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Abstract 

Small proteins ( ≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, 
w e ha v e de v eloped SP rotFP whic h is a mac hine learning-based method for functional annotation of prokaryotic small proteins into selected 
functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of ph y sicochemical descriptors 
for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 
2 toxin proteins. We have also trained a model for identification of small open reading frame (smORF)-encoded antimicrobial peptides (AMPs). 
Comprehensive benchmarking of SProtFP revealed an average area under the receiver operator curve (ROC-AUC) of 0.92 during 10-fold cross- 
validation and an ROC-AUC of 0.94 and 0.93 on held-out balanced and imbalanced test sets. Utilizing our method to annotate bacterial isolates 
from the human gut microbiome, we could identify thousands of remote homologs of known small protein families and assign putative functions 
to uncharacteriz ed proteins. T his highlights the utility of SP rotFP f or large-scale functional annotation of microbiome datasets, especially in cases 
where sequence homology is lo w. SP rotFP is freely a v ailable at http:// www.nii.ac.in/ sprotfp.html and can be combined with genome annotation 
tools such as ProsmORF-pred to uncover the functional repertoire of novel small proteins in bacteria. 

I

C  

fi  

i  

b  

o  

i  

i  

>  

e
 

a  

f  

t  

R  

(  

s  

b  

t  

r
 

s  

s  

o  

a  

t  

g  

i  

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
(
o
p
j

ntroduction 

hallenges in genome annotation have hindered the identi-
cation and functional characterization of small open read-
ng frames (smORFs) ( ≤100 amino acids). However, these are
eing increasingly discovered in eukaryotes ( 1 ,2 ), prokary-
tes ( 3–5 ) and viruses ( 6 ). Recently, 114 new smORFs were
dentified in Streptococcus pneumoniae , including smORFs
mplicated in virulence and quorum sensing ( 5 ). Similarly,
 100 unannotated smORFs have been discovered in differ-

nt strains of Salmonella enterica ( 7 ,8 ). 
Increasing numbers of smORFs are being functionally char-

cterized experimentally. For example, a conserved smORF
amily regulates the Ca 2+ uptake pump SERCA ( 9 ) in ver-
ebrates. Amongst prokaryotes, a previously known small
NA encodes a type 1 toxin of 38 amino acids in S. enterica

 10 ). YnfU (56 amino acids), discovered in a ribo-seq-based
tudy, had zinc knuckle motifs indicating a possible metal-
inding function ( 4 ). Another well-known regulator of mRNA
ranslation CsrA (61 amino acids) has an RNA-binding
ole ( 11 ). 

Experimental methods for functional characterization of
mall proteins are resource- and time-intensive. While most
tudies characterize individual small proteins through knock-
ut or overexpression, high-throughput interaction screens
nd CRISPR-based screens have been used to assign func-
ions based on interacting partners ( 12 ) and the effect on
rowth / fitness ( 13 ), respectively. Though such studies might
mplicate a small protein in a particular pathway, they may
ot always indicate its molecular function. 
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Computational methods are convenient alternatives to ex-
perimental methods while functionally annotating a large
number of proteins. These methods can be sequence based
( 14 ), structure based ( 15 ) or expression data based ( 16 ).
Sequence homology search using BLAST ( 17 ) and profile-
HMMs (hidden Markov models) and structure-based com-
parison methods such as DALI ( 18 ) and CATHEDRAL ( 19 )
have been traditionally used for assigning functions. More re-
cently, sequence- and structure-based approaches in combina-
tion with machine learning (ML) have been used for general
function prediction in the context of enzymatic activity ( 20–
22 ) and Gene Ontology ( 23–25 ). While several methods ex-
ist for general protein function prediction, only a few studies
have focused on the annotation of small proteins which often
play specialized roles ( 26 ). Two such methods based on co-
expression data are available, namely FSPP ( 27 ) and smOR-
Function ( 28 ). However, these tools are limited by the avail-
ability of expression data and focus on human smORFs. In the
context of prokaryotic smORFs, a metagenomic data-based
protein assembly (metaBP) pipeline and ML annotation tool
(metaBP-ML) were developed to profile the small proteome
of bacteria ( 29 ). MetaBP-ML annotates proteins based on a
K-nearest neighbor algorithm by choosing the most frequent
annotation among its neighbors in embedding space. How-
ever, the study focused on predicting the Enzyme Commission
(EC) numbers and functions at the level of individual small
proteins instead of modeling broad functional categories hav-
ing different protein types (e.g. small DNA-binding proteins,
bacteriocins, type 1 toxins, small metal-binding proteins, etc.)
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( 29 ). Hence, lack of automated methods for functional assign-
ment of smORFs in bacteria necessitates the development of
novel computational methods to investigate their functional
repertoire. 

We had previously developed ProsmORF-pred ( 30 ) which
predicts smORFs in prokaryotic genomes. In this study,
we focused on functional characterization and, to automate
the task of functional assignment, we have developed an
ML-based method called SProtFP (Small Protein Function
Predictor) which assigns small proteins from bacteria to
eight functional categories, namely antitoxin type 2, bacteri-
ocin, DNA-binding, metal-binding, ribosomal protein, RNA-
binding, type 1 toxin and type 2 toxin using sequence-based
physicochemical properties. It was encouraging to note that
SProtFP achieved an average 10-fold cross-validation ROC-
AUC (area under the receiver operator curve) of 0.92 and av-
erage test ROC-AUC values of 0.94 and 0.93 on balanced
and imbalanced test sets, respectively. To highlight the util-
ity of our approach in annotating sequence data from large-
scale microbiome projects, all the ML models in SProtFP were
tested on 4 359 796 predicted smORFs from 6503 bacterial
isolates (885 species) from the Unified Human Gastrointesti-
nal Genome (UHGG) catalog ( 31 ). Modeling the small protein
structures of the predictions and comparing them with known
small proteins revealed that SProtFP can assign putative func-
tions to small proteins even when sequence homology is low,
and hence can be used to discover remote homologs of known
proteins as well as novel proteins belonging to different func-
tional categories. Additionally, to predict antimicrobial pep-
tides (AMPs) besides known bacteriocins, we also developed
a general AMP predictor and used it to mine the gut micro-
biome for small ORF-encoded putative AMPs. 

