVID-19 in the Doubs region, which reveals that there
was certainly a chain reaction effect that left the fire service vul-
nerable, and as a consequence, a certain sector of the population
as well.

In more detail, Figs. 4 and 5 illustrate the causes of the break-
downs during the first semester of the years 2019 and 2020,
respectively. One can notice that for January and February of both
years, the results are close. However, in March 2020 there is
notable increment in the number of breakdowns due to lack of
engines, which is the starting month with increasing COVID-19
cases. On the other hand, April and May show a lower number
of breakdowns, which is because there were fewer interventions
during the lockdown period (see footnote 2) as people spent more
time in their homes. However, according to Fig. 3, the breakdown
time was longer, as the available adapted engine spent more time
in hospitals. Also, from March to June 2020, it can be seen that
there were few or no breakdowns due to the lack of firefighters.
The reason behind this is that firefighters and especially volun-
teers were at home and showed more availability, and there were
not as many simultaneous interventions as in 2019.

For this reason, this study aims at developing ML models for
forecasting the TT of ambulances. Such knowledge is paramount
for EMSs, as they could better prepare themselves for future
interventions and avoid breakdowns on the service as previously
analyzed. Such data-driven systems should be of high confidence
in order to adequately assist in decision-making solutions in real-
life. Moreover, these systems should also be robust enough to
abnormal situations such as natural disasters or even the current
COVID-19 pandemic.

2.4. Proposed methodology

2.4.1. Overview
The present research proposes a new methodology based on

ML techniques for predicting the TT of each ambulance related to
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Table 2
Data analysis, for each hospital, on the mean ± std TT values in minutes per month during 2020.

January February March April May June

CHRU 18.34 ± 7.75 18.93 ± 8.39 21.88 ± 10.62 22.90 ± 9.12 21.55 ± 8.89 20.38 ± 9.45
CHIH 14.92 ± 6.81 14.15 ± 4.95 16.38 ± 6.64 20.19 ± 10.55 17.44 ± 6.20 16.32 ± 7.86
HNFC 23.29 ± 10.63 21.11 ± 7.22 25.15 ± 11.27 24.24 ± 9.02 27.26 ± 9.92 24.38 ± 9.77
Fig. 3. Average breakage time in seconds per day for 2020, considering service public breakdowns of the type ‘‘rescue people".
Fig. 4. Causes of public service breakdowns of the type ‘‘rescue people" by month in 2019.
Fig. 5. Causes of public service breakdowns of the type ‘‘rescue people" by month in 2020.
hospital. The approach is composed of two time series models
i.e., regular and irregular). Fig. 6 describes the interaction of
oth models that are created in two stages as explained in the
ollowing:

tage 1: Predicting the average turnaround time per hour at each
ospital. To predict the TT for an ambulance, a valuable input

would be the approximate waiting time that patients may be
having in a hospital. However, we do not have internal hospital
data to make this prediction. Also, we may consider as entry
the AvTT in a given hour for ambulances from different public
and private organizations. However, we do not have a record of
all of them or their flow. But, what we do have is the history
of ambulances arrivals over the years of the fire department of
Doubs. So, from this history we generated a regularly spaced time
series per hour, which is the AvTT-DS. In this way, it is possible to
capture trends and seasonality over time, for example: over the
years the AvTT per hour has been increasing, during the day the

AvTT is higher than at night, etc. Then, we developed a predictive

7

model of AvTT for the next hour, considering external variables
from External-DS, that can influence long waiting periods.

Stage 2: Predicting the turnaround time for an ambulance. This stage
involves the construction of an irregularly spaced time series
model, using the Arr-DS generated from the arrival history, it
contains temporal characteristics and the type of intervention.
Likewise, we included the External-DS and the AvTT predicted
in the first stage. The objective is to forecast the TT of a specific
ambulance, that is, at the moment an ambulance warns that
it will go to the hospital, we make the prediction to know its
approximate TT in a certain hospital. In this way, firefighters will
be able to establish better strategies with their resources.

To evaluate the proposed methodology, the months April,
May, and June 2020 were selected as the testing set for each
hospital, since these are the months with a higher number of
COVID-19 cases (peak-pandemic period), as previously analyzed
in Section 2.2. For CHRU and CHIH hospitals the training set starts
from January 2015 until March 2020, and for HNFC the training
set is from February 2017 to March 2020.

