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Abstract

Background: Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120
species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including
annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular
leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in
Europe. At present, the historical biogeography of the family is not well understood and the generic relationships
remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by
integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for
three morphological characters.

Results: Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values
greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the
remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria;
and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria,
Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST)
resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and
Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and
land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state
reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to
hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear
leaf shape are the ancestral states.

Conclusions: Our study has shed light on the previously controversial generic phylogeny of Hydrocharitaceae. The
study has resolved the historical biogeography of this family and supported dispersal as the most likely explanation
for the intercontinental distribution. We have also provided valuable information for understanding the evolution
of breeding system and leaf phenotype in aquatic monocots.
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Background
Hydrocharitaceae is a fully aquatic monocot family, con-
sists of 18 genera and approximately 120 species [1,2]
with a cosmopolitan distribution. The group is an
important component of aquatic ecosystems and occurs
in both freshwater and marine habitats. It also exhibits
great diversity in form and habit including annual and
perennial life histories; submersed, partially submersed
and floating leaf habits, and linear to orbicular leaf
shapes [1]. It includes a number of valuable aquarium
plants and some species (e.g., Hydrilla verticillata and
Elodea canadensis) provide fish breeding sites and fod-
der for the poultry raising industry [3]. Owing to habitat
destruction and unprecedented increase in commercial
shipping activities, several species (e.g., Ottelia alis-
moides and Blyxa japonica) are threatened, while some
other species (e.g., Hydrilla verticillata) have become
invasive weeds of great concern [4]. Similar to many
aquatic plants, the group displays considerable conver-
gent adaptations and morphological reduction, which
make the study of phylogenetics and taxonomy of the
group difficult [1,5-7]. There exists little consensus in
classification systems of the group based on morphologi-
cal characters [1,8].
Although molecular phylogenetic studies of Hydro-

charitaceae have created consensus on the relationships
between certain genera, disagreements on the relation-
ships of other genera still exist. The seagrass subclade
which includes Halophila, Enhalus and Thalassia was
resolved as sister to the subclade comprising Najas,
Hydrilla and Vallisneria by analyses using rbcL+ matK
[8] and rbcL+ cob + atp1 [9]. However, the seagrasses
was resolved as sister to the subclade comprising Necha-
mandra, Vallisneria and Maidenia by analyses using
morphological + rbcL+ matK+ trnK intron + ITS [1].
Similarly, Hydrilla, which was reported to be closely
related to Vallisneria by analyses using rbcL, matK [2,8],
rbcL, cob and atp1 [9], was reported to be closely
related to Najas by analyses using morphological char-
acter + rbcL+ matK+ trnK intron + ITS [1]. Further-
more, Stratiotes has been resolved as sister to the rest of
this family by analyses using rbcL [9] and mitochondrial
genes (nad5, cob, ccmB, mtt2, atp1) [9,10]. The position
is not in agreement with the results of two other studies
using chloroplast and nuclear sequences [1,2]. In addi-
tion, a single species was selected for each genus in pre-
vious studies. The phylogeny of this family could be
improved by a better sampling of taxon and DNA
sequence, and perhaps a careful outgroup selection [1].
The divergence time of Hydrocharitaceae is still a sub-

ject of debate, and two competing ages (one much more
recent than the other) have been proposed. Janssen and
Bremer (2004) [11] placed the crown node age of this
family in the Late Cretaceous (75 Ma) by analyses using

rbcL and fossil calibrations. Notably, in that study the
family was represented by only 16 terminals and there
was no internal calibration point. This could be
improved by better sampling and by incorporating inter-
nal fossil calibration points [12]. Kato et al (2003) [13]
dated the seagrasses within Hydrocharitaceae at 119 ±
11 Ma by analyses using the substitution rates of rbcL
and matK. However, this time overlaps with the gener-
ally accepted age of the order Alismatales thus putting
the validity of the results of that study into doubt [14].
He et al. (1991) [15] proposed that Ottelia had origi-
nated no later than the Cretaceous based on the distri-
bution of the genus and the predictions of the
continental drift theory. Fossils of Hydrocharitaceae
have been found in Europe including those of the extant
genera Vallisneria, Hydrilla, Ottelia, Thalassia, Stra-
tiotes, Hydrocharis and Najas from the Eocene, Oligo-
cene and Miocene [16-18]. The oldest fossil of
Hydrocharitacae (genus Stratiotes) is from the Late
Paleocene [19]. These fossils have prior to the present
study not been incorporated in divergence time
estimates.
The geographic origin of Hydrocharitaceae remains

