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Machine learningmethods have now become an optional technique in Earth science research, and such data-driven solutions have
also made tremendous progress in weather forecasting and climate prediction in recent years. Since climate data are typically time
series, the neural network layers, which can identify the intrinsic connections between the points of the sequence and features in
two-dimensional data, perform particularly well for climate prediction. 0e North Atlantic Oscillation (NAO) is a prominent
atmospherical mode in the northern hemisphere, with the frequency change characteristic of sea level pressure (SLP) in the North
Atlantic sector. One of the reasons why NAO prediction is still challenging is that NAO is also proven to be influenced by other
climate circulations, the most significant of which is the interaction between El Niño-Southern Oscillation (ENSO) and NAO.
0erefore, sea surface temperature (SST) in the Pacific Ocean used to characterize ENSO is also one of the factors that contribute
to the evolution of NAO and can be used as an input factor to predict the NAO. In this paper, the seasonal lag correlation between
ENSO and NAO is explored and analyzed. 0e interaction has been considered in both short-term forecasting and midterm
prediction of the NAO variability. 0e monthly NAO index (NAOI) fluctuation is predicted using the Niño indices based on the
RF-Var model, and the accuracy achieves 68%when the lead time is about three months. In addition, integrating multiple physical
variables directly related to the NAO and Pacific SST, the short-term NAO forecasting is conducted using a multi-channel neural
network named AccNet with trajectory gated recursive unit (TrajGRU) layer. AccNet has the ability to identify the mechanism of
the high-frequency variation in several days, and the NAO variability is indicated by SLP. 0e loss function of AccNet is set to
anomaly correlation coefficient (ACC), which is the indicator that verifies spatial correlation in geoscience. Forecasting extreme
events of NAO between 2010 and 2021, AccNet presents higher flexibility compared against other structures that can capture
spatial-temporal features.

1. Introduction

0e North Atlantic Oscillation (NAO) is the most prom-
inent phenomenon of atmospheric circulation resulting in
sea level pressure (SLP) fluctuation on Azores and Iceland
[1].0e weather and climate in the Euro-Atlantic sector have
a close connection with the NAO variability, presenting as
storms [2], floods [3], extreme rainfall [4], etc. 0e pre-
diction skill of NAO is of great significance for climate
prediction in North Hemisphere and has been a focus of the
scientific subject.

0e NAO index (NAOI), which is defined as the nor-
malized sea level pressure difference between Iceland and the
Azores, is adopted as an indicator to characterize the

intensity of NAO events. In previous work for NAO pre-
diction, the skills of proposed models are also reflected by
the accuracy of mean NAOI. With the implementation of a
3D-Var assimilation system, the new version of the UK Met
Office Global Seasonal forecast system (GloSea5) shows
improved prediction for the NAO in the middle latitude [5].
Using the same high-resolution model, the latest generation
seasonal prediction system called DePreSys3 enhanced the
skill in one-year-ahead NAO prediction, and the skill source
in the tropical Pacific region was also identified [6]. 0e
impact on the NAO predictability of the Integrated Forecast
System (IFS) caused by the regime dynamics of the North
Atlantic eddy-driven has been explored, and the Markov
model driven by seasonal persistence probabilities was
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constructed [7]. Although predicting NAO via numerical
models is more mature, it still exists some obvious draw-
backs. 0e errors implied in initial conditions along with
those inherent to the model (for instance, parameter, pre-
cision, etc.), can lead to significant deviation on NAO
prediction [8]. Besides, the physical mechanisms that are not
generalized by the existing dynamical equations can also
increase the uncertainty.

Owing to the limited capacity of most dynamical models
in the seasonal prediction of the winter NAO, a new em-
pirical model based on the multiple linear regression (MLR)
techniques provided robust prediction for DJF (December,
January, and February) mean NAOI, considering the impact
of sea surface temperature (SST), sea ice concentration, and
stratospheric circulation [9]. Selecting Pacific Ocean SSTs,
sea ice in the Arctic, Atlantic SSTs, and tropical rainfall as
predictors, a probabilistic prediction of the winter NAO has
also been performed using linear regression [10]. However,
the model did not work well on test sets and presented low
reliability. 0e autoregressive integrated moving average
model (ARIMA) combined with the extreme learning ma-
chine (ELM) [11], the statistical toy model based on Markov
chain [12], and composite statistical models [13], like the
polynomial-harmonic autoregressive model, threshold
autoregressive model, and multivariate autoregressive
model, have also been adopted to predict NAOI. Con-
strained by the simple mechanism embedded in these sta-
tistical models, the capacity of identifying the nonlinear
feature is defective, causing a large deviation in prediction.
As a complex air-sea nonlinear interaction, the NAO can
hardly be described as the linear relationship between these
physical variables. As a nonlinear fitting method, machine
learning approaches can effectively avoid the above-men-
tioned defects by extracting features from data automatically
and are widely adopted for predicting a variety of climate
phenomena. Currently, the researches on NAO prediction
using machine learning methods are still very few.

In addition to mid-term NAO predicted in previous
works, our team also made an attempt on the short-term
NAO forecasting using neural networks as well as mode
decomposition methods, including ensemble empirical
mode decomposition (EEMD) and discrete wavelet trans-
form (DWT), which have been blended into models to
improve the signal to noise ratio (SNR) [14, 15]. It is in-
dicated that the accuracy on peak values, which normally
represent extreme NAO events, has been notably enhanced.
0e forecasting result is compared with the two mature
NAO forecasting products of CPC, which are Global
Forecast System (GFS) and Ensemble Forecasts (ENSM),
and our models present higher forecast reliability than these
two products. 0e predictors adopted in these works only
contain the factors directly related to the NAO (NAOI and
SLP), and we aim to consider other variables with relevant
physics meanings as the input for forecasting.

