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Diabetic bladder dysfunction (DBD) is a well-recognized and common symptom affecting

up to 50% of all diabetic patients. DBD has a broad range of clinical presentations ranging

from overactive to underactive bladder symptoms that develops in middle-aged to elderly

patients with long standing and poorly controlled diabetes. Low efficacy of current

therapeutics and lifestyle interventions combined with high national healthcare costs

highlight the need for more research into bladder dysfunction pathophysiology and novel

treatment options. Cellular senescence is an age-related physiologic process in which

cells undergo irreversible growth arrest induced by replicative exhaustion and damaging

insults. While controlled senescence negatively regulates cell proliferation and promotes

tissue regeneration, uncontrolled senescence is known to result in tissue dysfunction

through enhanced secretion of inflammatory factors. This review presents previous

scientific findings and current hypotheses that characterize diabetic bladder dysfunction.

Further, we propose the novel hypothesis that cellular senescence within the urothelial

layer of the bladder contributes to the pro-inflammatory/pro-oxidant environment

and symptoms of diabetic bladder dysfunction. Our results show increased cellular

senescence in the urothelial layer of the bladder; however, whether this phenomenon

is the cause or effect of DBD is unknown. The urothelial layer of the bladder is made

up of transitional epithelia specialized to contract and expand with demand and plays

an active role in transmission by modulating afferent activity. Transition from normal

functioning urothelial cells to secretory senescence cells would not only disrupt the barrier

function of this layer but may result in altered signaling and sensation of bladder fullness;

dysfunction of this layer is known to result in symptoms of frequency and urgency. Future

DBD therapeutics may benefit from targeting and preventing early transition of urothelial

cells to senescent cells.
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INTRODUCTION

The bladder functions to store and excrete urine, which is required to remove waste from the
body. Normal urine storage occurs over a broad range of volumes that empties in a controlled
and efficient manner at an appropriate time and location. This not only requires accurate sensation
of bladder fullness, but also coordinated actions of the parasympathetic and sympathetic nervous
systems to contract and relax the urinary bladder wall and urethral sphincters (1). Dysregulation
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of the urinary bladder results in lower urinary tract symptoms
(LUTS) such as nocturia, urgency, frequency, incontinence, etc.
(2), which if left untreated, can lead to systemic inflammatory
response syndrome and sepsis, and even possibly death (3, 4).
LUTS have a significant negative impact on quality of life and
are strongly associated with depression (5–7). These symptoms
also impact United States health care costs; overactive bladder
alone is estimated to cost $82.6 billion by 2020 (8). LUTS are
frequent in the general population, affecting 62.5% of men and
66.6% of women (9). The incidence of LUTS also increases with
age (10) and with an aging population (11), we expect the number
of patients experiencing LUTS to be on the rise.

LUTS are not only associated with age, they are also comorbid
with stroke, brain tumors, cerebral palsy, dementia, sexual
dysfunction, spinal cord injury, multiple sclerosis, and diabetes
(12–20). Diabetes is characterized by defects in the secretion or
signaling of insulin that results in the impairment of glucose
uptake and ensuing high plasma glucose levels (21). Initially,
hyperglycemia results in an elevated concentration of glucose
in the urine, exceeding the amount reabsorbed by the kidney,
leading to osmotic diuresis and polyuria. During this early
compensated state, patients may present with symptoms of
overactive bladder, including urgency, frequency, and nocturia.
Over time, the early compensated state progresses into a late
decompensated state that research suggests is due to chronically
high levels of glucose and oxidative stress (Figure 1; 22; 13).
Patients within the late decompensated state present with
symptoms of underactive bladder, including decreased bladder
contraction, increased post-void residual volume, difficulty
initiating and maintaining voiding, and enhanced capacity.

LUTS affect up to 50% of all diabetic patients and are referred
to as diabetic bladder dysfunction (DBD) (13, 22). Despite recent
advances in understanding DBD, underlying mechanisms are
unclear and to complicate things further, there are few studies
that parcel out pure age-dependent changes from dysfunction
due to underlying pathology or disease (10, 23). Here, we discuss
the current theories underlying DBD and a novel hypothesis that
increased cellular senescence within the bladder is the initiating
factor in tissue dysfunction, which culminates in symptoms of
DBD.