Materials and methods 

Datasets 

For developing the ML classifiers, data were collected from
SwissProt ( 32 ), BAGEL4 ( 33 ) and T1TAdb ( 34 ). Small ‘Re-
viewed’ bacterial proteins (10–100 amino acids) from UniProt
( 32 ) were considered, and keywords associated with them
were extracted. Based on the frequency of the keywords, type
of function and manual inspection, eight functional categories
were chosen, namely antitoxin type 2, bacteriocin, DNA-
binding, metal-binding, ribosomal protein, RNA-binding,
type 1 toxin and type 2 toxin (Figure 1 ; Supplementary 
Table S1 ) (for details, see the Materials and methods in the
Supplementary Information ). Only class 1 and class 2 bacte-
riocins in BAGEL4 and only the type 1 toxins belonging to
known categories from the literature in T1TAdb were con-
sidered and merged with SwissProt data (Figure 2 ). It was
observed that the small proteins could belong to more than
one category so we decided to make independent classifiers.
The positive dataset ( Supplementary Table S2 ) was derived
from the clustered representatives [after clustering using CD-
HIT ( 35 ) v4.8.1] of small proteins belonging to a category
( Supplementary File S1 ) while the negative dataset was ran-
domly drawn from clustered representatives of small pro-
teins that did not belong to that category (for details, see the
Materials and methods in the Supplementary Information ).
The train / test split was 80% / 20% for the positive datasets
of all categories except for RNA-binding (90% training)
and type 2 toxins (100% training) ( Supplementary Table S2 ;
Supplementary Files S2 and S3 ). We also explored the effect 
of undersampling on the model performance by drawing neg- 
ative training datasets of different sizes (equal, 4 × and 8 ×). 

Selection of protein sequence-based descriptors 

The Python-based iLearn ( 36 ) toolkit was used to compare 
different feature sets (Figure 2 ) that could best represent the 
training datasets using random forest in Weka ( 37 ) v3.8 as the 
base classifier. A variety of different feature sets were used to 

train the models using balanced training datasets and evalu- 
ated using 10-fold cross-validation (for details, see the Mate- 
rials and methods in the Supplementary Information ). 

Selection of appropriate machine learning 

algorithms 

Weka v3.8 ( 37 ) was used to choose the appropriate ML and 

deep learning architectures by training different ML classifiers 
using balanced datasets (Figure 2 ). The models were evaluated 

using 10-fold cross-validation (for details, see the Materials 
and methods in the Supplementary Information ). 

Evaluation of undersampling for model 
improvement 

Once the feature sets and ML architectures / algorithms were 
evaluated, the best feature sets in combination with the best 
ML architecture were used to train three different models (1:1,
1:4 and 1:8) for each functional category by using the same 
positive training dataset with a different number of negative 
instances (Figure 2 ) (for details, see the Materials and methods 
in the Supplementary Information ). 

Validation and selection of the final machine 

learning models 

Finally, the best models trained on the optimal ratio of posi- 
tive and negative data based on 10-fold cross-validation were 
selected as the final ML models for each category. The ROC- 
A UC and precision–recall A UC (PR -A UC) were computed us- 
ing PRROC ( 38 ). Two different sets of cut-offs (relaxed and re- 
strictive cut-offs) were selected for the final selected ML mod- 
els corresponding to the ‘relaxed’ and ‘restrictive’ implemen- 
tation of SProtFP. The code for SProtFP is available at http: 
// www.nii.ac.in/ sprotfp.html and in Supplementary File S4 . 

Testing ML models on held-out test sets 

The final selected ML models for each functional category (ex- 
cept for type 2 toxin proteins) were tested on balanced (1:1) 
and imbalanced (1:10) test sets not used during training and 

evaluated using ROC curves (for details, see the Materials and 

methods in the Supplementary Information ). 

Predicting functional classes of smORFs in human 

gut microbiome 

To highlight the utility of our ML models with respect to 

large-scale functional characterization of the uncharacter- 
ized proteins in microbiome samples, we chose 6503 non- 
redundant [Mash ( 39 ) distance threshold of 0.001, corre- 
sponding to a nucleotide identity of 99.9%] bacterial isolates 
( Supplementary File S5 ) belonging to 885 different species 
from the UHGG resource ( 31 ). In order to exhaustively pre- 
dict smORFs, we took the union of the predictions given by 
ProsmORF-pred ( 30 ) and METAPRODIGAL ( 40 ) for these 
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Figure 1. Functional categories of small proteins modeled in the current study. 
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enomes. To restrict the number of false positives while pre-
icting the functions of the huge number of microbiome-
redicted smORFs, restrictive cut-offs were utilized for the
nal selected ML models for the different categories (for de-
ails, see the Materials and methods in the Supplementary 
nformation ). 

tructural comparison of predicted and known 

mall proteins 

o search for structural homologs of known small proteins
rom different functional categories present amongst our pre-
ictions, small proteins in the positive datasets and predictions
y SProtFP for all functional categories for the UHGG ( 31 )
solates were modeled using ESMFold ( 41 ) and compared us-
ng Foldseek ( 42 ) (for details, see the Materials and methods
n the Supplementary Information ). 

raining and benchmarking the antimicrobial 
eptide predictor 

MPs were downloaded from APD3 ( 43 ) 2020 release and
sed for training the AMP predictor employing the selected
est feature set and ML architecture (Figure 1 ). The pos-
tive and negative datasets were then split into 80:20 ra-
ios for training and testing ( Supplementary File S6 ) (for de-
ails, see the Materials and methods in the Supplementary 
nformation ). 
Results 