In related works for NAO prediction, vorticity, tem-
perature, surface pressure, sea ice concentration and geo-
potential height have been selected as feature sources
[16–18]. Among these predictors, SSTs have also found to be
the crucial factor to trigger the NAO events [19]. For

instance, the positive response of NAO can be forced by
interference of climatological stationary wave, which is
generated by Rossby wave from the SST warming [20]. In
particular, the positive phase of NAO (NAO+) is associated
with the positive SST anomaly located in the southeast of
Newfoundland as well as the negative SST anomaly over the
northeast of the North Atlantic [21]. 0e roles played by
Pacific Ocean SST variability is found to be particularly
beneficial to the summer NAO prediction, and the Pacific
Ocean SSTs destructively interferes the climatological sta-
tionary wave by producing a Rossby wave, resulting in the
positive NAO response [22]. Further, the causal relation-
ships and interactions between ENSO and NAO are iden-
tified by correlation coefficient of NAOI and Niño index,
demonstrating winter La Nina is more likely to drive the
NAO− events [23].

In this paper, prediction and forecasting of the NAO
variability can be carried out based on the correlation be-
tween NAO and ENSO in two aspects. Firstly, the monthly
NAOI variation is predicted by the RF-Var model, with
selecting NAOI and Niño indices (including Niño3 index,
Niño4 index, and Niño3.4 index) as inputs. On the other
hand, the short-term NAO status is characterized by SLP
and forecasted using the deep learning model AccNet. On
the basis of the above work, in addition to physical variables
that can define NAO directly, such as SLP and geopotential
height (GH), the variables that have been proved to be
closely related to the NAO variation, including zonal wind
and meridional wind as well as SSTare selected as predictors
of the short-term NAO forecasting model. First of all, in
order to investigate whether there exists a gain effect of SST
in the tropical Pacific on NAO prediction and forecasting,
this paper analyses the interaction details of the Niño3.4
index with NAOI in the decadal period using cross wavelet
transform (XWT) and wavelet coherence methods. Wavelet
transform is a traditional tool to analyze trends and peri-
odicities with expanding time series into time-frequency
space, and continuous wavelet transform (CWT) can be
applied in the analysis of localized intermittent oscillations
[24]. 0e causality between signals would be suggested by
regions with large common power and consistent phase
relationship [25]. Meanwhile, the rolling windowed time-
lagged cross correlation (RWTLCC) method is adopted to
determine the leader-follower relationship between ENSO
and NAO.0e analysis results show that ENSO has a driving
effect on the evolution of NAO. For the mid-term NAOI
variation prediction, the results show that the prediction
accuracy of this method achieves 68%, which is better than
other advanced classification methods, the regression model
proposed by our team (DWT-LSTM and EEMD-
ConvLSTM), and the prediction system (MATES1.0) based
the on the numerical model. For the short-term SLP fore-
casting, the relevant physical variables, as listed above, in-
cluding SLP, GH, winds, and SST, are fed into the multi-
channel neural network model with trajectory gated re-
cursive unit (TrajGRU) layers. Due to dynamic connections,
the TrajGRU structure has shown high flexibility with ACC
as the loss function to obtain the forecasting sequence of
SLP. With forecasting 64 NAO+ events and 59 NAO− events
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during the decade of 2010–2021, there is a certain degree of
correlation between SST and different types of NAO events,
and this correlation helps the model to learn the various
characteristics of NAO, thus improving the forecasting skill
of NAO.

0e rest of the paper is structured as follows. Section 2
introduces the related work on the correlation between
ENSO and NAO and their combined effects. 0e dataset and
regions we focus on are displayed in Section 3. 0e analysis
tools and details of the RF-Var model and AccNet model are
also presented in Section 3. Experiment settings including
lead time settings and parameter settings are displayed in
Section 4. 0e relevant analysis and results of NAOI pre-
diction and SLP forecasting are discussed in Section 5. In the
last section, we conclude with a summary and point out the
future prospects.

2. Related Work

0e ENSO phenomenon originates from coupled ocean-
atmosphere circulation in the tropical Pacific Ocean and is a
major cause of global interannual climate change. Because
the correlation properties of ENSO and NAO provide po-
tential seasonal predictive power for European climate,
several previous results have been used to explore the in-
fluence of ENSO on NAO variability [26, 27]. 0e rela-
tionship between ENSO and NAO-related atmospheric
circulation is complex, and one of the reasons for the
complexity is the diversity of ENSO spatial structure, which
is important for the seasonal prediction of NAO. In general,
El Niño events in the Eastern Pacific (EP) and Central Pacific
(CP) are often accompanied by the atmospheric response of
NAO− . CP-type and EP-type ENSOs have different effects
on NAO due to their unique regional climatic influences
[28]. Among them, NAO− events are more likely to be
induced during El Niño, while NAO+ events are more likely
to occur during La Niña [29]. 0ese extratropical atmo-
spheric responses are mainly attributed to nonlinear sea-air
interactions in the tropical eastern Pacific. 0e influence of
ENSO on NAO is highly seasonal, with the North Atlantic
atmospheric anomalies in early winter (November-De-
cember) and late winter (January-March). However, the
variations of ENSO in the SST anomaly modes are roughly
opposite, and the diversity exhibited by ENSO in the SST
anomaly modes also affects its correlation with NAO [30].
0e atmospheric anomaly modes of NAO− often coincide
with El Niño events, and their common effect is a colder and
drier late winter in Western Europe, while La Niña has
roughly the opposite effect on NAO [31].