THEORIES AND HYPOTHESES ON THE
ETIOLOGY OF DIABETIC BLADDER
DYSFUNCTION

There are multiple suggested mechanisms underlying DBD
symptoms that are generalized to the whole bladder although
the majority are focused on the smooth muscle layer. Literature
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wingless-related integration site.

reports alterations within the components of muscle contraction
(calcium handling, receptors, channels, protein isoforms,
thin, and thick filaments) (24–29), oxidative stress (30, 31),
inflammation (32–34), neuropathy (35–37), and age-related
changes (38). Possibly the most consistently reported change is
an increase in whole bladder weight (Figure 2; original data).
Interestingly, diabetic animals and control aged animals have
similar increases in bladder weight compared to young controls;
these changes parallel the increased presence of LUTS with
diabetes and age in human populations.

DBD encompasses both storage and voiding symptoms and
has been hypothesized, by Daneshgari’s group in 2009, to
progress temporally from an early compensated state, where the
bladder adapts to increased polyuria, to a late decompensated
state due to chronically high levels of glucose and oxidative
stress (13, 39, 40). This temporal hypothesis is the most current
hypothesis detailing disease progression. In 2014, Chancellor
further hypothesized that the early compensated state leads
to the late decompensated state through tissue fatigue and
changes in the structure and function of the bladder leading
to ischemia, inflammation, oxidative stress, and this induces
impaired contractility in the decompensated state (38).

This section highlights reported changes within the different
layers of the urinary bladder. Scientific studies mentioned
within this section rarely parcel out voiding behavior as
an output measurement when investigating mechanisms of
bladder dysfunction; therefore, classification into overactive or
underactive bladder pathophysiology is unclear.

Urinary Bladder
Urothelium

The urothelial layer is the inner most layer of the bladder
that functions as a permeability barrier to urine, protecting
the underlying tissue. It has sensory functions that respond to
chemical, mechanical, and thermal stimuli by releasing factors
such as ATP, acetylcholine, and nitric oxide to modulate afferent
transmission, relaying the extent of bladder fullness (41–44). The
urothelium is made up of three layers of cells: basal, intermediate,
and apical or superficial cells (45). The superficial cells are the
main component in barrier function and exhibit specialized
tight junctions, which facilitate the prevention of unregulated
chemical diffusion (45). Barrier dysfunction results in symptoms
such as urgency and frequency and this layer has been shown to
be altered by diabetes (46). For example, Hanna-Mitchell et al.
in a streptozotocin (STZ; 65 mg/kg)—induced model of diabetes,
through preferential toxicity to the insulin producing β-cells of
the pancreas, reported that exposure to chronic hyperglycemia
induces desquamation of the superficial cells, subsequently
contributing to breaches in the barrier function of the urothelium
(47). At a later time point, the urothelium exhibited barrier
repair and vast changes both in cell morphology and gene
expression (glucose metabolism, cell survival and proliferation,
parasympathetic receptors, and cell stress/death), which are
also factors that are altered in senescence (47). Further, Wang
et al. reported increased urothelial inflammation in overactive
bladder, which they noted did not differ between overactive
patients with or without diabetes; however, overactive bladder
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FIGURE 1 | Temporal progression of diabetic bladder dysfunction. Adapted from Daneshgari et al. (13).

FIGURE 2 | Increased bladder weight in diabetic and aged animals. Bladder

wet weight was measured in female and male control and diabetic animals

(18–20w of age; 1 month post-STZ injections) and in aged male animals (53w

of age). Diabetes was induced using the combination of a high fat diet and one

streptozotocin injection (30 mg/kg) in Wistar animals.

was diagnosed solely based on urgency and urgency incontinence
(48). Initial diabetes-induced damage to the urothelial layer
could contribute to symptoms of overactive bladder, whereas
repair accompanied with cellular changes may indicate the
transition between the compensated and decompensated states of
DBD.

Lamina Propria

The lamina propria is a loose areolar connective tissue that
is located deep to the urothelial layer. The lamina propria
connects the urothelial layer to the underlying smooth muscle
layer and is both blood perfused and innervated, supporting