Representation of the selected protein categories 

among SwissProt small proteins 

As indicated in the Materials and methods, data were col-
lected from SwissProt ( 32 ), BAGEL4 ( 33 ) and T1TAdb ( 34 ) to
build ML classifiers for eight functional categories of smORFs,
namely antitoxin type 2, bacteriocin, DNA-binding, metal-
binding, ribosomal protein, RNA-binding, type 1 toxin and
type 2 toxin (Figures 1 and 2 ). After filtering the data from
SwissProt for sequence issues and fragments, we found 29
051 bacterial small proteins in the length range 10–100 amino
acids. The break down of the total number of small proteins
belonging to each selected functional category in SwissProt is
provided in Supplementary Table S2 . It was found that the
proteins belonging to the selected categories collectively con-
stitute ∼57% (16 431 / 29 051) of the total bacterial small pro-
teins in SwissProt. The remaining 43% did not fall under the
selected categories. 

Sequence-based descriptors capture 

physicochemical properties of small protein 

categories 

Selection of appropriate features for representing the data is
an important task in ML. Structure determination of small
proteins may require specialized methods ( 44 ) and thus, unlike

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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Figure 2. Methodology used for developing SProtFP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sequence information, structures of these proteins may not be
readily available. Hence, we utilized different sequence-based
descriptors to train and evaluate ML models using equal-sized
positive and negative training datasets and random forest as
the base classifier. We used features that capture the composi-
tion and physicochemical properties of the protein sequences,
i.e. dipeptide frequency (Dipep) ( 45 ), Moran autocorrelation
(MA) ( 46 ), composition, transition and distribution (CTD)
( 46 ) features, quasi-sequence-order (QSO) ( 47 ) and pseudo
amino acid composition (PAAC) ( 48 ) (Figure 2 ). It is seen
through 10-fold cross-validation that most feature sets effi-
ciently discriminated the negative and positive instances, ex-
cept MA ( Supplementary Figure S1 ; Supplementary Table S3 ;
Supplementary File S7 ). Features such as CTD, Dipep, QSO
and PAAC were able to achieve high ROC-AUC values for all
the categories. The combination of different types of features
such as CTD, QSO and MA (QSO + CTD + MA) gave the best
performance overall in terms of the ROC-AUC values, achiev-
ing an average 10-fold ROC-AUC of 0.90 and a PR-AUC of
0.90. We chose ROC-AUC as the metric to select the feature
set as it depicts the performance of the models across the range
of different cut-off scores. All the other measures such as true
positive rate (TPR), false positive rate (FPR), precision and
MCC (Matthews correlation coefficient) indicated high accu-
racy of the models ( Supplementary Table S4 ). Though MA did
not perform well alone, we added it to increase the descriptive
range of the feature sets. After selecting QSO + CTD + MA
as our features, we explored several ML and deep learning 
architectures. 

Evaluation of different machine learning algorithms 

The choice of ML algorithms plays an important role in 

the performance of the models. Popular ML algorithms in- 
clude random forest and support vector machines (SVM) ( 49–
51 ). Alternatively, deep learning techniques including artificial 
neural networks (ANNs) are known to provide higher accu- 
racies as compared with traditional ML methods ( 52 ). There- 
fore, we used SMO with radial kernel (SVM), random forest 
and variations of the Dl4jMlpClassifier available with Weka 
( 37 ) 3.8v to train ML models on the positive and negative 
training datasets used earlier (equal set sizes) (Figure 2 ) uti- 
lizing QSO + CTD + MA as the feature set. As seen in 10- 
fold cross-validation ROC curves in Supplementary Figure S2 ,
Supplementary Table S5 and Supplementary File S8 , all the 
ML algorithms performed well. The ANN with one hidden 

layer and 40 nodes (DL_1H_40n) had the highest average 10- 
fold ROC-AUC of 0.91. Interestingly, the predictive power of 
the models increases with the addition of hidden layers as 
compared with the base Dl4jMlpClassifier (DL). This is ex- 
pected as the model without hidden layers is likely to behave 
as a linear model. We observed that increasing the number 
of nodes beyond 40 (DL_1H_60n) and adding a second hid- 
den layer (DL_2H_40n_15n) did not lead to any significant 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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Figure 3. Effect of undersampling on model performance assessed using 10-fold cross-validation ROC curves. 1:1 refers to equal sized positive and 
negative training datasets, while 1:4 and 1:8 refer to imbalanced training datasets having four and eight times more negative training instances ( A–H ). 
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mprovement in model performance. The DL_1H_40n archi-
ecture achieved an average 10-fold ROC-AUC of 0.91 and
R -A UC of 0.90 ( Supplementary Table S6 ). Therefore, we se-
ected this architecture as our final ML training architecture. 

ndersampling of the negative dataset improves 

odel performance 

ost ML classification tasks involve positive datasets of much
ower sizes as compared with the negative datasets. Exam-
les of such tasks include healthy / diseased classification ( 53 ),
rug toxicity prediction ( 53 ), splice site recognition ( 54 ), etc.
fter selecting the appropriate feature set and ML architec-

ure, we wanted to explore if increasing the training dataset
ize could improve model performance. Undersampling of the
egative datasets and the Synthetic Minority Oversampling
echnique (SMOTE) ( 55 ) are two major ways of dealing with