0e combined effects of ENSO and NAO are confirmed
to be more profound than the effects they produce indi-
vidually [32]. For instance, the NAOI reached extreme
negative values (<−4) during the winter of October 2009,
when an El Niño event also occurred, leading to record
snowfall in the mid-Atlantic region [33]. 0e typical El Niño
event of 1982–1983 coincided with a NAO+ event, leading to
heavy rainfall in southern China [34]. During 2009–2010, a
drought occurred in southwest China, and the associated
atmospheric anomalies were triggered by both NAO− and El

Niño [35]. However, the dynamic mechanisms of how
ENSO-related tropical SST anomalies affect NAO variability
have not been fully understood yet. Some studies have
suggested that ENSO may cause SSTanomalies in the North
Atlantic Ocean, thus affecting the atmospheric circulation in
the North Atlantic [36, 37]. Low-frequency atmospheric
circulation anomalies over the eastern Pacific and North
America regulate the meridional propagation of waves over
the North Atlantic, which would trigger the generation of
NAO events in different phases [31, 38]. During the period
1957–2007, a clear interdecadal feature of the correlation
between ENSO and summer NAO emerged, and it is sug-
gested that ENSO was significantly correlated with NAO
after the mid-1970s [39]. It is also demonstrated that a
poleward propagating Rossby wave enhanced by an SST
anomaly of the Northwest Pacific associated with the ENSO
development process was responsible for linking the ENSO
signal to the NAO, causing the strongest winter NAO signal
to coincide with the maturation of the ENSO [40]. Previous
studies have indicated that negative SST anomalies in the
northeast and southeast of the North Atlantic are correlated
with NAO+, while lagged North Atlantic SST is significantly
correlated with NAOI in the following winter [21, 41].

Doblas Reyes et al. adopted an ideal model to demon-
strate that winter NAOI can be predicted on a one-month
time scale [42], with pointing out the link between NAO and
other external factors are crucial for the prediction of ex-
treme climate events. Tian and Fan analyzed the time series
of NAO using power spectra [43] and found that NAO
exhibits spectral peaks in a 2 to 3 years cycle [44, 45]. ENSO
and NAOI are chosen for the period 1948–2014 to determine
the impact of different types of ENSO on climate change in
the North Atlantic and concluded that the NAO+ is asso-
ciated with winter CP-type La Niña, while the NAO− is
associated with winter EP-type La Niña [46]. 0erefore,
cross-validation tests and independent backward predic-
tions of winter NAO were performed in the previous study
using the SST of the previous spherical season and the year-
to-year increment of the Eurasian snowpack as predictors
[43].0e results show that the new predictionmodel exhibits
better performance in reproducing the interdecadal vari-
ability of NAO.

3. Materials and Methods

For prediction and forecasting of the NAO, scholars gen-
erally focus on the occurrence and intensity of NAO events.
And beyond that, the interannual scale variability of NAOI
has also become a key point in related studies [47].
0erefore, NAO prediction and forecasting in this work will
be carried out in two aspects. After exploring the correlation
between ENSO and NAO, the first aspect is to select Niño
indices and NAOI as predictors to predict the monthly
NAOI fluctuation and variation trend using the RF-Var
model; on the other hand, since the short-term NAOI can be
manifested by SLP field in North Atlantic sector, physical
variables associated with ENSO and NAO are fed into deep
neural network named AccNet to forecast the SLP
sequences.

Computational Intelligence and Neuroscience 3



3.1. Dataset and Region. NAOI and Niño3.4 index are se-
lected to represent the trends of NAO and ENSO. Specifi-
cally, Niño3.4 index is the average value of SST anomaly
(SSTA) in Niño3.4 region, which is the main observation
region for El Niño or La Niña events, located at 170°W-
120°W, 5°S-5°N, as shown in the red box line in Figure 1.0e
quantitative criterion for ENSO events is that if the 3-month
moving average value of the Niño3.4 index is greater than or
equal to 0.5°C (less than or equal to −0.5°C) for at least 5
consecutive months, it means that an El Niño (La Niña)
event occur.

Since the indicators related to ENSO, including
Niño1+2 index, Niño3 index, Niño3.4 index, Niño 4 index,
the Oceanic Niño Index (ONI), and the Trans- Niño index
(TNI), all use the month as the unit time scale, the monthly
NAOI is selected to stay in step with the ENSO indicators.
0ereinto, the Niño3.4 index is the most commonly used
scientific measurement of ENSO, while Niño3 index and
Niño4 index can be adopted to identify the type of ENSO
[48]. Table 1 lists the status of the NAO corresponding to
moderate and strong ENSO events at the same period [49],
and the date in Table 1 represents peak periods during the
ENSO event. According to the previous related work
mentioned in section “Related Work,” the EP-type El Niño
event occurred in the winter between 1982 and 1983 ac-
companies by a NAO+ event [34], and the CP-type El Niño
event during the winter between 2009 and 2010 is also in
connection with the NAO− event [35]. Moreover, it is also
proved that CP-type La Niña is closely associated with
NAO+ and EP-type La Niña has close relation with NAO−

[46], which can be seen from Date 1973.12 and Date
2010.12. ENSO events mostly peak in winter, while the
winter mode of NAO is also particularly prominent; the
interaction between these two phenomena would be worth
exploring. As the type and location of ENSO events make a
difference to the impact of the NAO, the Niño3 index and
Niño4 index are considered as predictors for NAOI vari-
ation prediction.