unresolved. The diversity centre of the family has been
suggested to be in tropical Asia [20]. However, the
diversity centre of a taxon does not necessarily corre-
spond to its centre of origin. Numerous fossils of
Hydrocharitaceae have been found in Europe [17],
implying a possible European origin of the family. A
biogeographic analysis is required to elucidate the geo-
graphical origin of the family.
The transoceanic distribution of angiosperms has long

intrigued biologists. Two competing hypotheses have
been proposed to explain this phenomenon: the first
attributing it to dispersal [21-23] and the second to
vicariance (continental drift) [24]. Les et al. (2003) [21]
proposed that dispersal is the major factor accounting
for the disjunctive distribution of aquatic plants. This is
contrary to the traditional viewpoint which considered
vicariance [24] as the major cause of the disjunctive dis-
tribution in aquatic taxa such as Limnocharitaceae [25],
Ottelia (Hydrocharitaceae) [15] and Sagittaria (Alisma-
taceae) [26]. Hydrocharitaceae exhibits a wide transocea-
nic distribution at genera and species levels. The family
can serve as a suitable model to investigate transoceanic
distribution in aquatic monocots.
About 10% of all flowering plants have unisexual flow-

ers which have traditionally been regarded as a derived
state in angiosperms [27]. Most species of Hydrocharita-
ceae are unisexual while some are hermaphrodite. Her-
maphroditism is regarded as the ancestral condition
which gave rise to unisexual flowers [28]. However, her-
maphroditic flowers also occur in more recently evolved
genera such as Ottelia [1]. This suggests that the view
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that hermaphroditism is the ancestral state needs to be
re-examined. Leaf habit in Hydrocharitaceae varies from
aerial, aerial-submerged to fully submerged, and leaf
shape varies from circular, linear, to ribbon like [1].
Ancestral state reconstruction is useful in understanding
the evolutionary history of reproductive system and leaf
morphology and their significance in adapting the plants
to the aquatic environment.
In this study, we sampled 17 genera of Hydrocharita-

ceae, using DNA sequences from 8 genes. The aims of
our study were: 1) to reappraise the generic relation-
ships of Hydrocharitaceae; 2) to estimate the divergence
times; 3) to investigate the area of origin and the major
factor(s) shaping the global distribution; and 4) to inves-
tigate the evolution of reproductive system and leaf
morphology in this family.

Results
Sequence characteristics
Details of the voucher and DNA sequence information
are provided in Additional file 1. We successfully gener-
ated 117 sequences. Other sequences used in this study
were downloaded from GenBank. Seventeen of the 18
genera in Hydrocharitaceae were sampled. Genus Apper-
tiella was not included because of unavailability of
molecular data. The supermatrix dataset, which resulted
from assembling the DNA sequences of the 8 genes,
was 8,086 nt in length (2,035 mt, 4,406 chl, 1,645 nu).
The dataset consisted of 38 terminals of Hydrocharita-
ceae and was submitted to TreeBASE (accession number
S12110). The dataset comprised about 29% missing
characters mainly due to unavailability of some
sequences.

Phylogenetic analyses
Butomus and (Butomus + Alisma (Alismataceae) + Cym-
odocea (Cymodoceaceae) + Hydrocleys (Limnocharita-
ceae) + Potamogeton (Potamogetonaceae)) were
independently selected as outgroup. Both Maximum
likelihood (ML) and Bayesian analysis using the super-
matrix dataset resulted in completely identical relation-
ships and strong support (bootstrap value (BS)> 95,
Bayesian posterior probability (PP) = 1.0) for most
branches (Figure 1). ML analysis involving partitioning
the supermatrix dataset into eight genes and no parti-
tion resulted in slightly different support values, but
identical topologies. Stratiotes was resolved as the first
diverging lineage of Hydrocharitaceae with strong sup-
port (BS = 100, PP = 1.0). Other genera formed two
clades (BS = 99, PP = 1.0; Figure 1). Clade A (BS = 95,
PP = 1.0) included 10 genera. Hydrocharis-Limnobium
was resolved as the first diverging lineage of this clade;
the seagrasses formed a well supported clade (BS = 100,
PP = 1.0) which was resolved as sister to the subclade

(BS = 96, PP = 1.0) formed by Najas, Hydrilla, Necha-
mandra, Vallisneria and Maidenia (Figure 1). Clade B
(BS = 100, PP = 1.0) consisted of Lagarosiphon, Ottelia,
Blyxa, Apalanthe, Elodea and Egeria (Figure 1). The two
outgroups selected resulted in slightly different support
values, but identical topologies of Hydrocharitaceae.