mbalanced classification problems. Since SMOTE augments
he data by creating artificial points and its accuracy is known
o be limited ( 55 ), we decided to undersample the negative
atasets to create training datasets in the ratios 1:1, 1:4 and
:8. Figure 3 shows the performance of these models trained
n balanced and imbalanced datasets in the form of 10-fold
cross-validation ROC curves. We selected the best perform-
ing models for each functional category as our final models
and selected relaxed and restrictive cut-offs for the ML mod-
els based on 10-fold cross-validation (for details, see the Ma-
terials and methods). The cut-offs correspond to the statistical
metrics shown in Supplementary Tables S7 and S8 . It is seen
that the final selected models have an average 10-fold ROC-
AUC (Figure 3 ; Supplementary Tables S7 and S8 ) of 0.92 and a
PR -A UC ( Supplementary Figure S3 ; Supplementary Tables S7
and S8 ) of 0.78. Comparing the selected models with mod-
els trained on balanced datasets, we found that the selected
models achieved a higher TPR (Figure 3 ) at the same FPR.
The selected models achieved an average TPR (10-fold cross-
validation) of 0.87 at an average FPR of 0.11 at relaxed cut-
offs as compared with an average TPR of 0.80 at the same
FPR in the case of models trained on balanced datasets (Figure
3 ; Supplementary Table S7 ). Similarly, using restrictive cut-
offs, the selected models achieved an average TPR (10-fold
cross-validation) of 0.72 at an average FPR of 0.05 as com-
pared with an average TPR of 0.66 at the same average FPR
in the case of models trained on balanced datasets (Figure 3 ;
Supplementary Table S8 ). The possible reason for the increase
in sensitivity could be that by providing more negative data as

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data


6 NAR Genomics and Bioinformatics , 2025, Vol. 7, No. 1 

Figure 4. Testing results on held-out balanced (1:1) and imbalanced (1:10) testing datasets. 1:1 refers to the test set having an equal number of positive 
and negative testing instances, while 1:10 refers to the test set having 10 times more negative test instances as compared with the positive set ( A–G ). 
Type 2 toxin proteins could not be tested independently due to small dataset size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compared with positive data, we are able to increase the train-
ing dataset size which enhances the models’ ability to distin-
guish positive and negative instances. After selecting the best
models, we wanted to assess the models’ performance on the
held-out test datasets to obtain additional validation on exter-
nal data not used during training. 

Testing the models on held-out test sets 

Testing on held-out datasets is essential to ascertain that the
models are not overfitting to the training data. Though our
cross-validation results indicate high predictive power, we
used additional data to test the ML models. As discussed in
the Materials and methods, for all the functional categories
except RNA-binding proteins and type 2 toxins, we used
80% of the positive dataset for training and 20% for testing
( Supplementary Table S2 ). In the case of RNA-binding pro-
teins, 10% of the positive dataset was selected due to lim-
ited data, and in the case of type 2 toxins, we could not test
independently due to the low number of positive instances.
Nevertheless, it can be concluded that both these prediction
models have good predictive power as these models achieve
high 10-fold and 2-fold cross-validation ROC-AUC values,
displaying 2-fold cross-validation ROC-AUC values of ∼0.9 

( Supplementary Tables S7 and S8 ). We used both equal (1:1) 
and imbalanced (1:10) negative test sets for benchmarking 
model performance (for details, see the Materials and meth- 
ods). Imbalanced datasets were used as, in practical use cases,
there will always be a biased distribution of positive and nega- 
tive instances. Figure 4 shows the test ROC curves of the clas- 
sifiers for different categories. It was seen that on the balanced 

(1:1) test sets, the models had an average ROC-AUC of 0.94 

and a PR -A UC of 0.95, while the models achieved an aver- 
age ROC-AUC of 0.93 and PR-AUC of 0.7 on the imbalanced 

(1:10) test sets (Tables 1 and 2 ). The models when tested using 
relaxed and restrictive cut-offs (for details, see the Materials 
and methods) on the imbalanced test datasets (1:10) had an 

average sensitivity of 87% at a specificity of 89% (Table 1 ) 
and an average sensitivity of 76% at a specificity of 94% (Ta- 
ble 2 ), respectively. It was encouraging to note that the model 
trained to predict antitoxin type 2 proteins achieved a sensitiv- 
ity of 0.84 (84%) at an FPR of 0.11 (11%) on the imbalanced 

test dataset using relaxed cut-offs, and a sensitivity of 79% 

at 7% FPR using restrictive cut-offs. Similarly, the bacteriocin 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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Table 1. Performance of the final selected ML models on the held-out test datasets (balanced and imbalanced) using relaxed cut-offs 

Category Test set type Positive Negative FPR TPR R OC-A UC PR-AUC Precision MCC 

Antitoxin type 2 1:1 
1:10 

19 
19 

19 
190 

0.05 
0.11 

0.84 
0.84 

0.93 
0.9 

0.95 
0.66 

0.94 
0.43 

0.79 
0.55 

Bacteriocin 1:1 
1:10 

60 
60 

60 
600 

0.1 
0.06 

0.92 
0.92 

0.94 
0.95 

0.94 
0.78 

0.9 
0.6 

0.82 
0.71 

DNA-binding 1:1 
1:10 

32 
32 

32 
320 

0.28 
0.2 

0.91 
0.91 

0.89 
0.89 

0.88 
0.51 

0.76 
0.31 

0.64 
0.46 

Metal-binding 1:1 
1:10 

39 
39 

39 
390 

0.18 
0.17 

0.79 
0.79 

0.92 
0.91 

0.93 
0.57 

0.82 
0.32 

0.62 
0.43 

Ribosomal 1:1 
1:10 

124 
124 

124 
1240 

0.03 
0.04 

0.9 
0.9 

0.96 
0.96 

0.97 
0.88 

0.97 
0.69 

0.87 
0.76 

RNA-binding 1:1 
1:10 

7 
7 

7 
70 

0 
0.11 

0.86 
0.86 

0.98 
0.94 

0.98 
0.76 

1 
0.43 

0.87 
0.55 

Type 1 toxin 1:1 
1:10 

31 
31 

31 
310 

0 
0.1 

0.9 
0.9 

0.98 
0.95 

0.99 
0.74 

1 
0.47 

0.91 
0.6 

Table 2. Performance of the final selected ML models on the held-out test datasets (balanced and imbalanced) using restrictive cut-offs 