During the hyperparameter search process, which is devel-

oped independently for each model (AvTT and TT), each iteration
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Fig. 6. The proposed methodology is based on ML techniques to predict the TT of an ambulance in a given hour and hospital. The first stage (dashed line flow)
is based on a multivariate model of regularly spaced time series to predict the AvTT of the next hour in each hospital. The second stage (solid line flow) is a
multivariate irregularly spaced time series model, which considers temporal variables of each ambulance departure, type of intervention, external variables and the
previously predicted AvTT as inputs. For example, to predict the TT of ambulances departing to a hospital at 2:25 h, 13:47 h and 18:15 h, the predicted AvTTs for
2 h, 13 h and 18 h (highlighted) are used, respectively.
tests a different configuration throughout the training cycle. Since
we use time series models, in which there is a dependency
in prior time steps that allows recognizing the increase in TT
over hours and days, the cross-validation-based training process
for both models was a rolling-origin evaluation [32,46] (a.k.a.
forward chaining). This is a more realistic approach to re-train
time series models with data that becomes available each time
(e.g., hour or day) for further predictions. More specifically, our
models are first fitted with the training set (with data until March
2020) for each hospital, making predictions one-step-ahead for
ll the hours of a day with the AvTT model, and per ambulance
eparture with the TT model for a day. This way, for all days in
he testing set (April, May, and June 2020), the training set is
xpanded to include all the known values of each day and the
rocess is repeated, i.e., the training set is updated day by day.
esides, all the predictions of each model (i.e., the three months
elected as the testing set) in an iteration are stored, and in the
nd, we compute the models’ metrics. For the hyperparameter
uning process, we used the root mean square error as the guiding
etric. Thus, a new hyperparameter configuration is generated
nd the search process is repeated during a given number of
terations. The pre-processing and modeling of each model, AvTT
nd TT, are described in the following two subsections.

.4.2. AvTT model: pre-processing and modeling
The dataset for the regularly spaced time series model, that

ill forecast the AvTT per hour, was organized as follows:

• We took the AvTT-DS and for each sample we added 3
moving averages of AvTT as features, using a window size
of 2 h back.

• Also, the AvTT of the last 24 h were added as features.
• Finally, we complete the dataset with the features of the

External-DS, according to the previous hour, since in real life
these are data that we can obtain previously.

The structure can be seen in Fig. 7, where each line represents
sample by hour with its identifier (Hour ID), and the columns

llustrate the predictors and the target, in yellow and orange,
8

respectively. Next, all features were standardized using Scikit-
Learn’s [47] StandardScaler function, except by the target, which
is the AvTT per hour in minutes.

In the search for the best model that gives us more accurate
results, we compared the performance of various intelligent ap-
proaches such as traditional neural networks (MLP and LSTM),
decision trees (LGBM), and a framework specifically oriented
to time series (Prophet). Each technique is briefly described as
follows:

• Light Gradient Boosted Machine (LGBM) [48]. It is a novel
gradient boosting decision tree algorithm, which uses the
leaf-wise tree growth strategy to significantly reduce calcu-
lation speed and memory consumption.

• Multilayer Perceptron (MLP). It is an artificial neural net-
work of the feedforward type, since the information flows
through several neurons organized in interconnected layers
classified as: input, intermediate (which can be more than
one) and output [49]. In this study, we used the implemen-
tation developed by Scikit-learn library, where the activa-
tion function considered was Rectified Linear Unit (ReLu),
and the optimization algorithm for learning information was
Adaptive Moment Estimation (Adam) [50].

• Long Short-Term Memory (LSTM) [51]. It is a type of recur-
ring neural network that overcomes the vanishing gradient
problem. Inside its cell memory unit, the learning process is
controlled by three gates: input, forget and output, which
give it the ability to forget part of the previous memory
and add new information. In this study, we used the Keras
library [52] to build our own architecture.

• Prophet [53]. It is a forecasting tool for time series data,
where trends are fit with a certain seasonality, depending on
the additive or multiplicative model selected. Furthermore,
it allows the addition of changepoints such as holidays, and
is robust enough to missing data.