Dating analysis and ancestral area reconstruction
All BEAST MCMC runs yielded sufficient effective sam-
ple sizes (> 200) for all relevant parameters and con-
verged on topologies identical to the tree in Figure 1.
The crown node age of Hydrocharitaceae was dated at
65.2 Ma (95% HPD: 54.6-79.6 Ma). The mean diver-
gence between clade A and clade B, estimated to be
63.1 Ma. For the three calibration nodes, mean posterior
estimates were consistent with prior node ages, suggest-
ing that the calibration points were sufficiently concor-
dant [29,30].
Seven biogeographic areas were recognized according

to Morse [31] (Figure 2a) namely A, Nearctic area; B,
Neotropical area; C, West Palearctic area; D, Afrotropi-
cal area; E, Oriental area; F, Australasian area; and G,
East Palearctic area. Two strategies were applied in the
biogeographic analyses. One used genera as terminal
taxa, the other used species as terminal taxa. Results of
the analyses using genera as terminal taxa suggested
that the most recent common ancestors (MRCAs) of
both Hydrocharitaceae and clade A occurred in Oriental
area. The MRCA of clade B occurred in Oriental, Afro-
tropical and Neotropical areas (Figure 2b).
Results of the biogeographic analyses using species as

terminal taxa suggested that Hydrocharitaceae origi-
nated in Orient (Figure 2c). A minimum of 76 dispersal
events was inferred from DIVA to explain the current
distribution of Hydrocharitaceae. The ancestor of Stra-
tiotes was suggested to have been in Orient and dis-
persed to Europe during the Late Cretaceous and
Paleocene (Figure 2c, d, arrow 1). This route is similar
to that which has been reported for Alangiopollis (Alan-
giaceae) [32]. The analyses using genera or species as
terminal taxa yielded comparable results on the ances-
tral area of Hydrocharitaceae. This indicates that incom-
plete sampling may have little effect on the accuracy of
investigation into the geographical origin of Hydrochari-
taceae. However, the analyses using species as terminal
successfully resolved the ancestral areas for more genera
than those using genera as terminal.
The MRCAs of clade A, the seagrass genera and the sea-

grass subclade were shown to be of Oriental origin. The
taxa then diversified in Oriental region (DIVA, Mesquite;
Figure 2c). DIVA suggested that Vallisneria originated in
Oriental and Australasian regions. Mesquite suggested an
Oriental origin for Vallisneria, followed by diversification
and dispersal to other continents (Figure 2c). Long
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distance dispersal (LDD) for Vallisneria from Oriental
area to Africa and Europe was inferred from V. spinulosa,
V. spiralis and V. denseserrulata (Figure 2c, e, arrow 1 &
2). LDD from Australasia to North America for this genus
was inferred from V. neotropicalis and V. americana (Fig-
ure 2c, e, arrow 7). This route is similar to that envisaged
for the taxon Scaevola (Goodeniaceae) [33]. LDD from
Australasia to Asia similar to that which has been
recorded for the plant family Cucurbitaceae [34] was
inferred from taxa including V. asiatica and V. natans
(Figure 2c, e, arrow 4). The genus Najas was inferred to
have originated in Oriental area during the Oligocene.
LDD from Asia to North America (inferred from N. gracil-
lima), to Europe (inferred from N. minor), to Africa
(inferred from N. minor) and to Australia (inferred from
subclade N. browniana + N. tenuifolia) was suggested (Fig-
ure 2c, e, arrow 6, 1, 2 & 5).

The ancestor of clade B was inferred to have dispersed
from Orient to Afrotropical region (Mesquite) or South-
ern hemisphere (DIVA) during the Eocene (Figure 2c, d,
arrow 2), followed by diversification in Southern hemi-
sphere during the Tertiary. MRCA of Ottelia was sug-
gested to have lived in Oriental and Afrotropical regions
(Figure 2c). LDD from West Africa into South America
for this genus was inferred from O. brasiliensis (Figure
2c, e, arrow 9). This route is similar to the one sug-
gested for the dispersal of Gossypium (Malvaceae) [35]
and is further supported by the fact that Ottelia in
South America is confined to the southeastern area [36].
LDD from S.E. Asia to Australasia was inferred from O.
ovalifolia (Figure 2c, e, arrow 5). Dispersal from Africa
into Asia was also inferred from O. cordata and O.
mesenterium (Figure 2c, e, arrow 3). This route is simi-
lar to that envisaged for the two genera Coccinia and