Category Test set type Positive Negative FPR TPR R OC-A UC PR-AUC Precision MCC 

Antitoxin type 2 1:1 
1:10 

19 
19 

19 
190 

0.05 
0.07 

0.79 
0.79 

0.93 
0.90 

0.95 
0.66 

0.94 
0.52 

0.75 
0.6 

Bacteriocin 1:1 
1:10 

60 
60 

60 
600 

0.05 
0.03 

0.78 
0.78 

0.94 
0.95 

0.94 
0.78 

0.94 
0.72 

0.74 
0.73 

DNA-binding 1:1 
1:10 

32 
32 

32 
320 

0.22 
0.15 

0.88 
0.88 

0.89 
0.89 

0.88 
0.51 

0.8 
0.37 

0.66 
0.51 

Metal-binding 1:1 
1:10 

39 
39 

39 
390 

0.03 
0.07 

0.69 
0.69 

0.92 
0.91 

0.93 
0.57 

0.96 
0.48 

0.69 
0.53 

Ribosomal 1:1 
1:10 

124 
124 

124 
1240 

0.01 
0.01 

0.8 
0.8 

0.96 
0.96 

0.97 
0.88 

0.99 
0.87 

0.81 
0.82 

RNA-binding 1:1 
1:10 

7 
7 

7 
70 

0 
0.06 

0.71 
0.71 

0.98 
0.94 

0.98 
0.76 

1 
0.56 

0.75 
0.59 

Type 1 toxin 1:1 
1:10 

31 
31 

31 
310 

0 
0.03 

0.65 
0.65 

0.98 
0.95 

0.99 
0.74 

1 
0.71 

0.69 
0.65 
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rediction model had a TPR of 0.92 at an FPR of 0.06 and a
PR of 0.78 at an FPR of 0.03 on the imbalanced test dataset.
odels for other categories also show high predictive power

Tables 1 and 2 ; Figure 4 ) while the DNA-binding model had
 slightly lower test ROC-AUC of 0.89. Overall, our analy-
is indicates that neural networks trained on physicochemical
roperties of small proteins can help in classifying these pro-
eins into functional families. Next, we wanted to explore the
tility of our method for large-scale functional annotation of
mORFs in the human gut microbiome. 

unction inference for smORFs of the human gut 
icrobiome 

ne of the advantages of ML models over traditional
lignment-based methods is that the former are in general
aster and can thus be used for functional annotation of large
olumes of data. Hence, we used SProtFP to functionally an-
otate the smORF predictions from the genomes correspond-
ng to 6503 non-redundant isolates of bacteria (885 species) in
he UHGG catalog ( 31 ). The taxonomy distribution of the ge-
omic isolates is shown in Supplementary Figure S4 . It was
een that Proteobacteria had the maximum sequenced iso-
ates (45.7%), followed by Firmicutes (29%), Bacteriodota
10.1%) and others. Taking the union of smORF predic-
ions from ProsmORF-pred ( 30 ) and METAPRODIGAL ( 40 )
cross these isolates (for details, see the Materials and meth-
ds) resulted in 4 359 796 smORFs ( Supplementary File S9 ).
rom this set, we functionally classified the small proteins into
different functional classes using SProtFP (for details, see the
Materials and methods). Independently, the ML models clas-
sified ∼6% of the total predictions as antitoxin type 2, 3% as
bacteriocins, 15% as DNA-binding, 11% as metal-binding,
4% as ribosomal, 6% as RNA-binding, 7% as type 1 toxin
and 6% as type 2 toxin proteins (Table 3; Supplementary 
File S10 ). Collectively, the models provided functional anno-
tation for 1 996 704 (45.80%) of the smORFs predicted in
the microbiome set. Although tools such as BLAST ( 17 ) may
fail to detect homologous hits when sequences are smaller
or homology is remote, a simple homology-based analysis of
our predictions against known proteins can give us some idea
about the sensitivity of our models with respect to currently
available functionally annotated small proteins. We used rela-
tively relaxed parameters (40% identity, 80% query coverage
cut-offs and subject length filter of 80–120% of the query)
to identify both close and distant homologs. As shown in
Table 3 , on analyzing the homology of the predictions for
each category against known small proteins (used for train-
ing and testing—positive datasets) ( Supplementary Table S2 )
using BLASTP ( 17 ), we found that the hits of the predicted
proteins for most categories represented a significant propor-
tion ( > 70%) of known small proteins in the positive datasets.
Since the sequences in the positive datasets represent differ-
ent families or clusters according to CD-HIT ( 35 ) as they
have been clustered, this indicates that our models efficiently
capture the protein feature space of known data. As protein
structures are known to be more conserved as compared with
their sequences, structural modeling allows the detection of

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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Table 3. Category wise predictions by SProtFP for the 4 359 796 predicted smORFs from the UHGG dataset 

Category 
smORFs predicted 
for category 

smORFs predicted 
for category (as % 

of total 4 359 796 
smORFs) 

No. of predictions 
homologous to 
positive dataset 
(known proteins) 
using BLASTP (40% 

identity, 80% 

co ver age) 

% represented by 
hits of the 
predictions against 
positive dataset 
(known proteins) 
(BLASTP) 

No. of predictions 
homologous to 
positive dataset 
using Foldseek 

% represented by 
hits of the 
predictions against 
positive dataset 
(known proteins) 
(Foldseek) 