0us, monthly average NAOI, Niño3.4 index, Niño3
index, and Niño4 index are selected for correlation anal-
ysis. 0e monthly average NAOI data is provided by the
CPC website [50], and the monthly average Niño3.4 index,
Niño3 index, and Niño4 index are provided by the NOAA
website [51]. 0e time intervals of these two datasets are
both from 1960-01 to 2021-10, and Figure 2 shows the
indices in this time period. It can be seen that the frequency
of NAO fluctuations is significantly higher than ENSO,
which is due to the more rapid changes and more frequent
vibrations of SLP compared to SST. According to historical
data, a NAO− (NAO+) event may be likely to cause severe
climate disasters when it is generated simultaneously with
an El Niño event [35, 52, 53]. During the two decades
1990–2010, the changes of NAOI and Niño3.4/Niño3/
Niño4 index seem to be a strong consistency. Whereas,
before 1970, a more intuitive correlation feature cannot be
captured.

As for the forecasting of grid-point data, some physical
variables directly related to NAO, such as SLP and GH, are
chosen as the predictors. 0e NAOI can be defined from the

SLP anomaly (SLPA) projection on the NAO pattern. More
specifically, the SLP field is subtracted from the climato-
logical mean, then the SLP anomaly (SLPA) is projected on
the NAO pattern (SLPNAO), and the NAOI is obtained:

NAOI �
〈SLPA, SLPNAO〉
〈SLPNAO, SLPNAO〉

, (1)

where 〈·, ·〉 denotes the inner product operation of matrixes.
Specifically, it is the sum of product for the corresponding
elements of two matrixes. Similarly, the NAOI can be also
calculated by the 300 hPa GH field:

NAOI �
〈GHA,GHNAO〉
〈GHNAO,GHNAO〉

. (2)

From the research of NAO’s optimal precursor in our
previous work, the longitudinal wind (V-wind) and lat-
itudinal wind (U-wind) are proved to contribute to the NAO
evolution [54]. 0erefore, SLP, GH, U-wind, and V-wind in
the North Atlantic sector and SST in the tropical Pacific
sector are selected as predictors. SLP, V-wind, U-wind and
GH are provided by NCEP reanalysis data with a resolution
of 2.5° × 2.5°, and the time interval is uniformly selected from
1981-09-01 to 2021-11-01 with daily time resolution, and the
grid size of each frame is 25× 53. SSTs are obtained from
NOAA high-resolution SST daily value data with a resolu-
tion of 0.25° × 0.25° and are located in Niño3 (150°W-90°W,
5°S-5°N), Niño4 (160°E-150°W, 5°S-5°N), and Niño3.4 re-
gion, respectively. In order to fit with other variables, the SST
data is firstly cropped and is zoomed out using quadratic-
spline interpolation.0en the frame scale of SST is 25× 53 as
well.

3.2. CrossWavelet andWavelet Coherence. In this paper, the
cross wavelet and wavelet coherence are adopted to explore
the periodicity and lag phase of the causal relationship
between ENSO and NAO. Weather or climate data gen-
erally consist of time series, and multiple traditional
mathematical methods such as the Fourier transform, when
studying the periodic properties of a series in the frequency
domain, default to the underlying processes being sta-
tionary on the time scale. 0e wavelet transform, on the
other hand, can extend the study of time series into the
time-frequency space and can discover local periodicity.
Among them, Continuous Wavelet Transform (CWT) is a
common tool for analyzing local periodic oscillations in
time series and is more suitable for feature extraction.
According to the principle of Quepf Müller uncertainty, the
temporal resolution of wavelets is inversely correlated with
the frequency resolution, as in the case of Morlet mother
wavelet:

ψ0(η) � π− 1/4
e

iω0ηe
− 1/2η2

. (3)

where η is time and ω is frequency, and the idea of CWTis to
use wavelets as filters and change the scale of the wavelets to
act on the time series. A CWT with a uniform time step δt

can be defined as the convolution of a time series xn with a
normalized wavelet as follows:

4 Computational Intelligence and Neuroscience



1960-01 1968-05 1976-09 1985-01 1993-05 2001-09 2010-01 2018-05
Time

3

2

1

0

–1

–2

–3

V
al

ue

NAOI
NINO3.4

NINO3
NINO4

Figure 2: NAOI, Niño3.4 index, Niño3 index, and Niño4 index series for the period 1960–2021.
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Figure 1: Critical observation areas for El Niño or La Niña events.

Table 1: Different ENSO events along with the NAO status.

Date ENSO event ENSO type ENSO intensity NAO phase NAOI
1965.11 El Niño EP Moderate NAO− 0.38
1971.01 La Niña EP Moderate NAO− −1.13
1972.11 El Niño EP Strong NAO+ 0.54
1973.12 La Niña CP Moderate NAO+ 0.32
1975.12 La Niña CP Moderate — 0.00
1983.01 El Niño EP Very strong NAO+ 1.59
1987.08 El Niño EP Moderate NAO− −0.83
1988.12 La Niña EP Strong NAO+ 0.61
1992.01 El Niño EP Moderate NAO− −0.13
1994.12 El Niño CP Moderate NAO+ 2.02
1997.11 El Niño EP Very strong NAO− −0.90
2000.01 La Niña EP Moderate NAO+ 0.60
2002.11 El Niño CP Moderate NAO− −0.18
2008.01 La Niña EP Moderate NAO+ 0.89
2009.12 El Niño CP Moderate NAO− −1.93
2010.12 La Niña EP Moderate NAO− −1.85
2015.12 El Niño EP Very strong NAO+ 2.24
2020.11 La Niña EP Moderate NAO+ 2.54
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0e power synchronization relationship and phase re-
lationship between two time series in the time-frequency
space can expose the causal relationship between them. 0e
cross wavelet transform WXY

n (s), which consists of the
continuous wavelet transforms WX

n (s) and WY
n (s) of these

two time series xn and yn, can reflect their common power
spectrum and relative phase, whose power is defined as
|WXY|. 0e power of the cross-wavelet presents the region
with high common power, and another measure is the
coherence of the cross-wavelet transform, defined as follows:

R
2
n(s) �

S s
− 1

W
XY
n (s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

S s
−1

W
X
n (s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓 · S s
−1

W
Y
n (s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓

, (5)

where S is a smoothing operator and can be described as

S(W) � Sscale Stime Wn(s)( 􏼁( 􏼁, (6)

where Sscale is the smoothing operator along the wavelet scale
axis and Stime represents the smoothing operator on the time
scale. For the Morlet wavelet, the smoothing operator
designed by Torrence and Compo is as follows [55]:

Stime(W)|s � Wn(s)∗ c1
− t2/2s2

􏼒 􏼓|,

Sscale(W)| � Wn(s)∗ c2Π(0.6s)( 􏼁|n,

(7)

where c1 and c2 are constants, and Π is a rectangular
function. XWT can be considered as a local correlation
between two sets of CWTs. If there is a physical correlation
between the two sequences, a consistent or slowly varying
phase lag will be presented.

3.3. RF-Var Model. 0e RF-Var model is proposed to
conduct the prediction of NAOI variations from the per-
spective of solving the classification problem based on the
random forest approach. 0e procedure of the RF-Var
model is displayed in Figure 3. First, subdatasets are con-
structed by taking put-back samples from the original
dataset. 0en the subdecision trees are constructed via these
subdatasets, and each subdecision tree outputs its result. For
the new data that needs to be classified by the RF-Var model,
the result can be obtained by majority voting on the
judgments of subdecision trees. From this, the predicted
NAOI variation sequence is acquired.

Random forest is a supervised learning algorithm in
which the forest is a collection of decision trees, and the
main idea is to improve the overall accuracy by combining
learning models. An important feature of random forests is
the ability to measure the impact of each feature on the
prediction and the interaction between different features,
thus avoiding overfitting to some extent.

In this paper, the monthly variation prediction can be
transformed into a binary classification problem by using 0
to indicate a decreasing NAOI and 1 to indicate an

increasing NAOI. 0e original data needs to be processed
first. Assuming a time window of n for the prediction, the
current element of inputs including NAOI and Niño index,
which is written as Xc

′, is processed by comparing Xc−n−1 and
Xc−n of the raw sequence. 0e output Y is determined by the
NAOI variation. Specifically, Yc is set to 1 when Xc−1 <Xc in
NAOI or c � 0, otherwise Yc is set to 0. 0erefore, the
predictions are accordingly rising (1) and falling (0) for the
NAOI. In a piece of samples, features of NAOI and Niño
index signals in the time window range are available for
selection by the RF-Var model.

3.4. AccNet. 0e multivariate forecasting model AccNet is
used to forecast the SLP grid-point data within several days,
and the structure is schematically shown in Figure 4. 0e
input to the model consists of SLP, SST, U-wind, V-wind,
and GH.0emultivariate variables are organized in the form
of multi-channel time series and fed into the multivariate
forecasting model AccNet, which consists of three parts:
encoder-predictor-decoder, first extracting features in
consecutive frames of the aforementioned time series using a
CNN, then feeding into a trajectory gated recursive unit
(Trajectory GRU, TrajGRU) [56].

As a structure for capturing spatio-temporal correla-
tions, it has similar functions to the ConvLSTM, but the
ConvLSTM uses a position invariant filter that cannot ef-
ficiently respond to continuous feature maps where the local
structure changes, especially for variables such as SLP where
there are frequent oscillations in the short term, and there
are limitations to the effectiveness of the ConvLSTM. For
general ConvRNNs, the state at position (i, j) at moment t is
calculated as follows:

Ht,:,i,j
′ � f Whhconcat 〈Ht−1,:,p,q|(p,q)∈Nh

i,j
〉􏼒 􏼓􏼒 􏼓

� f 􏽘

Nh
i,j

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

l�1
W

l
hhHt−1,:,pl,i,j ,ql,i,j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

(8)

where Nh
i,j denotes the ordered set of neighborhoods at

position (i, j), (pl,i,j, ql,i,j) is the lth neighborhood position at
position (i, j), and Wl

hh is the convolution weight between
the states, represented in matrix form. 0e hyperparameters
of the convolution are fixed, so the set of neighborhoods is
also fixed. the advantage of TrajGRU is the adoption of a
connection structure that changes dynamically with the
position. the state at position (i, j) at moment t in TrajGRU
is calculated as follows:

Ht,:,i,j
′ � f 􏽘

L

l�1
W

l
hhHt−1,:,pl,i,j(θ),ql,i,j(θ)

⎛⎝ ⎞⎠, (9)

where L is the total number of connections and the lth

neighborhood position in the neighborhood set contains the
parameter θ, noted as (p(l,i,j)(θ), q(l,i,j)(θ)). As a result,
TrajGRU can generate the set of neighbors at the current
moment based on the location information using the current
input and previous states as follows:
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Ut, Vt � c Xt, Ht−1( 􏼁,

Zt � σ Wxz ∗Xt + 􏽘
L

l�1
W

l
hz ∗warp Ht−1, Ut,l, Vt,l􏼐 􏼑⎛⎝ ⎞⎠,

Rt � σ Wxr ∗Xt + 􏽘

L

l�1
W

l
hr ∗warp Ht−1, Ut,l, Vt,l􏼐 􏼑⎛⎝ ⎞⎠,

Ht
′ � f Wxh ∗Xt + Rt ∘ 􏽘

L

l�1
W

l
hh ∗warp Ht−1, Ut,l, Vt,l􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

Ht � 1 − Zt( 􏼁 ∘Ht
′ + Zt ∘Ht−1.