the urothelial layer with nutrients and neuromediators. This
layer contains collagen as well as several cell types, including
interstitial cells (IC), fibroblasts, and adipocytes (41). Studies
have reported changes in collagen composition (both increased
and decreased) possibly contributing to altered strength and
stiffness of the tissue (40). Increased collagen levels within
the lamina propria could lead to increased tissue stiffness
and strength as well as decreased nutrient diffusion to the
urothelial layer and initially contribute to symptoms of overactive
bladder. Decreased collagen levels would result in decreased
tissue and contribute to symptoms of underactive bladder. The
function of resident cells of the lamina propria could also be
affected by diabetes. Recent identification of IC seem to serve
similar roles as IC of Cajal (ICC) in the gastrointestinal (GI)
tract by regulating smooth muscle excitability and mediating
responses to neurotransmitters (49–51). ICC have spontaneous
pacemaker activity which is conducted to the smooth muscle
layer through gap junctions resulting in electrical slow waves
and phasic contractions. Neural inputs, from motor neurons in
close proximity to ICC, can also induce contraction by electrically
coupling with smooth muscle cells. This complex operates below
the level of neural and hormonal smooth muscle regulation and
a loss of any component or connectivity of the complex has
been associated with GI motor disorders (52). For example, a
decrease in the number of GI ICC is believed to contribute to
disturbed GI motility in human patients with type 2 diabetes
(53) and diabetic db/db mice (54). IC within the urinary bladder
has gained much interest due to evidence of its association
with bladder pathophysiology where the number of IC have
been shown to be both increased (55, 56) and decreased in
overactive bladder and bladder outlet obstruction (57). Further,
alterations or disruptions of these IC have been proposed to
disrupt homeostatic tissue function within the urinary bladder
(55, 58, 59). Increases in the number of IC could in theory
increase the amount of spontaneous smooth muscle activity;
therefore contribute to symptoms of urgency within overactive
bladder. In contrast, a decrease in the number of IC could lead to
decreased contractility and symptoms present within underactive
bladder.
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Smooth Muscle

The smooth muscle layer of the urinary bladder functions
to contract (parasympathetic nervous system) and relax
(sympathetic nervous system) the bladder during micturition
and urine storage, respectively. There are a variety of DBD
studies focused at the layer of the smooth muscle that depict
modifications within contractility, neurotransmitter release,
receptor and channel expression, thick and thin filament and
contractile protein expression, and protein phosphorylation;
however, results are varied showing both increased and decreased
expression of components mentioned (13, 25, 27–29, 31, 60).

Urethra
The urethra is a duct that transfers urine from the urinary
bladder to the exterior of the body. The urethra is held closed by
two sphincters, the internal urethral sphincter, and the external
urethral sphincter, which are made up of smooth and skeletal
muscle, respectively. Alterations with urethral function have been
reported, showing both smooth and skeletal muscle dysfunction
of urethral relaxation during the voiding reflex (61, 62). This
could contribute to increased bladder pressure, increased void
volume, and trouble initiating and maintaining voiding, altering
normal bladder function and causing further damage to the
urinary bladder. Consequences of these alterations include
increased intravesicle pressure, as well as increased detrusor
muscle contraction as a compensatory mechanism, contributing
to underactive bladder symptoms.

DIABETES IS ASSOCIATED WITH
INCREASED CELLULAR SENESCENCE

Cellular senescence is a physiologic process in which replication-
competent cells undergo irreversible cell cycle arrest induced
essentially by any insult that produces DNA damage (replicative
exhaustion and telomere shortening, excessive/ prolonged
cellular stress) that can be grouped into three different subtypes:
replicative senescence, stress-induced premature senescence,
and oncogene-induced senescence (63, 64). This DNA damage
results in the downstream activation of p53 and convergence
on the inhibition of cyclin-dependent kinases (CDK), a
family of protein kinases that are involved with cell cycle
regulation (63). The inhibition of CDK–cyclin complexes
results in proliferative arrest and the crucial component
responsible for the implementation of senescence is the
hypo-phosphorylated form of retinoblastoma protein (64).
Senescence is generally considered a physiologic process and
a protective mechanism to prevent morbidity by reducing the
transmission of genomic defects to the next generation (63).
In fact, studies suggest that controlled senescence promotes
tissue regeneration via the recruitment of phagocytic immune
cells to sites of injury after which senescent cells are then
cleared (65, 66). Recruitment of immune cells depend on
senescent secretory activity known as the senescence-associated
secretory phenotype (SASP), allowing the secretion of pro-
inflammatory cytokines and chemokines, reactive oxygen species
(ROS), growth factors, and proteases into the local tissue
microenvironment through autocrine and paracrine signaling

(64, 67). An accumulation of senescent cells occurs with
aging and is associated with tissue dysfunction, as well as
numerous pathologies. Interestingly, we have evidence that
urothelial senescence also increases with age (Figure 3; original
data). Mechanistically, senescence-induced tissue dysfunction
and pathology is thought to occur through the chronic release
of SASP mediators and a heightened inflammatory state (64, 68–
72).