Antitoxin type 2 257 306 5.9% 12 835 71.88% (69 / 96) 25 378 80.21% (77 / 96) 
Bacteriocin 133 982 3% 963 37% (111 / 300) 39 3.3% (10 / 300) 
DNA-binding 640 978 14.7% 87 443 81.65% (129 / 158) 139 377 94.94% (150 / 158) 
Metal- binding 492 132 11.28% 42 568 58.25% (113 / 194) 55 320 64.95% (126 / 194) 
Ribosomal 166 703 3.82% 105 044 94.2% (585 / 621) 94 865 90.5% (562 / 621) 
RNA-binding 250 061 5.74% 37 266 97.3% (72 / 74) 36 740 94.59% (70 / 74) 
Type 1 toxin 289 598 6.64% 28 456 78.1% (121 / 155) 12 609 14.19% (22 / 155) 
Type 2 toxin 251 828 5.77% 8 254 73.68% (14 / 19) 13 251 89.47% (17 / 19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remote homologs not detected by conventional sequence-
based methods ( 56 ). Therefore, we wanted to look for
structural homologs of known proteins among our predic-
tions. Comparing the sequences of the representatives of
known small proteins (positive datasets) against the PDB
( 57 ) database (January 8, 2024), we observed that < 60% of
known small proteins from most categories showed at least
a hit using the same set of BLASTP filters as used earlier
( Supplementary Table S9 ). This indicates that these functional
categories are not adequately represented in the PDB. As a re-
sult, we decided to structurally model the three-dimensional
structures of known proteins and compare them with the pre-
dictions (for details, see the Materials and methods). Since
tools such as ESMFold ( 41 ) provide opportunities for accurate
and large-scale structural modeling of proteins, this tool was
chosen for structural modeling. As is seen in Figure 5 C and
Supplementary Table S10 , all the classes of known proteins ex-
cept bacteriocins were modeled with a high pLDDT ( 41 ) score
which is an indicator of the quality of the model predictions.
Foldseek ( 42 ) was used for structural alignment of the mod-
eled three-dimensional structures of the predictions against
the modeled structures of known small proteins (Figure 5 ). As
seen in Table 3 , compared with the traditional sequence-based
homology search, Foldseek detected either a higher or a com-
parable number of homologs for the majority of the functional
categories. Foldseek identified ∼98, 59, 30 and 61% more ho-
mologs amongst the predictions belonging to antitoxin type 2,
DNA-binding, metal-binding and type 2 toxins, respectively.
Moreover, the hits found via Foldseek against the predictions
for these categories also represented a higher proportion of
known proteins as compared with the BLASTP search (Table
3 ). As additional homologs were identified by Foldseek de-
spite using relaxed BLASTP identity and query coverage cut-
offs, these additional homologs are likely to have remote ho-
mology to known proteins. Both BLASTP and Foldseek iden-
tified a similar number of homologs and captured an equiva-
lent proportion of known protein clusters in the case of RNA-
binding and ribosomal proteins, while Foldseek could not
identify more structural homologs for bacteriocins and type
1 toxin proteins due to the challenges in modeling bacteriocin
structures (Figure 5 C; Supplementary Table S10 ) and align-
ing small length type 1 toxin (Figure 5 D) structures. Over-
all, the maximum (BLASTP / Foldseek) proportion / diversity of
known proteins represented by the hits of the predictions for
different categories was 80.21% (antitoxin type 2), 37% (bac-
teriocin), 94.94% (DNA-binding), 64.95% (metal-binding),
94.2% (ribosomal), 97.3% (RNA-binding), 78.1% (type 1
toxin) and 89.47% (type 2 toxin). This is encouraging consid- 
ering the fact that the known proteins in the positive datasets 
of all small protein categories have been clustered at 50% 

identity and 80% length difference parameters using CD-HIT 

( 35 ). Moreover, our models are able to classify a smaller sub- 
set of small proteins in the microbiome as putative mem- 
bers of the selected categories. In the process, these indepen- 
dently discard ∼94.1% (antitoxin type 2 model), 97% (bacte- 
riocin model), 85.3% (DNA-binding model), 88.72% (metal- 
binding model), 96.18% (ribosomal model), 94.26% (RNA- 
binding model), 93.36% (type 1 toxin model) and 94.23% 

(type 2 toxin model) of the total small proteins on the initial 
list (Table 3 ). Therefore, our models achieve considerable en- 
richment with respect to the known functional proteins while 
eliminating a huge number of small proteins. The lowest pro- 
portion of known proteins represented among the predictions 
was ∼37% for the bacteriocin category. A possible reason for 
this could be the lower length range of these proteins (Figure 
5 D) which makes homology detection difficult using BLASTP- 
like sequence-based approaches or their taxonomic restriction 

to specific species or strains ( 58 ,59 ). Analyzing the taxonomic 
distribution of the homologs ( Supplementary Figure S5 ) re- 
vealed that homologs of known toxin–antitoxin proteins are 
predominantly found in Proteobacteria while bacteriocins are 
mostly derived from Firmicutes. Other categories including 
DNA-binding, metal-binding, RNA-binding and ribosomal 
small protein homologs are found across the bacterial phyla in 

the UHGG dataset ( Supplementary Figures S4 and S5 ) which 

indicates that these may not be particularly taxa specific, and 

hence are more generally distributed. 
Interestingly, our predictions include homologs of 

known small proteins relevant to the gut microbiome.
GUT_GENOME103691_38#16 886_17 113_- is a homolog 
of Circularin A, a known broad antibacterial range bac- 
teriocin found in conjunction with ABC transporters ( 60 ).
Interestingly, the producer of this bacteriocin is Bifidobac- 
terium infantis which is a known probiotic isolate ( 61 ). Hence,
bacteriocins such as Circularin may contribute to its probiotic 
potential. GUT_GENOME096459_183#19 506_19 628_+ 

is a bL36 ribosomal protein homolog of only 40 amino 

acids which plays a housekeeping role across members 
of the microbiome as part of the translational machinery.
GUT_GENOME095941_11#55 204_55 437_+ which is 
a YacG protein homolog, is a metal-binding protein that 
protects DNA gyrase from the antimicrobial agents tar- 
geting it and plays a role in resistance to novobiocin ( 62 ).
GUT_GENOME239652_1#407 085_407 309_- is a homolog 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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Figure 5. Workflow for str uct ural comparison of the predictions against known proteins. ( A ) ESMFold modeled str uct ures of known proteins from 

different small protein categories. ( B ) Workflow for str uct ural comparison. ( C ) pLDDT score distribution of known small proteins 
( Supplementary Table S2 ) in the positive datasets of the respective categories. ( D ) Length distribution of known small proteins in the positive datasets 
of the respective categories. 