Figure 1 Phylogeny and divergence time estimates of Hydrocharitaceae based on combined 18S + rbcL+ matK+ trnK 5’ intron + rpoB
+ rpoC1 + cob + atp1 data set. Numbers above branches refer to the maximum likelihood bootstrap values (BS, left) and the posterior
probabilities (PP, right). Numbers in blue refer to the branches with BS> 95 and PP = 1.0. Gray bars indicate 95% highest posterior distributions,
and nodes labelled with stars refer to the positions of fossil calibration points.
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Figure 2 Historical biogeography of Hydrocharitaceae. (a) Area delimitation in biogeographic analyses. (b) Analyses using genera as terminal
taxa, and (c) analyses using species as terminal taxa. Distribution of each genus or species is indicated along with taxon names. Results of
Mesquite are indicated by coloured circles; results of dispersal-vicariance analysis (DIVA) are indicated by capital letters (only the results of major
clades are shown); equally optimal ancestral distributions are indicated by pie-charts (Mesquite) or slashes (DIVA). The times inferred from
divergence time estimates were marked on the major clades, numbers represent millions of years before present. (d) & (e) Possible origin,
differentiation centres and dispersal routes of Hydrocharitaceae.
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Momordica in family Cucurbitaceae [34]. The MRCA of
the subclade comprising Apalanthe, Egeria and Elodea
was suggested to have arisen in Neotropical region,
while the ancestor of this subclade may have come from
Afrotropical region (Figure 2c, e, arrow 9). Dispersal
from South America to North America during the Mio-
cene was inferred for the ancestor of Elodea, probably
via the island chains of Central America (Figure 2c, e,
arrow 10).

Ancestral character state reconstructions
Morphological characters of each species used in analy-
sis were indicated in Figure 3. Dioecy was suggested as
the progenitorial state, monoecy and hermaphroditism
were derived from it (Figure 3a); Ottelia emersa and O.
acuminata experienced reverse evolution from her-
maphroditism to dioecy (Figure 3a). The aerial-sub-
merged leaf habit was suggested as the progenitorial
state, which gave rise to aerial leaf and submerged leaf
(Figure 3b); the aerial-submerged leaf in O. ovalifolia
and O. emersa was originated from the submerged leaf
due to reverse evolution (Figure 3b). The short-linear
leaf shape was suggested as the ancestral state, ribbon
like and broad-ribbon like leafs were derived from it
(Figure 3c); the broad-circular leaf evolved indepen-
dently in three lineages, viz. Hydrocharis-Limnobium,
Ottelia and Halophila.

Discussion
Systematics
By merging diverse sequences into a supermatix data
set, we obtained a well-resolved phylogeny with most
branches strongly supported by BT values greater than
95% and PP values of 1.0. This indicates that increasing
the number of taxa and the number of molecular mar-
kers improved the resultant phylogeny, and it further
supports the notion that a supermatrix can be used to
obtain a well-resolved and strongly supported phylogeny
in cases where some data are missing [37-39]. The phy-
logenetic relationships of Egeria, Elodea, Ottelia, Blyxa,
Apalanthe and Lagarosiphon have remained unchanged
in all the earlier molecular phylogenetic studies
[1,2,8,9,40,41]. Our analyses resolved the generic rela-
tionships that are largely similar to those reported in
those studies. However, incongruences existed for the
other genera, which we briefly address here below.
The genus Hydrilla comprises only one species, H.

verticillata. Based on rbcL, matK, trnK intron, ITS and
morphological data, Les et al. (2006) [1] suggested that
Hydrilla was most closely related to Najas, despite their
being quite divergent at the phenotypic level. Our phy-
logenetic analyses suggested that Hydrilla is most clo-
sely related to the subclade comprising Nechamandra,
Vallisneria and Maidenia (Figure 1). This position is
consistent with all previous phylogenetic studies (except

Figure 3 Reconstruction of ancestral character states by Mesquite.
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Les et al., 2006) based on molecular and morphological
data [2,8,9,40,41]. A close relationship between the sub-
clade (Hydrilla (Nechamandra (Vallisneria + Maidenia))
and Najas was strongly supported (BS = 96, PP = 1.0,
Figure 1). This is in agreement with earlier results from
rbcL+ matK+ trnK intron analyses with ML approach
[1], rbcL [9], and rbcL+ matK [8]. However, the results
did not support the close affinity between the subclade
and seagrasses which had been inferred from rbcL [2]
and rbcL+ matK+ trnK intron + ITS analysis [1].
Stratiotes was resolved as the first diverging lineage

within Hydrocharitaceae (BS = 100, PP = 1.0; Figure 1).
This is in agreement with analyses based on rbcL [9],
mtt2 and nad5 [10] and the fossil records of Stratiotes
which include the most abundant and the oldest fossils
of’ Hydrocharitaceae [19,42]. However, the phylogenetic
position of Stratiotes seems to be mainly derived from
the mitochondrial sequences (cob, atp1) which are
prone to flaws in plant phylogenetic analysis [43].
Therefore, further studies are required to confirm the
position of the genus obtained in this study.