Recent evidence suggests that cellular senescence is an
important developmental contributor and/or consequence of
type 2 diabetes (70). For example, several studies describe
augmented inflammation and increased number of senescent
cells within pancreatic β-cells of type 2 diabetic patients (73,
74). Monocytes from type 2 diabetic patients exhibit telomere
shortening and increased oxidative DNA damage compared
to healthy individuals (75). Fibroblasts isolated from diabetic
wounds exhibit disturbed proliferation (76). Senescent cells are
increased in adipose tissue of both type 2 diabetic animal
models and patients (77, 78). Further, high glucose induces
cellular senescence in multiple cell types in vitro including
endothelial cells, mesothelial cells, vascular smooth muscle
cells, mesenchymal stem cells, and skin fibroblasts (79–83).
We also have evidence that high glucose increases cellular
senescence in primary bladder smooth muscle cells (Figure 4;
original data). Overall, evidence suggests an association between
type 2 diabetes and increased cellular senescence, possibly via
heightened (mitochondrial) oxidative stress (77, 78). In fact,
targeting senescent cells in type 2 diabetes has been suggested
as a therapeutic option (70). Low-grade systemic inflammation
is a common manifestation of diabetes; however, the exact
mechanisms that initiate this pathophysiological response,
thereby contributing to diabetic complications, including DBD
and LUTS is not known.

THE IMMUNE RESPONSE AND
INFLAMMATION IN DIABETIC BLADDERS

The urinary tract has several lines of defense that protect
against infection. The first line of defense are superficial

FIGURE 3 | Senescence associated-β-galactosidase staining is increased in

aged Wistar urothelium compared to young control counterparts. Senescence

associated-β-galactosidase staining (blue) and nuclear fast red counterstain in

young (20w of age) animals and old (53w of age) animals (left and right

panels, respectively). Representative images of bladder SA-β-galactosidase at

200X. SM, smooth muscle. UR, urothelium.
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FIGURE 4 | High glucose increases senescence associated-β-galactosidase

staining in primary bladder smooth muscle cells. Senescence

associated-β-galactosidase (blue) and nuclear fast red counterstain in high

mannitol osmotic control (22mM; left panel) and high glucose (22mM; right

panel) after a 4 day incubation. Representative images of primary bladder

smooth muscle cell senescence associated-β-galactosidase at 100X.

urothelial cells that not only act as a physical barrier, but also
secrete pro-inflammatory mediators and antibacterial agents.
Urothelial cells are connected by tight junctions, made up of
4–6 intracellular protein strands containing claudin, occludin,
junction adhesion molecules, and zonula occludens that link
these strands to the intracellular cytoskeleton (84, 85). This
robust architecture is essential, and it contributes to the sterility
of the bladder by preventing passive movement of particles
between the blood and the urine. Further, these cells contain
thick scallop-shaped plaques along the apical membrane that
are covered with a sulfated polysaccharide glycosaminoglycan
layer to further maintain the physical barrier of the bladder
by deterring microbial colonization (84, 86, 87). In addition,
urothelial cells also secrete factors that inhibit bacterial growth
by interfering with the structure of the bacterial cell membrane
or preventing protein synthesis within the cell (88–92).

Urothelial cells possess an abundance of pattern recognition
receptors (PRRs) of the innate immune system including Toll-
like receptors (TLRs), which recognize early indications of
infection and release pro-inflammatory mediators (93). TLR4
is perhaps the best understood and most prevalent TLR in
the urothelium; stimulation of which has been shown to result
in expulsion of bacteria containing vacuoles from urothelial
cells (94). Activation of TLR4 leads to interaction of its
intracellular binding domain with an adaptor protein complex
that includes MyD88 ultimately promoting the NF-κB pathway
and transcription of cytokines such as interleukin 6 (IL-6) and
interleukin 8 (IL-8) (94). TLR4 and its downstream mediators
have been shown to be increased in DBD suggesting increased
inflammation may play a role in DBD pathogenesis (34).

Bacterial infection can also activate caspase induced apoptosis
of infected urothelial cells, effectively releasing contents into
the lumen of the bladder. This not only removes bacteria,
but it also attenuates excessive release of pro-inflammatory
molecules. However, excessive removal of urothelial cells can
expose underlying cell layers to toxins that are present within
urine. As a protective measure, the urothelium secretes sonic
hedgehog (SHH) to activate the WNT pathway, initiating

urothelial cell proliferation to restore the epithelial barrier (95).
This mechanism is reinforced by studies that show higher levels
of apoptotic cells, antiproliferative factor, ATP, and vascular
endothelial growth factor in the urine or tissue of patients with
bladder infection (96–100). While the WNT pathway has not
been studied in DBD, bladder thickness of the urothelium are
increased in DBD and could be the result of this signaling process
(32, 101).