(10)

where Ut and Vt are the locally connected flow fields of the
storage structure generation network c, Wl

hz, Wl
hr, and Wl

hh

are the weights of the projected channels implemented by
1 × 1 convolution, and warp() selects the positions by a
bilinear sampling kernel. Let M � warp(L, U, V), then we
have

Mc,i,j � 􏽘
H

m�1
􏽐
W

n�1
Lc,m,n max 0, 1 − i + Vi,j − m

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓max 0, 1 − j + Ui,j − n
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (11)

Compared with the K × K ConvGRU, the number of
parameters of TrajGRU is O(L × C2

h) (Ch is the state channel
size), which is smaller than the number of parameters of
ConvGRU, O(K × C2

h), enabling more efficient learning of
these locally connected features.

As it can be seen in Figure 5, the convolution hyper-
parameter of normal ConvRNN is fixed, while TrajGRU has
the different Nh

i,j for different locations. Downsampling in
the encoder is implemented using convolution, and
upsampling in the decoder is implemented using
deconvolution.

0e loss function of the general model is defined by the
MSE or L1 paradigm, and AccNet uses the Anomaly Cor-
relation Coefficient (ACC), which is an indicator of geo-
logical forecasting skill, as a loss function to highlight the
spatial correlation between forecast series. Since the closer
the ACC is to 1, the higher the correlation between the
output and the true value, the loss function of AccNet is
expressed as follows:

La � 1 − ACC

� 1 −
􏽐

n
i�1 O Ii( 􏼁 − Cm − Cjc􏼐 􏼑 O′ Ii( 􏼁 − Cm − Cac􏼒 􏼓

�������������������������������������������

􏽐
n
i�1 O′ Ii( 􏼁 − Cm − Cjc􏼒 􏼓 􏽐

n
i�1 O′ Ii( 􏼁 − Cm − Cac􏼒 􏼓

2
􏽲 ,

(12)

where Cm � 􏽐
n
i�1 Ii/n, Cjc � 1/n 􏽐

n
i�1(O(Ii) − Cm),

Cac � 1/n 􏽐
n
i�1(O′(Ii) − Cm), where Ii denotes the input

grid, O(Ii) denotes the forecast frame, O′(Ii) refers to the
observation frame.

4. Experimental Settings

4.1. 0e Lead Time of NAOI Variation Prediction Using RF-
Var. Before conducting the prediction, the lead time for the
prediction needs to be determined. As the samples of NAOI
and Niño indexes are monthly averaged data, this paper
selects the best lead time for pre-experimentation over a 12-

month period.0e RF-Var model is compared to a variety of
classification models including decision tree, multilayer
perceptron (MLP), support vector classification (SVC),
k-nearest neighbor (KNeighbor), and Adaboost, etc. 0e
macro average accuracy within 12 months is shown in
Figure 6. In the previous work on monthly scale variability,
the variability of the atmosphere can be reflected by the
precipitation [57]. It has been proved that the typical
asymmetry precipitation is closely related to the half-year
oscillation, and its periodogram shows higher spectral
density at the period of 6 months and 12 months. It means
that the dataset of monthly NAOI stands a good chance to
have distinctive features at intervals of 6 months or 12
months. 0ese features in the time domain can be identified
and captured by the machine learning model, resulting in
accuracy vibration around 6 months or 12 months. As for
the lead time less than 6 months, the RF-Var model has
relatively higher accuracy and achieves the best accuracy
(68%) when lead time is 3 months, and the accuracy of other
models are all over 50% at this time. 0erefore, 3 months is
selected as the lead time of the RF-Var model for NAOI
variation prediction.

4.2. 0e Lead Time of SLP Forecasting Using AccNet.
According to (1), the SLP forecasting lead time is related to
the short-term period of NAO. Since the NAO can be
viewed as the process with an e-folding period of about two
weeks, the autocorrelation coefficient (ACF) and the partial
autocorrelation coefficient (PACF) are used to determine
the optimal lag coefficient over a 14-day period. ACF
describes the correlation between a given time series and a
lag series over consecutive time intervals, while PACF
describes the correlation between two independent points,
excluding the influence of other points in the series. To
derive the effect of the data Xn−k on the output Xn, the
PACF result would exclude the effect caused by the points
Xn−k+1, . . . , Xn−1. For the lag factor k, the ACF and PACF
are expressed as follows:
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ACFk �
􏽐

n−k
i�1 Xi − X( 􏼁 Xi+k − X( 􏼁

􏽐
n
i�1 Xi − X( 􏼁

2
􏽐

n
i�1 Xi − X( 􏼁

,

PACFk �
E Xn − 􏽢EXn􏼐 􏼑 Xn−k − 􏽢EXn−k􏼐 􏼑􏽨 􏽩

E Xn−k − 􏽢EXn−k􏼐 􏼑􏽨 􏽩
2 ,

􏽢EXn � E Xn|Xn−1, . . . , Xn−k+1􏼂 􏼃,

􏽢EXn−k � E Xn−k|Xn−1 . . . , Xn−k+1􏼂 􏼃.