o  

r  

m  

a  

a  

i  

m  

o  

G  

a  

b  

s  

a  

r  

p  

c  

D  

t  

t  

r  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f small acid-soluble spore proteins encoded by some bacte-
ia belonging to the abundant Firmicutes phylum in the gut
icrobiota ( 63 ). Their main role is to protect the endospores

gainst DNA damage by binding to DNA ( 64 ). The 66
mino acid GUT_GENOME144635_2#177 604_177 804_-
s a homolog of CspD which is a stress-responsive
ember of the cold shock protein family capable
f binding to RNA and single-stranded DNA ( 65 ).
UT_GENOME145561_30#24 127_24 267_- is a 46 amino
cid homolog of the Hok family of type 1 toxins whose mem-
ers are known to participate in cell lysis and bacterial per-
istence ( 66 ). GUT_GENOME000052_50#35 051_35 329_+
nd GUT_GENOME000052_50#35 326_35 607_+ cor-
espond to the DinJ–YafQ type 2 toxin–antitoxin system
roteins where the YafQ toxin has nuclease activity and is
apable of cleaving mRNA and inhibiting translation while
inJ counteracts its activity ( 67 ). These examples highlight

hat our predictions harbor homologs of known small pro-
eins belonging to the modeled categories which can play a
ole in the overall bacterial survival and competition among
he gut microbiome members. 
Identifying smORF-encoded putative AMPs from 

the human gut microbiome 

More recently, studies focused on mining AMPs at the mi-
crobiome scale ( 68–70 ) suggest that more AMPs remain to
be discovered in bacteria besides the known bacteriocins. To
test the validity of our bacteriocin model for predicting AMPs,
we tested the bacteriocin model on experimentally validated
AMPs from two recent microbiome-based studies ( 69 ,70 ). The
model predicted 46 / 128 (35.94%) and 21 / 128 (16.41%) of
these as positive using the relaxed and restrictive cut-off, re-
spectively, despite showing high accuracy on the bacteriocin
set (Figures 3 and 4 ). This suggests that these AMPs have dif-
ferent sequences or properties as compared with the known
conventional bacteriocins. While class 1 and class 2 bacteri-
ocins are encoded by bacteria and form a subset of the known
AMPs ( 71 ,72 ), AMPs also include other peptides such as de-
fensins, cathelicidin, etc. from other organisms. In line with
this, our BLASTP ( 17 ) search of the experimentally validated
AMPs against the dataset used for bacteriocin model training
did not find any hits (40% identity and 80% query coverage).
Hence, we hypothesized that the AMPs in these studies might

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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Figure 6. Performance of the machine learning model trained for predicting antimicrobial peptides (AMPs). ( A ) 10F (10-fold) and 2F (2-fold) 
cross-v alidation R OC curv es. ( B ) R OC curv e depicting the perf ormance of the AMP model on the held-out test set. A dditionally, the table at the bottom 

shows statistical metrics for the ML models such as FPR (false positive rate), TPR (true positive rate), MCC (Matthews correlation coefficient), precision, 
etc. for both the cross-validation and the test set at the optimum cut-off. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

have properties and sequences different from those of conven-
tional known bacteriocins and might have properties similar
to those of other AMPs present in databases such as APD ( 43 )
which cover a broad range of AMPs. Therefore, in order to
predict smORF-encoded AMPs, we trained a separate AMP
classifier using the AMPs in the APD3 ( 43 ) database (for de-
tails, see the Materials and methods) and included it as an ad-
ditional utility in SProtFP. Cross-validation and held-out test-
ing indicated high accuracy of the AMP model which achieved
ROC-AUC values of 0.98 (Figure 6 ). The AMP model also
classified 74.22% of the experimentally validated AMP set
(128 AMPs) as positive. Interestingly, only 3 / 128 AMPs from
this validated set were homologous to the known AMPs in the
positive dataset used for training and testing using BLASTP
(40% identity and 80% query coverage cut-offs). This sug-
gests that AMPs in the experimentally validated datasets share
physicochemical properties with other known AMPs even in
the absence of sequence homology . Finally , 21 800 smORF-
encoded putative AMPs were predicted from the UHGG ( 31 )
dataset using the AMP classifier ( Supplementary File S10 ).
A total of 1132 of these matched (BLASTP search parame-
ters: 50% identity cut-off, 80% query coverage cut-off and
e-value 0.01) previously known AMPs from data sources that
included the positive dataset from APD, the experimentally
validated AMP dataset and the AMPSphere ( 70 ) dataset. The
remaining 20 668 putative AMPs were novel and, on clus-
tering using CD-HIT ( 35 ) at 50% identity with the same pa-
rameters as described before, resulted in 5122 putative AMP
families ( Supplementary File S11 ). A high-confidence subset
( Supplementary File S11 ) consisting of 1435 putative AMP
families was defined by filtering the cluster representatives 
based on a probability score of 1 and length range between 

20 to 50 amino acids, chosen based on the length range of 
experimentally validated AMPs (19–49 amino acids) ( 69 ,70 ).
Interestingly, the phylum Firmicutes represented homologs be- 
longing to the maximum number of high-confidence families 
(745 = 51.92%), with Blautia and Clostridium representing 
the greatest number of families per genus (Figure 7 ). Other sig- 
nificant phyla included Proteobacteria and Bacteroidota. De- 
spite not being homologous to the known AMPs, the members 
of these novel putative AMP families might show antimicro- 
bial activity. 