Neutrophils are the first immune cells recruited to the
urothelium from the blood vessels to the lumen of the bladder
where they can act upon bacteria (102). The number of
neutrophils recruited is congruent with the relative amount of
bacteria present, and peaks approximately 6 h after activation
(103). While neutrophils are highly effective at eliminating
bacteria, they are also toxic to bladder tissue because they
release ROS, increase expression of cyclooxygenase 2 (COX2),
and induce expression of other cytotoxic products that cause
inflammatory damage to the bladder. Neutrophil byproducts
have been shown to cause hyperplasia and also predispose the
bladder to persistent infections (104).

Bladder mast cells reside beneath the epithelium and are
triggered via secretions of damaged or stressed epithelial cells
in response to ATP, IL-33, and β-defensin (105–107). Mast cells
regulate the immune response by releasing pro-inflammatory
molecules such as histamine and TNF-α, which further
contributes to the recruitment of neutrophils (108). Diabetic
patients have significantly higher levels of mast cells in the
bladder than patients without diabetes (48). Interestingly, TNF-α
is not only elevated in bladder smooth muscle cells and serum
isolated from diabetic mice, it also plays a critically important
role in DBD by activating Rho kinase and ultimately causing
bladder smooth muscle cell hypercontractility; neutralizing TNF-
α improved bladder function (33).

OXIDATIVE STRESS IN DIABETIC
BLADDERS

Oxidative stress due to elevated levels of ROS has also been
implicated in the pathogenesis of DBD. Diabetic hyperglycemia
is capable of causing oxidative stress through several key
mechanisms: upregulation of the polyol pathway, increased
production of advanced glycation end-products, increased
activity of protein kinase C, increased activation of the
hexosamine pathway, and ultimately the overproduction of
superoxide by the electron transport chain (109–115). As
oxidative stress ensues, cellular functions are impaired due
to damaged DNA, mitochondrial enzyme dysfunction, and
phospholipid bilayer destruction. These damaging effects
contribute to morphological and functional changes associated
with DBD.

Multiple studies show the presence of oxidative stress
and subsequent structural and functional modifications in
diabetic bladders. For example, bladders from type 2 diabetic
female Sprague-Dawley rats exhibit significant increases in
nitrotyrosine and manganese superoxide dismutase protein
expression compared to both age-matched control and diuresis
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(40). Diabetes and diuresis both resulted in significant increases
in bladder weight; however, the increase in oxidative stress
was specific only to the diabetic model. In another study,
diabetic Sprague Dawley rats exhibited a reduction in catalase-
like activity, a measure of antioxidant scavenging capability in
aerobic cells compared to age-matched control and diuresis
(30). Further, these diabetic bladders presented higher levels of
apoptotic cells, an increase in lipid peroxidation, and an increase
in inducible nitric oxide synthase expression and concluded that
oxidative damage to the smooth muscle layer may contribute
to DBD symptoms (30). In addition, diabetic bladders from
2 month old rats exhibited increased expression of genes
involved in the production or regulation of ROS, higher levels
of lipid peroxidation, reduced glutathione S-transferase activity,
an increase in protein oxidation and nitrosylation, and increased
apoptosis markers (116). Results from this study suggest that
increased oxidative stress and apoptosis are associated with
impaired bladder contractile capacity. Likewise, bladders from
diabetic New Zealand rabbits, exhibited significantly increased
lipid peroxides, aldose reductase, and sorbitol compared to both
age-matched control and a diuresis model (31).

ROS can also lead to the breakdown of proteins via autophagy,
which is a compensatory mechanism for an organism under
oxidative stress to preserve cell organelles and proteins. ROS
can induce autophagy by oxidizing a cysteine residue in Atg4,
which acts to convert microtubule-associated protein light chain
3 to its active form, leading to autophagy (117, 118). A study
involving both diabetic human and animal studies showed
increased levels of autophagy in β-cells, and further proposed
that autophagy serves a protective role against apoptosis by
preserving cells and preventing further oxidative damage (119–
121). However, persistent autophagy is detrimental as it leads
to autophagic cell death (120, 122–124). Consequently, ROS-
induced autophagy caused by diabetes can lead to further
oxidative stress that damages or destroys smooth muscle cells,
contributing to hypocontractility and bladder dysfunction (116).