(13)

0e ACF and PACF for the original NAOI series over 14
days are shown in Figure 7, with the confidence interval set
at 95%.0e figure shows that as the lag factor k increases, the
further apart the data are, the weaker the dependence re-
flected by the ACF and the inclusion of the combined effect
of the prefix series. 0e PACF, on the other hand, reveals the
correlation between two points separated by a distance k.
0e PACF of a smooth sequence gradually decays as k in-
creases until it tends to 0, at which point the minimum lag
factor k is obtained. In Figure 7, the PACF steadily tends to 0
when k is greater than 5. 0erefore, the lead time of SLP
forecasting is set to 5 days.

With lead time within three weeks, the root mean squared
error (RMSE) and coefficient of determination (R-Squared,
R2) for SLP forecasting in November 2020 is presented in
Figure 8. 0e RMSE and R2 are defined as follows:

RMSE �

����

1
n

􏽘

n

i�1

􏽶
􏽴

Xo − Xf

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

,

R
2

�
􏽐

n
i�1 Xf − Xo􏼐 􏼑

2

􏽐
n
i�1 Xo − Xo( 􏼁

2,

(14)

where Xo and Xf denote observation data and the forecasted
value, respectively, and Xo is the mean value of the ob-
servation data. 0e lead time of 5 days achieves the lower
error and higher correlation coefficient, and the forecasting
skill decreases sharply when lead time is longer than 12.
Forecasting with 14-day lead time is much lower than those
of 10-day lead time and 7-day lead time, which is incon-
sistent with the previous conclusion of our work [58].

4.3. Parameter Settings. 0is subsection lists relevant pa-
rameters of the RF-Var model and AccNet model. As for the
midterm and low-frequency NAOI variation prediction,
there are four kinds of indexes and 742 samples. Since the
sample scale is not very large, the parameters we mainly
focus on are the number of decision trees and the ratio of
features.

Figure 9 illustrates how the macro average accuracy
changes with these two parameters as well as the execution
time. From subfigure (a), it can be seen that the execution
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Figure 5: Comparison between ConvLSTM and TrajGRU.
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time increases with the tree number, and the accuracy in-
creases to 68% when the number of trees is equal to or
greater than 1600. In general, the model would be easy to
under-fit if the tree number is too small, and the execution
time would increase obviously if the tree number is too large.
When the tree number is increased to a certain number, the
model improvement would be small. In this figure, when the
number of trees is larger than 1600, the accuracy is still
sustained at 68%. 0us, the tree number is set to 1600 to
weigh up the performance and efficiency. 0e other pa-
rameter is the feature ratio, which denotes the number of
features to consider when looking for the best split. From
this figure, the accuracy does not change with the feature
ratio, and it may be because the number of features is not
large. 0e feature ratio is set to 0.5 due to the less execution
time.

0e rest of the parameters in the RF-Var model are also
listed in Table 2, including the maximum depth of the tree,
the minimum number of samples for splitting node, the
minimum number of samples in a leaf node, and the
threshold for node splitting. 0ereinto, the maximum depth
of decision trees is dynamically determined. It means that
the node would be expanded until all leaves contain less than
Smin samples or all leaves are pure.

As for the AccNet model, each frame of fields for variables
mentioned above is of size 25× 53, and the lead time is 5 days
according to Figure 7. 0e dataset is grouped into the form of
(batch size, lead time, channel number, frame height, frame
width).0e channel number equals to the number of variables
and is set to 5. To achieve higher flexibility and forecast the
SLP sequences with arbitrary length, multi-step forecasting is
conducted via the rolling mechanism. 0e 1 forecasted frame
is obtained by feeding the input sequences with 5 frames and
is stitched behind the previous input sequence with removing
the first element. After n rounds, the forecasted outputs with n

frames are acquired. 0e loss function is replaced by ACC
instead of L1-loss or MSE, and Adam optimizer is selected for
training and optimizing [59]. Referring to the previous work,
the learning rate is set to 1 × 10− 4, and the momentum is set
to 0.5 [56]. To fit the computing resources, the training batch
size is set to 16, and the number of workers in the data loader
is set to 4 to accelerate loading batches. Since the height and
width are both odd numbers and in low resolution, the
encoder contains only 1 recurrent neural network layer,
with a symmetrical structure in the decoder. 0e convo-
lution layers and structures for downsampling and
upsampling are inserted into the encoder and decoder to
enlarge the receptive field. 0e number of filters is set to 64,
and the leaky ReLU with a negative slope of 0.2 is chosen as
the activation function [60]. 0e number of links in
TrajGRU layer L is set to 13, which has been proved to
outperform kernel with the size of 7 × 7 in ConvGRU. these
settings are also consistent with the previous work [61].0e
kernel size of convolution structure of c from inputs to
hidden layer is set to 3× 3 in, while the kernel sizes of
convolutional operations from inputs to flow from hidden
layer to flow, and generating flow are all set to 5× 5. 0e
input is trained for 200 epochs, and the model with the best
training loss is saved (10).

5. Results and Analysis

5.1. Lagged Correlation and Wavelet Coherence. In this pa-
per, the RWTLCC method is adopted to explore the cor-
relation with directionality between NAO and ENSO. 0e
principle of this method is to take one signal as a reference
and generate several sets of lagged series of another signal in
multiple time windows and calculate the correlation between
them. Since the Niño3.4 index shows more closely related to
the Australian climate, and it has been used to classify ENSO
conditions in National Climate Centre [62], the interaction
between NAO and ENSO is represented by the correlation
between NAOI and Niño3.4 index.