Origin
Results of divergence time estimates are in agreement
with the fossil records of Hydrocharitaceae. The 95%
HPD of Najas was 11.9-34.3 Ma, consistent with the
oldest fossil of this genus in the Oligocene [17] (Figure
1). The stem node age of Hydrocharis-Limnobium was
dated around 54.7 Ma. However, the crown node age of
this subclade was dated around 15.9 Ma, younger than
the oldest fossil of Hydrocharis from the Upper Eocene
[17,44,45]. This could be interpreted as an indication
that Limnobium had split from the relatively ancient
Hydrocharis in the Miocene (Figure 1), and the great
morphological similarity between the two genera is
probably due to the short evolutionary history of Limno-
bium. Although the present study has yielded improved
divergence time estimates, it is possible that the esti-
mates of the time of origin for some genera such as
Ottelia, Vallisneria, Najas and Blyxa may have been
affected by under-representation in sampling.
The age of Hydrocharitaceae estimated in this study

(mean: 65.5 Ma, 95% HPD: 54.6-79.6 Ma) is in agree-
ment with that based on rbcL analysis and external fossil
calibration points (crown node age = 75 Ma) [11]. How-
ever, the stem node age of seagrasses estimated in this
study (15.9-41.3 Ma) (Figure 1), is more recent than the
119 ± 11 Ma suggested from analysis using the substitu-
tion rates of rbcL and matK [13]. Similarly, our esti-
mates of the stem node age of Ottelia (8.1-33.3 Ma) is
more recent than the Cretaceous origin suggested by He
et al. (1991) [15]. The split between Zosteraceae and
Potamogetonaceae has been dated at 47 Ma by rbcL and
fossil calibration [11]. The time is also more recent than

the 100 Ma inferred from analyses using the substitution
rates of rbcL and matK [13]. These discrepancies indi-
cate that for estimating divergence times in aquatic
plants, incorporating fossil calibration point would be
more reliable.
The Oriental origin of Hydrocharitaceae inferred from

our analysis is supported by the known existence of
regions with humid and warm conditions in southeast-
ern Asia during the late Cretaceous and Palaeocene
[46,47] and the fact that the genetic diversity centre of
this family is in tropical Asia [20]. The ancestor of clade
A was inferred to have originated and diversified in the
Orient, while that of clade B dispersed from the Orient
to the Southern Hemisphere during the Late Cretaceous
and Paleocene (Figure 2c, d, arrow 2). Different environ-
ments and oceanic barriers among the major continents
(vicariance mechanism) during the Tertiary probably
contributed to the diversification of this family resulting
in taxa such as the African endemic Lagarosiphon.
Most fossils of Hydrocharitaceae and its close relatives

Butomaceae and Alismataceae have been found in Eur-
ope (Butomaceae in the Neogene of south Aral region,
Miocene of northwest and east Caucasus [18,48]; Alis-
mataceae in the Tertiary of Europe, a few in North
America). The fossil records seem to be inconsistent
with the Oriental origin of this family. However, the
absence of reports of fossils from Asia most likely
reflects a bias in paleobotany, rather than an indication
of the origin and past distribution of Hydrocharitaceae.
A similar situation exists in Rhinolophus (Rhinolophi-
dae), for which, although the genus is thought to have
originated in Asia, fossils have only been reported from
Europe and Africa but not from Asia [49,50].