We have observed increased senescence in DBD from type
2 diabetic female Wistar rats (high fat diet and 30 mg/kg i.p.
STZ) at 1 month post-STZ injections (Figure 5; original data).
At this time point, senescence was localized mainly to the
urothelium layer of the bladder, which corresponds with Hanna-
Mitchell’s findings that the urothelial layer changes both in cell
morphology and gene expression (47). Further, gene expression
alterations in the diabetic urothelium reported by Hanna-
Mitchell et al. are also factors that are altered in senescence
(125–127). While inappropriate immune system activation has
been well established in diabetes and DBD, it is not known
whether the presence of senescent cells can exacerbate the pro-
inflammatory/pro-oxidative milieu, thereby worsening LUTS.

HYPOTHESIS

We hypothesize that uncontrolled urothelial senescence
contributes to increased inflammation and oxidative stress
within the bladder wall and contributes to symptoms of DBD
(Figure 6). The SASP of senescent bladder cells, through

FIGURE 5 | Senescence associated-β-galactosidase staining is increased in

diabetic urothelium compared to control counterparts. Senescence

associated-β-galactosidase (blue) staining and nuclear fast red counterstain in

control (Left) and diabetic (Right) bladders. Diabetes was induced using the

combination of a high fat diet and one streptozotocin injection (30 mg/kg) in

Wistar animals. Representative images of bladder senescence

associated-β-galactosidase staining at 100X, inserts at 400X magnification.

SM, smooth muscle. UR, urothelium.

uncontrolled and excessive pro-inflammatory mediators (e.g.,
cytokines, chemokines) and ROS generation, could further
impair the function of healthy bladder cells, as well as mediate
additional transition to the senescent state.

Mechanisms driving initial senescence induction on the apical
side of urothelial cells may include chronic increases in urine
volume and therefore increased workload and bladder stretch,
and exposure to an altered urine content (increased protein,
glucose, damaged tubule cell contents). Diabetic kidney disease
is a prominent complication of diabetes that is characterized
by glomerular hyperfiltration (128). The ultra-filtrate (urine),
containing proteins, growth factors, and cytokines, causes apical
tubular cell injury and interstitial fibrogenesis within the kidney
(128). This ultra-filtrate is transferred from the kidney to
the urinary bladder via ureters (128). Therefore, these same
factors, which mediated kidney damage, are now exposed to the
urothelial layer of the bladder. Increased exposure to chronic
high blood glucose concentrations may also affect urothelial cells
from the basal side. High and chronic levels of glucose is known
to cause mitochondrial dysfunction and increases the expression
of advanced glycation end products and ROS, both of which have
been shown to induce senescence (129–134).

As mentioned previously, senescent cells release multiple
factors (cytokines, ROS, etc.), which may induce DBD symptoms
and further drive the accumulation of senescent cells. Oxidative
stress, which has been shown in numerous in vitro and in
vivo studies to be remarkably high in diabetic patients, is
also a major factor in the activation of cellular senescence
(80). The major source of senescence-inducing ROS appears
to occur through mitochondrial dysfunction (132), although
other enzymatic sources of ROS are also known to contribute
(134). Furthermore, increased advanced glycation end products
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FIGURE 6 | Chronic hyperglycemia contributes to cellular stress and an accumulation of senescent cells. The presence of senescent cells further contributes to

increased inflammation in the bladder wall, which leads to symptoms of diabetic bladder dysfunction.

and chronic inflammation, both linked to diabetes, have also
been shown to induce senescence (130, 131, 133). Whether
accumulating senescent cells could be responsible for or the
result of increased inflammation and ROS reported in diabetic
bladders is not explicitly known; however, this process could
be complementary in that high glucose results in a heightened
inflammatory state that increases the accumulation of senescent
cells. The SASP could enhance development and accumulation of
senescence leading to a positive feedback loop (Figure 3).