Discussion 

The presence of small proteins in various organisms, rang- 
ing from microscopic viruses and bacteria to macroscopic an- 
imals, suggests their important roles in cellular physiology.
In this study, based on analysis of keywords associated with 

bacterial small proteins in SwissProt ( 32 ), we have devel- 
oped and benchmarked SProtFP which consists of indepen- 
dent ML models that can be used for functional annotation 

of smORFs in bacteria. Moreover, to predict unknown classes 
of AMPs besides the well-known bacteriocins, we have also 

developed an smORF-encoded AMP predictor. To the best 
of our knowledge, SProtFP is the first ML-based tool which 

assigns prokaryotic small proteins to systematically defined 

functional categories. 
After experimenting with different physicochemical feature 

sets, different ML architectures and different ratios of posi- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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Figure 7. Taxonomic distribution of the 1435 high-confidence AMP families / clusters. ( A ) Phylum-wise distribution of the high-confidence AMP families. 
( B ) Genus-wise distribution of the high-confidence AMP families in each ph ylum. T he break do wn is sho wn only f or the top f our ph yla ha ving the highest 
number of AMP families. Only those genera have been plotted that comprise at least 5% of the total AMP families seen in the phylum to which they 
belong. Other genera ha v e been clubbed together in the ‘Others’ category. It is important to note that a given AMP family / cluster might have 
members / homologs across different phyla or genera 
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ive and negative training datasets, we found that neural net-
orks (DL_1H_40n) trained using a combination of feature

ets (QSO + CTD + MA) on imbalanced training datasets gave
he best performance. All our models showed high predictive
ower, as indicated by cross-validation and blind testing on
eld-out data. One important application of SProtFP is in the
unctional annotation of data from large-scale microbiome
rojects to discover novel proteins which may regulate the mi-
robial community composition and dynamics. Using SProtFP,
e were able to sample a considerable diversity / proportion of
nown small protein families across bacterial phyla in addi-
ion to assigning putative functions to thousands of unchar-
cterized proteins (Table 3 ). Though the analysis of the pre-
ictions with respect to their homology to the known set vali-
ates the sensitivity of the ML models with respect to currently
nown data, there could still be additional functional novel
roteins which have been assigned functions using the ML
odels but do not show homology to known small proteins
in bacteria (Table 3 ). A possible reason for this could be that
the sensitivity of sequence-based homology detection methods
such as BLAST ( 17 ) is limited with respect to smORF-encoded
proteins ( 73 ), while structural homology-based methods such
as Foldseek ( 42 ) are limited by the quality and confidence of
the structural models generated ( Supplementary Table S10 ).
Hence, there might be novel uncharacterized small proteins
among our predictions which are smaller in length as com-
pared with the known small proteins and represent novel
small protein families belonging to these categories. For in-
stance, in a recent study, a novel small protein of 56 amino
acids called YnfU was discovered using ribo-seq in Esc heric hia
coli which had motifs for zinc binding and thus can partici-
pate in metal binding despite being smaller than the major-
ity of known metal-binding proteins (Figure 5 D) ( 4 ). Addi-
tionally, our AMP classifier mined the human gut microbiome
isolates for thousands of putative AMP candidates, the major-
ity of which were novel. On the other hand, our predictions

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae186#supplementary-data
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are also likely to contain false positives in addition to novel
functionally classified proteins. Therefore, at the microbiome
scale, while handling large volumes of data, our models can
be used to efficiently filter and enrich functional proteins be-
longing to different functional categories. These predictions
can be further refined by intersecting with expression datasets
and taxonomic analysis ( 69 ) and by using in silico approaches
such as fold comparison. For instance, in a recent study, Ma
et al. predicted > 20 million smORF-encoded putative antimi-
crobial peptides using ML from thousands of metagenome-
assembled genomes. Further, they utilized metaproteomics
along with a network-based analysis of candidate AMPs and
bacterial taxa to finally validate a small subset of the candidate
AMPs ( 69 ). Hence, in silico predictions provided by our mod-
els can also be combined with experimental data and other
types of computational analysis to narrow down the list of
predictions. 

Although our method has high predictive power, it might
have some limitations that are generally associated with ML
models. In practical applications, the number of negative in-
stances often outnumber the positive instances. Therefore, de-
pending upon the relative numbers of positive and negative
instances, the predictions might also contain false positives in
addition to correctly classified proteins. Also, since the mod-
els are independent and deal with a multilabel classification
problem, they may provide multiple labels to a given small
protein, all of which might or might not be true, depending
upon the accuracy of each independent ML model. Also, se-
lecting subsets of feature sets amongst the originally chosen
feature set (QSO + CTD + MA) might improve model accu-
racy ( 74 ). However, the accuracy of these subsets was either
less or comparable ( Supplementary Table S11 ; Supplementary 
File S7 ). This observation combined with the cross-validation
( Supplementary Tables S7 and S8 ) and held-out testing (Ta-
bles 1 and 2 ) results of our final models indicate that the
original feature set generalizes well. SProtFP is also flexible
in the sense that depending upon the requirement, relaxed or
restrictive cut-offs (recommended) can be used for the ML
models. Therefore, our models can be used to predict puta-
tive functions of small proteins at the genomic level and to
enrich the small protein sets for proteins belonging to the
selected categories at the metagenomic or microbiome level
where the dataset size is huge. Our method represents the first
step in the systematic categorization and functional annota-
tion of prokaryotic smORFs in an automated fashion using
ML. SProtFP can be combined with our previously developed
method called ProsmORF-pred ( 30 ) to discover novel pro-
teins and analyze them in a functional context. We believe that
SProtFP will be a valuable resource for functional characteri-
zation of smORFs in prokaryotes. 

Data availability 

The datasets used for analyses performed in the study includ-
ing the training datasets, testing datasets as well as the pre-
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are provided as Supplementary Files and are also available un-
der the ‘Download’ tab at http:// www.nii.ac.in/ sprotfp.html .
Additionally, the code for the standalone software developed
in the current study (SProtFP) is available in Supplementary 
File S4 and under the ‘Download’ tab at http://www.nii.ac.in/
sprotfp.html . 
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