Does the origin fit with dispersal?
The modern continents viz. South America, Africa, Eur-
asia, Australia and North America have been separated
by oceans since at least ca. 90 Ma [46,51,52], earlier
than the origin of Hydrocharitaceae. Therefore, dispersal
must have played a dominant role in the transoceanic
distribution of this family. This contradicts the view that
the transoceanic distribution of Ottelia mainly resulted
from vicariance [15]. The role of dispersal in transocea-
nic distribution has been supported by evidences from
the studies of geological events and land plant families.
Ocean currents are a viable means of dispersal of plants
[53], and a tropical westward-flowing ocean current had
spanned the world from the Cretaceous to Paleocene
[54,55]. Island chains existed in the Tethys from Cretac-
eous to Eocene, which served as a stepping-stone in bio-
tic dispersal between S.E. Asia, Africa and southern
Europe [32,56,57]. The Malay Archipelago probably
facilitated biotic dispersal between S.E. Asia and Austra-
lia during the Miocene [58]. The North Atlantic Land
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Bridge (NALB) aided plant migration between North
America and Europe during the late Cretaceous and
early Tertiary [59-61]. The Bering Land Bridge (BLB)
was open from at least the early Paleocene until its clo-
sure ca. 7.4-4.8 Ma [62]. Several recent studies of
angiosperms based on molecular and fossil data have
supported dispersal as the dominant factor responsible
for transoceanic distribution, e.g., in Cucurbitaceae [34],
Sapindaceae [63], Chrysophylloideae (Sapotaceae) [64],
Burseraceae [65] and Malphigiaceae [52]. It is probable
that Hydrocharitaceae have dispersed to all continents
of the world via island chains, land bridges and ocean
currents.
Biogeographic studies have suggested that the sub-cos-

mopolitan distribution of the aquatic plant family Alis-
mataceae has mainly resulted from dispersals (the work
will be reported in a separate paper). It is probable that
dispersal is the dominant factor, accounting for transo-
ceanic distribution of aquatic angiosperms. However,
more studies on aquatic angiosperms are required to
investigate this idea further.

Historical biogeography of some genera of
Hydrocharitaceae
The ancestor of Stratiotes was suggested to have dis-
persed from Orient into Europe during the late Cretac-
eous and Palaeocene (Figure 2b &2c, 2d, arrow 1),
which coincided with the existence of the Tethys seaway
(TESW) [54]. Alternatively, the ancestor may have
migrated from Orient to Europe across Eurasia. Abun-
dant fossils (15 fossil species) of this genus in Europe
[42] suggested that the genus had diversified widely in
this region adapting to wet swamps in the Late Cretac-
eous [66].
The genus Hydrilla is native to Eurasia and Australia

[67], and introduced to Americas [68] and parts of
Africa [69]. The centre of differentiation of the genus
was thought by Cook and Luond (1982) to lie in tropical
Asia [70]. This idea got support from genetic diversity
analysis which revealed that the highest diversity is
located in China and with lower albeit similar genetic
types occurring in Africa, India and USA [71]. Hydrilla
might have arisen in the Orient dispersing to Europe
and Australia (Figure 2, e, arrow 1 & 5).
The MRCA of the seagrasses within Hydrocharitaceae

were suggested to have lived in Oriental area during the
Oligocene and Miocene. The result is in agreement with
the view that seagrasses possibly originated in the S.E.
Asia [72,73]. The result is supported by the environ-
ments of S.E. Asia which was characterized by abundant
islands, spacious shallow-seas, warm temperature and
plenty of isolated seas [74]. However, the result denied
the Cretaceous origin of the group which has been sug-
gested in previous studies [13,75,76]. The seagrasses

were suggested to have been dispersed from Oriental to
other regions (Figure 2c), probably by ocean currents
[73,77]. For example, the warm northward Kuroshio
Current carried seagrasses from the equatorial region to
the Nansei Islands [77]. Seagrasses are capable of surviv-
ing during the LDD between major ocean systems [78].
Vallisneria has a world-wide distribution, with the

highest number of species in Australia [79,80]. Les et al.
(2008) [80] resolved the phylogeny of this genus, but
they conceded that the geographical origin is difficult to
pinpoint. In this study by DIVA analysis, Oriental and
Australasian areas were suggested as the co-existed
ancestral areas of Vallisneria. However, Oriental area is
more likely the centre of origin considering the follow-
ing facts: the closest relative of Vallisneria namely
Nechamandra is confined to Asia [67]; the ancestral
species in Vallisneria namely Vallisneria spinulosa, V.
spiralis and V. denseserrulata are confined to the Old
World [67,80].

Evolution of morphological characters
Ancestral state reconstruction of reproductive system in
Hydrocharitaceae provides empirical evidence that evo-
lution of dioecy in plants has been a bidirectional, viz.
from dioecy to hermaphroditism, and from hermaphro-
ditism to dioecy (Figure 3a). This view is supported by
Delph (2009) [81] and Canovas et al. (2011) [82], but
rejects the view that hermaphroditism is the ancestral
state in Hydrocharitaceae [28].
The evolution of leaf habit and leaf shape in Hydro-

charitaceae provides several cases of evolutionary adap-
tation to diverse habitats. The evolution from aerial-
submerged leaf to submerged leaf is probably due to
change in habitat from shallow to deep waters [83]. The
reverse evolution from submerged leaf to aerial-sub-
merged leaf in Ottelia is probably an adaptation to
change in habitat from deep to shallow water or some
other disadvantageous habitat(s). Taxa with broad-circu-
lar leaves (e.g., Ottelia and Hydrocharis) usually occur in
still water, while those with ribbon like leaves such as
Enhalus and Thalassia occur in coastal waters with
strong waves [67].