The authors believe that the hypothesis presented is
testable within the framework of current knowledge. While
we have shown increased senescence associated-β-galactosidase
staining within the urothelial layer of diabetic bladders, other
markers indicative of cellular senescence at different and
longer time points and within different models of diabetes
should be measured. Multiple standard measurements have
been established to indicate senescence. Senescent cells exhibit
increased expression of senescence associated-β-galactosidase
and p16INK4A as well as secreted inflammatory factors (IL-1,
IL-6, IL-8, VEGFA, MMPs) as part of their SASP, measureable
by senescence associated-β-galactosidase assays, western blotting,
and ELISA (135). Further, increased DNA damage and telomere
shortening are also indicators of cellular senescence. The effect
and presence of senescence during each state of DBD needs to
be investigated coinciding with voiding behavior and cytometric
measurements. For example, senescent cells may increase initially
after initial insult of DBD due to increased volume of urine
and subside with the recruitment of immune cells to the site of
injury. One would expect that senescent cells may accumulate
again within the later stages of DBD due to increased ROS after

prolonged hyperglycemia and chronic increased voiding volume;
this would concur with current literature showing the presence
of cellular senescence with age as well as enhanced inflammation.
One may further postulate if increased urothelial senescence
could then lead to increased cellular senescence within the
smooth muscle layer of the bladder. There are multiple models of
diabetes and all could be used to test this hypothesis. A limitation
to the use of diabetic animal models is that these models develop
overt disease in short time frames whereas the human condition
may develop over longer periods of time and are then managed
with various therapeutics and lifestyle interventions; therefore,
timing of disease progression and corresponding mechanistic
alterations may not be identical. An important control group to
consider would be cases of bladder dysfunction, both overactive
and underactive bladder, that are not associated with increased
blood glucose levels such as diabetes insipidus and bladder
dysfunction associated with old age and other disease states.
This would determine whether increased cellular senescence was
the direct consequence of oxidative stress due to increased and
chronic levels of blood glucose. Once evidence of senescence in
animal models is established, it would be imperative to show
increased urothelial senescence in human DBD patients within
both overactive and underactive bladder symptoms possibly
through urothelial biopsies.

Some potential limitations to this hypothesis include
understanding whether senescent cells are the cause or the effect
of DBD in vivo. Therefore, although therapeutic targeting of
senescent cells may offer symptomatic relief to LUTS, it may
not reveal the underlying pathogenic mechanism of bladder
dysfunction. Furthermore, parsing out the contribution of
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senescent urothelial cells to the omnipresent oxidative and
inflammatory burden in diabetes could prove challenging. This is
especially pertinent given that the specific enzymatic and pattern
recognition receptor specific sources of ROS and cytokines,
respectively, have not been determined in senescent urothelial
cells and will require careful experimental design and potentially
novel models of DBD.

CLINICAL PERSPECTIVES

Due to the insidious onset of DBD, patients may not notice
changes in voiding habits until later stages (86). Additionally,
patients may not voice their concerns to their healthcare
providers unless questioned specifically on symptoms due to
the stigma associated with LUTS, particularly with urinary
incontinence (136, 137). In one study of women ages 20–45, only
10.8% with overactive bladder and 12.7% with urge incontinence
have seen their physicians for those symptoms (136, 138).

Patients with suspected DBD should be evaluated with
detailed history and physical exam. Once more serious causes of
LUTS are ruled out, patients may undergo urodynamic testing
to assess lower urinary tract function (139, 140). Urodynamic
testing may not be necessary if diagnosis is clear (139, 140).

Current treatment for DBD include behavioral changes (i.e.,
weight loss, timed voids, pelvic floor exercises), pharmacological,
and surgical interventions (86, 139). For overactive bladder,
medications target bladder specific muscarinic receptors
(anticholinergics) or ß3-adrenergic receptor agonists to reduce
detrusor contractions (86, 139). Muscarinic antagonism
improves some lower urinary symptoms; however, efficacy is
questionable and tolerability is poor due to side effects, the major
one being “dry mouth.” In a study of patients with overactive
bladder, oxybutynin and tolterodine treatment only resulted
in one fewer leakage episode or micturition event per 48 h
compared to placebo (141). Similarly, in a study where women
took anti-muscarinic agents reported an average of three leaks
a day after 6 months of treatment compared to an average
of five a day at the start of treatment. Not only is efficacy of
these drugs in question, there are significant side effects of
these medications such as dry mouth, constipation, difficulty in
urination, blurred vision, dry eyes, drowsiness, dizziness, and
cognitive decline, which makes long term treatment a challenge
for patients (141). The most bothersome side effect for patients
is dry mouth; 25% of patients will cease taking this medication
because of this side effect. Increased duration of dry mouth will
cause dental caries and difficulty in speech; in order to alleviate
the dry mouth symptoms, patients will drink more water and
therefore exacerbate lower urinary tract symptoms. Patients
that fail behavioral modification and pharmacological therapy
may benefit from more invasive methods such as intradetrusor
botulinum toxin A injections or neuromodulation (86, 139).
For underactive bladder, behavior modifications are encouraged
but pharmacologic options are limited; current treatment
options include methods such as asking patients to “double-
void,” placement of an indwelling catheter, and intermittent
self-catheterization (86). Long-term use of indwelling catheters

are associated with high risk of complications such as urinary
tract infections and urethral lesions (142, 143). Ultimately,
other surgical intervention may be explored for both overactive
and underactive bladder if the patient does not respond to less
invasive treatment options (86, 139).