To navigate the hyperparameter space and pick the most opti-
mal set, it was used the HYPEROPT library [54] with 50 iterations
for each technique described previously. This library is based on
Bayesian optimization and the selected logic was the algorithm
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Fig. 7. Illustrated example of the input data structure used for the AvTT model. In gray the hour identifier (Hour ID), in yellow the explanatory variables such as
time, traffic, weather, statistics of COVID-19 cases from Data Gouv, trends in Google, number of assisted interventions, AvTT of the previous 24 h, etc. And in orange,
the AvTT to predict.
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Tree Parzen Estimator suggest (tpe.suggest), which instead of
modeling the probability of an observation given a new con-
figuration, models two density functions according to a defined
percentile, to finally estimate the expected improvement of a
given run. The root mean square error, described in Section 2.6,
was used as a metric to guide the search for the best configuration
per technique.

2.4.3. TT model: pre-processing and modeling
The dataset for the irregularly spaced time series model, that

will predict the TT for each ambulance, was constructed as fol-
lows:

• We took the Arr-DS and added the features of the External-
DS, according to a previous hour, since these features come
from sources that export their data online and by hour.

• Since the AvTT model runs earlier, it will give us the average
prediction for the current hour, in which an ambulance is on
the scene and reports that it will go to the hospital. In this
way, the predicted AvTT will be used as a predictor when we
forecast the real turnaround time of a specific ambulance.
In addition, the AvTT per hour of the last 48 h were added
in order to improve the model’s ability to recognize daily
seasonality.

The structure can be seen in Fig. 8, where each line repre-
sents an ambulance departure to the hospital with its identifier
(Departure ID), and the columns in yellow and orange exemplify
the predictors and the target, respectively. Next, all features were
standardized using Scikit-Learn’s StandardScaler function, except
for the three variables that describe the type of intervention,
which are categorical and were encoded using One-Hot-Encoding
(OHE) function from Scikit-Learn library too. The target, which is
the TT of an ambulance, was kept in its original format (minutes).

To build the time series models, it was chosen the LGBM
technique, because of its robustness and execution speed. To find
the best set of hyperparameters, we performed 100 iterations
using tpe.suggest from HYPEROPT technique. The loss function
used was the root mean square error described in Section 2.6.

2.5. Baseline models

Two straightforward baseline models are used to compare the
effectiveness of the proposed methodology. The first baseline is
to compare with the multivariate regularly spaced time series
model from Section 2.4.2. The second baseline is to compare
with the multivariate irregularly spaced time series model from
Section 2.4.3.

2.5.1. Baseline: AvTT per hour
The baseline model to predict the AvTT per hour (BSAvTT) uses

the Arr-DS, where the TT of ambulances until the previous day
are averaged by hour, and these values are used as a prediction
for each hour during the current day. At the end of each day, if
there were ambulances transporting victims to the hospital, the
average for each hour is updated.
9

2.5.2. Baseline: TT for an ambulance
The baseline model for predicting the TT of an ambulance at a

given hour and hospital (BSTT) considers adding the External-DS
features, according to a previous hour, to each ambulance in the
Arr-DS. In this solution, we do not consider as features any AvTT
per hour of previous or predicted hours.

Similar to the standardization described in Section 2.4.3, pre-
dictors were transformed into features using the StandardScaler
and One-Hot-Encoder from Scikit-Learn’s library. The target kept
its original value in minutes. The technique used for the mod-
eling was LGBM and for the optimization of hyperparameters
was HYPEROPT with its tpe.suggest algorithm, 100 iterations, and
the root mean square error as the loss function described in
Subection 2.6

2.6. Metrics

Let yi be the real output, ŷi be the predicted output, and n
e the total number of samples, for i ∈ [1, n]. In this paper, the
odels were evaluated using the metrics described in following.

• Mean absolute error (MAE): MAE measures the averaged
absolute difference between real and predicted values and
is calculated as: MAE =

1
n

∑n
i=1 |yi − ŷi|.

• Root mean squared error (RMSE): RMSE measures the square
root average of the squares of the errors and is calculated as:

RMSE =
1
n

√∑n
i=1

(
yi − ŷi

)2.
• Accuracy with margin of error ±10 (ACC10): ACC10 is the

ratio of number of correct predictions, with a maximum
margin of error ±10, to the total number of input samples.
Let f (yi, ŷi) be a function that f (yi, ŷi) = 1 if ŷi ∈ {yi ±

1, yi ± 2, . . . , yi ± 10} and 0 otherwise. ACC10 is calculated
as: ACC10 =

1
n

∑n
i=1 f (yi, ŷi) ·100(%). For example, if yi = 35

and ŷi = 28 or ŷi = 41, f (yi, ŷi) = 1 in both cases.