Conclusions
In summary, this study has reconstructed the phylogeny
of Hydrocharitaceae. The family was suggested to origi-
nate in Oriental area during the Late Cretaceous and
Paleocene (54.7-72.6 Ma). Dispersal is the most likely
factor shaping the transoceanic distribution of this
family. Ancestral character state reconstruction of gen-
der and leaf morphology offered valuable information
for understanding adaptive evolution in aquatic mono-
cots. However, the historical biogeography for some
genera (e.g., Ottelia, Vallisneria) may suffer from under-
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representation in sampling, and require re-evaluation in
future studies.

Methods
Sampling and molecular protocols
Most materials used for DNA sequencing was collected
from Wuhan Botanical Garden. Some were collected
from natural populations in China. Eight genes were
used, among which 18S is from nuclear; rbcL, matK,
trnK5’ intron, rpoB and rpoC1 are from chloroplasts;
cob and atp1 are from mitochondria. A detailed list
including the voucher information and GenBank acces-
sion numbers is provided in Additional file 1.
Genomic DNA was extracted from silica-dried leaves

using the Plant Genomic DNA Isolation Kit (Dingguo
Biotech, Beijing, China). All polymerase chain reactions
(PCR) were conducted in the ABI 2720 Thermal Cycler
(Applied Biosystems) in 40 μl volume containing 4 μl of
10 × amplification buffer (200 mM Tris-HCl (pH 8.4),
200 mM KCl, 100 mM (NH4)2SO4, 20 mM MgSO4), 0.8
μl of each primer (10 μM), 0.8 μl of dNTPs (10 mM), 2
U of Taq DNA polymerase (TransGen Biotech Co., Beij-
ing, China) and 60 ng of DNA template. For cob, atp1,
18S, trnK 5’ intron, rpoB and rpoC1, the following PCR
profile was adopted: 94°C for 3 min, 35 cycles of 30 s at
94°C, 30 s at 50°C, 1 min at 72°C and a final step for 10
min at 70°C. For matK, 55°C Tm and 1 min 30 s exten-
sion times were used. Primer sequences were obtained
from previous studies: cob (COB1F, COB1R) and atp1
(atpAF1.5, atpAl137r) [9]; rbcL (1 F, 1204R) [84]; matK
[7]; trnK 5’ intron (3914-F, TRANK2-R) [85]; 18S (N-
NS1, C-18 L) [86]; rpoB (1f, 4r) and rpoC1 (2f, 4r) [87].
Purified PCR products were double direction sequenced
using an automated DNA sequencer (ABI 3730, Applied
Biosystems). All newly generated sequences were depos-
ited in GenBank (Additional file 1).

Phylogenetic analyses
All sequences were aligned individually using Clustal X
v2.0 [88]. The output was manually inspected, and
ambiguously aligned parts were excluded. Inspired by
other studies (e.g. [37,39,89,90]), we assembled all the
aligned sequences into a supermatrix data set (combined
data set), which was used in phylogenetic analyses. Buto-
mus (Butomaceae) was used as outgroup according to
Les et al. (2006) [1]. We also selected (Butomus +
Alisma + Cymodocea + Hydrocleys + Potamogeton) as
outgroup in order to investigate the influence of out-
group in topology of Hydrocharitaceae.
ML analysis was conducted using RAxML v7.2.5 [91]

via the Cyberinfrastructure for Phylogenetic Research
(CIPRES) Portal http://www.phylo.org. Two strategies
were employed, one involved partitioning the superma-
trix data set into eight genes, while another did not

partition the data set. GTRCAT and GTRGAMMA
options were used, 1000 rapid bootstrap replicates were
conducted to assess bootstrap values.
Bayesian analysis was conducted in MrBayes v3.1.2

[92]. The best-fit model of nucleotide substitution was
chosen by MrModeltest v2.3 [93] according to the
Akaike Information Criterion (combined data set: GTR
+ I + G model). Two separate runs of four concurrent
runs (one cold, three heated each) of 16,000,000 genera-
tions were employed with sampling at every 1,000 gen-
erations. The stationarity of the likelihood scores of
sampled trees was evaluated in Tracer v1.5 [94], and the
first 10% generations were discarded as burn-in.