SENESCENCE AS A NOVEL TARGET FOR
DIABETIC BLADDER DYSFUNCTION
TREATMENT

Aged or diseased tissues are not able to efficiently clear senescent
cells, thereby resulting in their accumulation (64). Therefore,
it is not surprising that recent studies support the therapeutic
approach of targeting senescence for the treatment (144–146).
Agents that prevent the activation of specific mechanisms of
senescence, such as those involving telomerase, DNA-damage
repair machinery, cell-cycle checkpoint kinases, and tumor
suppressors, are all known to reduce indices of disease (69, 147).
Similarly, the removal of senescent cells was recently shown to
delay the onset of several age-related disease processes (72, 144).

Asmentioned previously, LUTS is seen in up to half of diabetic
patients and is associated with a significant negative impact on
quality of life. With the increasing prevalence of diabetes, it is
expected that complication of diabetes, such as DBD, is also
on the rise. Further investigation into the association between
urothelial senescence and DBD may lead to new therapeutic
pathways. Senolytic therapy during the early stages of DBD may
prevent further oxidative stress and possibly prevent progression
of early stages of DBD to a later stage.

Agents that specifically target senescent cells for apoptosis
represents a promising field of pharmacology and could be a
more selective option for the treatment of DBD. To illustrate
the impact of senescent cells on its surrounding tissue, one
study showed that transplanting senescent ear chondrocytes
into the knee joint region caused osteoarthritis-like condition
in mice, while transplanting non-senescent cells did not (148,
149). A recent study reported that administration of two
senolytics, dasatinib, and quercetin, reduced physical dysfunction
induced by senescent cell transplantation and increased lifespan
in old mice (149). Currently, senolytic therapy is used in
some cancer treatments. For example, dasatinib is a senolytic
used to treat certain forms of acute lymphoblastic leukemia
and chronic myeloid leukemia (150). Other senolytics, such
as navitoclax and UBX0101, are under clinical trials for the
treatment of solid tumors and osteoarthritis, respectively. A
recent article highlights the use of FOXO4-p53 interfering
peptide, causing p53 nuclear exclusion in senescent cells and
apoptosis, and resulting in protection against chemotoxicity
and restoring the effects of age (151). Apoptosis of bladder
senescent cells could decrease hypertrophy and prevent increased
ROS and inflammation, both of which are characteristic of
DBD. Interestingly, metformin is being evaluated as a SASP
regulator for its effects on inhibiting the NF-κB pathway,
ROS production, and inflammation (152, 153). The effects
of metformin on urothelial senescence would be hard to
elucidate; not only would metformin decrease plasma and
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urine glucose levels, it also acts as a SASP regulator. Further,
treatment with sodium-glucose co-transporter-2 inhibitors
would be an interesting positive control if increased urine
glucose levels are responsible for increased urothelial senescence
(154).

CONCLUSION

Despite recent advances in understanding DBD, the underlying
pathways are poorly understood and therapeutic options are
limited and not always effective, highlighting the need for novel
interventions (13, 22). While cellular senescence is a normal
physiological response to stress, uncontrolled senescence can
be detrimental to human health in high accumulating numbers
as evidenced in multiple age-related disease states, including
diabetes. Numerous studies suggest that the increased presence
of senescent cells leads to tissue dysfunction. In addition,
urothelial barrier dysfunction is associated with symptoms of
urgency and frequency. Therefore, we put forward the hypothesis
that increased senescent urothelial cells in diabetic bladders
contribute to symptoms of DBD. Because the urothelium
plays an important role not only as a barrier to urine, but
also as a sensor, identifying molecular mechanisms leading to
senescence is essential. Additional work is needed to link the
clinical symptoms of each state of DBD with the presence
of cellular senescence within urinary bladder layers. Normal
aging induced senescence and possible bladder dysfunctions
associated with the aging process, as well as sex, hormonal status,

diabetes duration, and reversal with treatment/exercise need to be
investigated in coordination with bladder cellular senescence and
DBD.
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