. Results

In this section, it is first analyzed the results for the time
eries model to predict AvTT per hour and hospital (Section 3.1).
urther, we analyze results for the main goal of this work, i.e., to
redict the TT for each ambulance (Section 3.2) transporting
ictims to hospitals.

.1. Forecasting the average turnaround time of ambulances per
our

To predict the AvTT of ambulances per hour and hospital dur-
ng April, May, and June 2020, respectively, the baseline BSAvTT
nd four ML-based models were evaluated, namely LGBM, MLP,
STM, and Prophet. Table 3 presents the metrics, discussed in
ection 2.6, for each model and hospital, where the best results
re highlighted in italic font. Both MAE and RMSE metrics express
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Fig. 8. Illustrated example of the input data structure used for the TT model. In gray the depart identifier, in yellow the explanatory variables such as the type of
intervention, the predicted AvTT for the present hour and the AvTT of the last 48 h, time variables, Google trends, traffic, weather, etc. And in orange, the TT of the
ambulance to predict.
Fig. 9. Comparison between the real and the predicted AvTT for ambulances per hour in each hospital, namely CHRU, CHIH, and HNFC, respectively, by each ML
technique and the baseline BSAvTT.
model prediction error in units of the variable of interest AvTT
(minutes).

In Apeendix, Table A.5 indicates the range of each hyperpa-
ameter we considered in the Bayesian optimization, as well as
he best configurations used to train and evaluate the models. The
earch space for each technique was established with previous
mpirical experiments that helped to limit the search and define
he most influential hyperparameters. The latter are shown in
he table for each technique while those that do not appear keep
heir default values. In the case of LGBM, the maximum number
f boosted trees was 1000 with a maximum depth of 12, and
ubsets of samples and features were greater than 50% of the
omplete dataset. In the case of neural networks such as MLP,
dense layers were established, where the number of neurons
aried for each layer. Unlike LSTM, where the number of layers
nd neurons were initially defined, and the variations occurred
t the batch size and learning rate level. In the case of Prophet,
he default number of n_changepoints is 25, and it was modified
10
Table 3
Prediction results for the AvTT of ambulances per hour and hospital by ML
technique.
Hospital Metric BSAvTT LGBM MLP LSTM Prophet

CHRU
RMSE 9.70 7.36 7.78 8.77 7.70
MAE 6.82 4.94 5.49 6.05 5.34
ACC10 83.29% 90.16% 88.05% 84.02% 88.46%

CHIH
RMSE 9.08 3.79 4.27 4.85 4.00
MAE 5.60 1.76 2.60 2.75 2.15
ACC10 86.81% 97.02% 96.79% 95.28% 96.98%

HNFC
RMSE 10.08 5.97 6.77 7.88 6.66
MAE 7.58 3.52 4.45 5.53 4.55
ACC10 77.24% 93.09% 91.30% 86.22% 91.48%

to vary up to 100 in order to recognize the changes in the trends
of the TTs over hours, days, weeks, months and years, Similarly,
varying the seasonality_prior_scale allows us to experiment with
different sizes of fluctuations over time.
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Fig. 10. Comparison between the real hourly AvTT, the predictions of the best model obtained with the LGBM technique and the predictions of the baseline model
SAvTT, for each hospital (CHRU, CHIH and HNFC). It is observed that the AvTT predicted by LGBM better recognizes the patterns of the mean times and their
ariation through time, while the BSAvTT maintains a more constant pattern.
able 4
rediction results for the TT using the proposed methodology and the BSTT
odel.
Hospital Metric BSTT Proposed methodology

CHRU
RMSE 13.42 12.92
MAE 8.74 8.31
ACC10 73.96 74.42

CHIH
RMSE 13.99 10.53
MAE 7.70 5.37
ACC10 82.97 86.63

HNFC
RMSE 13.31 11.70
MAE 9.58 7.74
ACC10 68.02 76.67

Moreover, to highlight the effectiveness of the techniques in
ome peak values, Fig. 9 illustrates for each hospital and two days
48 h), the comparison of each ML model to forecasting the AvTT
f ambulances per hour in different days. Lastly, Fig. 10 illustrates
or each hospital, the time series results for the period with more
reakdowns in service (last weeks of April and the first weeks of
ay 2020), according to Fig. 3, during the COVID-19 peak-period.
his figure considers only the LGBM model, according to the best
esults of Table 3, and the baseline BSAvTT.