Divergence time estimates
Divergence time estimates were conducted in BEAST
v1.5.4 [95] using the supermatrix data set. Butomus,
Alisma, Cymodocea, Hydrocleys and Potamogeton were
selected as outgroup. To prevent the negative effects
from heterogeneity of substitution rates and uncertainty
of fossil data, we used a relaxed clock and Uncorrelated
Lognormal (UCLN) model [96,97]. GTR + I + G model
with Gamma Categories set to 6 was adopted. The start-
ing tree was randomly generated with a Yule process
prior. More than 90,000,000 generations of MCMC
were implemented of which every 1,000 generations
were sampled. Tracer v1.5 [94] was used to check the
parameters and the first 10% generations were discarded
as burn-in.
Lognormal distribution was selected for each calibra-

tion point according to Adamson et al. (2010) [98]. This
distribution defined the minimum ages for calibrated
nodes but allowed the maximum ages to be estimated
following a lognormal distribution without hard limit
[99]. Three calibration points were incorporated. The
oldest reliable fossils of Hydrilla and Vallisneria were
reported from the Upper Eocene (33.7-55.8 Ma) [17,44].
Therefore, the split between Hydilla and (Vallisneria +
Nechamandra) was constrained to a minimum of 33.7
Ma (offset = 33.7, mean = 1.1, SD = 1.2). In addition,
the oldest reliable fossil of Ottelia was from the Upper
Eocene (33.7-55.8 Ma) [17,44]. Therefore, the split
between Blyxa and Ottelia was constrained to a mini-
mum of 33.7 Ma (offset = 33.7, mean = 1.1, SD = 1.2).
Lastly, the oldest fossil of this family (genus Stratiotes)
was 0.1 Ma younger than the Paleocene-Eocene bound-
ary (54.6 Ma) [19]). Therefore, the fossil was used to set
the split between Stratiotes and the remaining genera of
this family not later than 54.5 Ma (offset = 54.5, mean =
1.0, SD = 1.0).

Biogeographic analyses
Seven biogeographic areas were recognized according to
Dr Morse [31] (Figure 2a). Biogeographic distribution of
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Hydrocharitaceae was mainly compiled from literature
[36,67,72,78,80,100-106]. Fossil was not considered in
the area coding as no fossil has been found outside the
natural distribution of any genus. Distribution that is
known to have been caused by human activities was not
included in the analyses. Two methods were used in the
analyses: dispersal-vicariance analysis implemented in
DIVA v1.2 [107] with the maximum number of ances-
tral areas at each node constrained to four, and parsi-
mony ancestral state reconstruction implemented in
Mesquite [108].
Two strategies were applied in the biogeographic ana-

lyses. One strategy used genera as terminal taxa in the
analyses. A tree (Figure 2b) that represented the generic
topologies inferred from the phylogenetic analysis using
the supermatrix (Figure 1) was constructed, and it was
used in the analyses. Each genus was coded based on
the current distribution. Details of the distribution are
provided in Figure 2b. This strategy followed the meth-
ods in the biogeography study of Ranunculaceae [23]
and the suggestion from Yan Yu (one of the authors of
S-DIVA). Another strategy used species as terminal taxa
and a tree including 72 species of Hydrocharitaceae was
used (Figure 2c). Species belonging to Ottelia [15],
Halophila [78] and Vallisneria [80] with known phylo-
genetic relationships were manually added to the tree
which resulted from the phylogenetic analysis (Figure 1).
In addition, seven species of Najas with the topology
from a ML analysis based on rbcL were also added to
the tree. Each species was coded based on the current
distribution. Details of the distribution are provided in
Figure 2c. The purpose of using species as terminal taxa
was to reconstruct the ancestral areas at the family and
genus levels.

Ancestral character state reconstructions
Information on the reproductive system, leaf habit and
leaf shape was mainly compiled from literature
[1,36,67,103]. Details of the phenotypic data are pro-
vided in Figure 3. Parsimony ancestral state reconstruc-
tion was performed using the Mesquite [108] and the
tree inferred from the phylogenetic analyses using the
supermatrix dataset.

Appendix A
Additional file 1 Taxa included in this study with vou-
cher information and GenBank accession numbers
(DOC 99 kb)

Additional material

Additional file 1: Taxa included in this study with voucher
information and GenBank accession numbers (DOC 99 kb).
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