One can notice in Table 3 that all ML-based methods consis-
ently and considerably outperform the baseline BSAvTT model.
mong the four ML-based models, LGBM presented the best
erformance for all metrics and hospitals. Similar metric results
ere achieved by MLP and Prophet. Additionally, LGBM provided

aster execution time than neural network-based methods (MLP
nd LSTM) and Prophet. For hospital CHIH, LGBM provided lower
11
estimation error with RMSE = 3.79 and MAE = 1.76 minutes,
which naturally led to more correct predictions, considering a
margin of error of ±10 min, and ACC10 = 97.02%. These results
demonstrate that it is possible to forecast the AvTT of ambulances
in hospitals per hour with good accuracy for practical purposes,
i.e., 97% of the time, the error is less than or equal to 10 min.
Similarly, although not as good as for hospital CHIH, hospitals
CHRU and HNFC present ACC10 metric higher than 90% with
RMSE about 6 to 7 min.

One can notice in Fig. 9 that ML-based models follow the AvTT
hourly trend, as well as some peak values. In Fig. 10, while LGBM
presents accurate prediction results for the AvTT of ambulances
for all three hospitals, BSAvTT presents poor predictions following
a similar pattern for them through the days. Due to COVID-19,
the TTs of ambulances increased during some periods (cf. Fig. 2),
and therefore, using only the average per hour resulted in poor
performance.

3.2. Forecasting the turnaround time for each ambulance

To predict the TT of each ambulance in a given time and hos-
pital during April, May, and June 2020, respectively, the baseline
BSTT and our proposed methodology were evaluated. In both
cases, LGBM is the modeling technique. In our proposal, there are
additional predictors such as the AvTT predicted by the first (and
best) regularly spaced multivariate time series model, i.e., also
using LGBM, as well as past AvTTs for recognizing average daily
trends. Table 3 presents the metrics, discussed in Section 2.6, for
each model and hospital, where the best results are highlighted
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Fig. 11. Comparison between the real TT of each ambulance for each hospital (CHRU, CHIH and HNFC), the predictions of the proposed methodology and the
predictions of the baseline model BSTT.
Table A.5
Search space for hyperparameters by technique and the best configuration obtained for predicting AvTT per hour for each hospital.
Technique Search space Best configuration

CHRU CHIH HNFC

LGBM

max_depth: [1–12] 6 12 5
n_estimators: [50–1000] 143 808 768
num_leaves: [31–100] 40 61 45
learning_rate: [0.001–1] 0.8498 0.0103 0.0094
subsample: [0.5–1] 0.99 0.92 0.5
colsample_bytree: [0.5–1] 0.94 0.6 0.63

MLP

Dense layers: 2 2 2 2
nb_neurons: [100–500] (100, 302) (125, 325) (362, 562)
alpha: [0.00001–0.01] 0.000029 0.003674 0.000034
learning_rate_init: [0.0001–0.1] 0.0355 0.003611 0.000543
max_iter: [50–200] 154 86 177
tol: [0.00001–0.01] 0.003731 0.002888 0.000661
momentum: [0.00001–0.01] 0.0073 0.006057 0.00479
Early stopping: 20 20 20 20

LSTM

LSTM layers and neurons: 1, (110) 1, (110) 1, (110) 1, (110)
Dense layers and neurons: 2, (128, 1) 2, (128, 1) 2, (128, 1) 2, (128, 1)
Activation function: ReLU ReLU ReLU ReLU
Dropout: 0.5 0.5 0.5 0.5
Loss function: ‘mse’ ‘mse’ ‘mse’ ‘mse’
Optimizer: Adam Adam Adam Adam
Early stopping: 15 15 15 15
Max. epochs: 100 100 100 100
Batch size: [40–250] 93 142 112
Learning rate: [0.005–0.01] 0.00841 0.00595 0.00894

Prophet
n_changepoints: [20–100] 45 75 35
seasonality_prior_scale: [0–50] 36.82 18.17 12.13
holidays_prior_scale: [0–50] 23.47 22.42 34.77
12
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Table A.6
Search space for hyperparameters in LGBM and the best configuration obtained according to the method applied for predicting the
TTs of each ambulance.
Method LGBM search space Best configuration

CHRU CHIH HNFC

BSTT

max_depth: [1–12] 2 1 1
n_estimators: [50–1000] 978 820 678
num_leaves: [31–100] 98 59 99
learning_rate: [0.001–1] 0.0034 0.0099 0.0157
subsample: [0.5–1] 0.78 0.68 0.55
colsample_bytree: [0.5–1] 0.86 0.89 0.92

Proposed methodology

max_depth: [1–12] 6 2 9
n_estimators: [50–1000] 150 129 401
num_leaves: [31–100] 94 46 75
learning_rate: [0.001–1] 0.1888 0.0956 0.0299
subsample: [0.5–1] 0.72 0.65 0.79
colsample_bytree: [0.5–1] 0.73 0.76 0.5
in italic font. Both MAE and RMSE metrics express model pre-
diction error in units of the variable of interest TT (minutes).
In Apeendix, Table A.6 indicates the range of each hyperparam-
eter we considered in the Bayesian optimization, as well as the
best configurations used to train and evaluate the models. The
description of the LGBM search space follows the one made in
Section 3.1

Moreover, Fig. 11 illustrates the comparison of each model
o forecasting the ambulance’s TT in a given time and hospital,
n different periods during the COVID-19 outbreak. Notice that
here might be several or no ambulance in a given hour in the
ospital. Also, this figure plots the ambulances’ TT according to
he moment in which they reported that they were going to the
ospital.
As one can notice in Table 4, the proposed methodology con-

istently outperforms the straightforward BSTT model. While for
ospital CHRU the difference is small and favoring our methodol-
gy, for hospital CHIH and HNFC, our proposal considerably out-
erforms the baseline model. For instance, our proposed method-
logy provided a lower estimation error with RMSE = 10.53 and
AE = 5.37 minutes for hospital CHIH, which naturally led to
ore correct predictions by achieving ACC10 = 86.63%. Similarly,

hospitals CHRU and HNFC present ACC10 metric around 75% with
RMSE about 12 to 13 min. These results demonstrate that it is
possible to forecast the TT of ambulances in a given time and
hospital with good accuracy for practical purposes, i.e., 86% of
the time, the error is less than or equal to 10 min for CHIH,
for example. These results are also reflected in Fig. 11, where
our proposed methodology recognizes high- and low-peak TTs of
ambulances. On the other hand, BSTT tends to underestimate the
TTs for many ambulances by forecasting values around a mean
value.

4. Discussion

Extended waiting times to transfer patient(s) from ambu-
lances to EDs (i.e., AOD) and eventually, high TTs for ambulances,
may lead to numerous consequences for patients’ care, financial
losses, and unavailability of providing adequate emergency med-
ical services [3,4,7–9], for example. In this paper, we analyzed
ambulances’ TT from January 2015 to June 2020 on two hospitals
(CHRU and CHIH), and from February 2017 to June 2020 on one
hospital (HNFC), for the SDIS 25 fire department in Doubs, France.
Although one can find works in the literature investigating the
TTs of ambulances [2,6,33,34], we included in our analysis (Sec-
tion 2.2) the impact of COVID-19 in the TTs of ambulances in
a larger longitudinal study. Further, we analyzed the negative
impact due to COVID-19, which increased the TTs of firefighters’
ambulances and, consequently, generated more breakdowns in
services (Section 2.3).
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The study in [34] identified a high correlation between patient
acuity and TT. In our case, there are three variables related to the
type of intervention, in which the latter is the severity level of the
victim. Taking this into consideration and for the first time, this
research proposed a ML-based methodology (cf. Fig. 6) to forecast
the TT for each ambulance in a given time and hospital, using as
a reference the forecasting of AvTT per hour for ambulances in
hospitals, its type of intervention, and external variables. Indeed,
forecasting the TT of an ambulance in a given time and hospital
could provide valuable information for SDIS 25, and in general,
for EMSs. For instance, EMSs could activate proactive decision-
making with the available resources and personnel in order to be
able to save more lives. Further, if there are policies on ambu-
lance diversion, EMSs may consider diverging their ambulances
to other EDs whose TT is smaller to provide adequate care to
the ambulances’ patient(s), as well as, returning on service in
less time. Besides, the predicted AvTT for ambulances in the next
hour(s) could provide approximate information for ambulances’
TT, which hospitals and EMSs services may consider as a ref-
erence value, and use as a predictor in a second model as we
propose.

These data-driven systems should be of high confidence in
order to assist adequately as a decision-support tool in real-
life. Moreover, these systems should also be robust enough to
abnormal situations such as natural disasters and pandemics. For
instance, in adverse cases such as the current COVID-19 pan-
demic, the need for such a kind of information (ambulances’ TT
and AvTT) becomes vital since healthcare systems may saturate.
While our work was motivated to include the impact of the novel
COVID-19 pandemic, our solutions are not limited to it. Indeed,
these forecasting models could help other private or public EMSs
to forecast the TT of their ambulances and AvTT of hospitals, as
well as to future abnormal situations.

To evaluate our proposed methodology, experiments were
performed for the period of April, May, and June of 2020, which
considers the peak-period of the COVID-19 first wave in the
Doubs Region (cf. Fig. 2) and a high number of breakdowns in
the SDIS 25 service (cf. Figs. 3 and 5). As shown in the results,
it is possible to accurately forecast the TT of each ambulance in
a given time and hospital, as well as, to forecast the AvTT of
ambulances per hour and hospital. On the one hand, our pro-
posed methodology achieves ACC10 metrics ranging from ∼ 75%
(CHRU) to ∼ 87% (CHIH), considering a margin of error of ±10
min, which are promising accuracies for practical purposes to
forecasting the TT of an ambulance. In addition, the multivariate
regularly spaced time series model trained with LGBM achieves
ACC10 higher than 90% for all three hospitals for predicting AvTT.

In our experiments, it is remarkable the improvement of the
results with the proposed methodology, for such complex and
important tasks, comparing to straightforward prediction models
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uch as the baselines BSAvTT and BSTT. On the one hand, BSAvTT
s a straightforward solution that considers only the historical
ata of ambulances’ TT and averages the TT per hour for pre-
iction. Even though this is an intuitive solution that hospital
taff and/or EMS could think of applying, we demonstrate that
raining multivariate time series models based on ML result in
uch higher performance. For instance, external variables such
s meteorological (bad weather may results in more traffic ac-
idents, floods, etc.), temporal (day of the week/year, holiday
r not), trends (google search for disease-related keywords), are
ariables that may lead to reasons of overcrowding in hospitals’
Ds. On the other hand, BSTT is a straightforward model that
ne might consider applying by using only the historical data
f ambulances’ TT, external variables (traffic, weather, etc.), and
ariables related to the incident (type, hour, etc.). However, we
emonstrate that adding the predicted AvTT of ambulances for
he hour an ambulance is going to the hospital and past AvTTs,
eads to much higher performance for this complex task.

Finally, the present work has some key limitations that are
escribed in the following. We analyzed and build our models
sing the data of SDIS 25. Although it may represent a sufficient
mount of samples, other emergency medical services in France
lso transport victims to hospitals’ EDs. In addition, there was
o data from hospitals such as a history of all ambulances’ TT,
atient flow and the number of doctors on duty, for example.
hese variables could be of high importance as they are internal
o hospitals, which would help ML models to better forecast the
T of each ambulance and AvTT for ambulances.

. Conclusion and future work

This paper presents a first study on the impact of the cur-
ent COVID-19 pandemic on the firefighter ambulances’ TT on
ospitals in the region of Doubs-France. A significant increase
n the AvTT per day has been identified in 2020 as soon as the
umber of official and suspected cases of the disease began to
ise. Additionally, in comparison with previous years, this incre-
ent is not normal, which strengthens the claim that the AvTT
er day increased due to the COVID-19 pandemic. A direct and
egative chain-like effect is the increment of breakdowns on the
irefighters’ service in 2020 due to the lack of ambulances and
ersonnel in the centers of the SDIS 25. Therefore, it is vital
o have some data-driven system to forecast the TT that will
ave an ambulance in a certain hospital, as we propose in this
aper. This prediction could be made at the moment when the
ersonnel report that they will go to the hospital. This would help
ire brigades, and in a global context, EMSs to activate proactive
ecision-making with the available resources in order to allow
aving more lives.
For future work, we will extend our analyses and forecast-

ng to the second semester of 2020, which includes the current
econd wave of COVID-19 in France. Also, we aim to improve
he proposed methodology by adding new features and analyzing
heir influence (i.e., feature selection), and to test with other ML
echniques. Finally, there is also another direction for further
esearch, and that is about finding the nearest hospital with a
horter TT, considering internal hospital data.
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