0e time span of the data sample is as long as 60 years
and the climate state varies greatly at different stages. 0us,
this paper divides the NAOI and Niño3.4 indices into 6
groups with 10 years as a stage. 0e time-lagged correlations
between the NAOI and Niño3.4 indices between 1960 and
1990 are shown in subplots Figures 10(a)–10(c), and sim-
ilarly the correlations between them in 1990–2021 are shown
in Figures 10(d)–10(f). 0e horizontal coordinate represents
the relative offset of the signal on the time axis, and the
vertical coordinate represents the number of equal-length
time segments. As can be seen from the figure, each segment
of the signal is divided into 15 intervals except for the last
group, and each row reflects the intercorrelation effect of the
relative offset from −4 to 3. In (a), for example, the high
correlation (red) is concentrated at the position of offset <0,
indicating that NAO is guiding its interaction with ENSO
during 1960–1970s interactions, while in (b) this correlation
fluctuates over time, starting at time step 9, when NAO’s role
switches from leading to following. 0e correlation dis-
played in the first half of (c), representing the period 1980 to
1990, is dominated by NAO. From time step 8 onward, the
positively shifted lagged version of NAOI shows an ex-
tremely high correlation with the Niño3.4 index, especially
for the lagged version with an offset of −4 and −3. 0e
leading role of ENSO lasts from around 1980 to 1982 and
around 1991 to 1993, and the high correlation also appears in
around 1997 to 2000. Since then the leading role alternates
frequently in (e), and the driving impact of ENSO is reflected
around 2015 to 2017 in (f).

Compared to the correlation coefficient curves,
RWTLCC demonstrates a more fine-grained variation in the
intercorrelation relationship. 0is paper also uses wavelet
coherence to measure the correlation of these two series in
the time-frequency domain. As described previously,
wavelet coherence is calculated using Morlet wavelets, while
its statistical significance level is estimated by Monte Carlo
simulation. Figure 11 plots the wavelet coherence and the
cone of influence for the NAOI and Niño3.4 index, which is
the region of the wavelet spectrum where edge effects are
more important. 0e cone shows regions with confidence
levels greater than 95%, and the color differences in the plot
indicate differences in power spectral density. As with the
time window grouping in Figure 10, the wavelet coherence
results are presented as 6 groups from 1960 to 2021. 0e
arrows in the regions with coherence above 0.5 show the
phase lag of the NAOI with respect to the Niño3.4 index.0e
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time lag is in connection with the period. For instance, the
arrow in a vertically upward direction indicates a quarter of
the phase lag; the arrow with the direction of horizontal
rightward indicates the same phase, while the horizontal-
leftward arrow indicates the opposite phase.

As can be seen from Figure 11, the signal phase time
variation between NAO and ENSO slightly differs in 0–2.6
years, and the region of stronger coherence is generally
located within the 12 months component before 2000.While
starting from 2002, the annual period component is more

Table 2: Parameters of RF-Var model.

Name Description Value
dmax 0e maximum depth of the tree Dynamic
Smin 0e minimum number of samples required to split an internal node 2
Lmin 0e minimum number of samples required to be at a leaf node 1
ts 0e threshold for node splitting 0.0
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Figure 10: Lagged intercorrelation between NAOI and Niño3.4 index obtained by RWTLCC method from 1960 to 2021 (a) RWTLCC
1960–1970 (b) RWTLCC 1970–1980 (c) RWTLCC 1980–1990 (d) RWTLCC 1990–2000 (e) RWTLCC 2000–2010 (f) RWTLCC 2010–2021.
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coherent and the coherence lasts for a longer time scale,
indicating that the covariance between NAO and ENSO in
the one-year component is enhanced. Since then, the co-
herence cycle gets longer, which becomes more than 12
months in (e) and more than 24 months in (f). In the (e)
subplot, a mid-term correlation appears in the period from
2000 to 2010, showing an annual resonant cycle with a
negative phase. It is consistent with the corresponding
relatively higher correlation with a larger offset in the (e)
subplot in Figure 10. While in subplot (f ), a phase difference
of about 90° indicates that the fluctuations of ENSO precede
NAO by about 0.25 cycles.

From a seasonal perspective, the distribution of
Figures 11(a), 11(b), 11(d), and 11(e) has a certain pattern,
with the coherence largely concentrated in winter. In ad-
dition, especially in (a) and (e), with a negative phase co-
herence and ENSO activity preceding the NAO, which can
also demonstrate that the NAO in winter during this period
is influenced by the regulation of the ENSO, producing

North Atlantic atmospheric anomalies and thus affecting
snowfall in the European region [31].

From the above analysis, it is clear that there is a certain
coherence between the changes of ENSO and NAO, and
ENSOmay be one of the triggers of NAO changes during the
duration of the coherence, thus the SST characterizing the
ENSO phenomenon can be used as a factor to predict NAO.

5.2. Prediction of NAO Variation Using RF-Var Model. In
addition to the intensity of NAO as well as the peak and
duration of NAOI, the trend of NAO is also an important
indicator of interest to meteorologists [63]. In the previous
section, the influence and driving effect of ENSO on NAO
are initially verified. In this section, the NAOI and Niño
indices are used as inputs to jointly predict changes of the
NAO. Unlike the NAOI regression prediction in our pre-
vious work [14, 15], the RF-Var model is based on the
random forest approach to achieve the variation prediction
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Figure 11: Wavelet coherence analysis of NAO and ENSO during 1960–2021. (a) XWT 1960–1970. (b) XWT 1970–1980. (c) XWT
1980–1990. (d) XWT 1990–2000. (e) XWT 2000–2010. (f ) XWT 2010–2021.
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of NAO from the perspective of solving the classification
problem.

In the pre-experiment, setting the lead time n � 3 to
obtain relatively more accurate results. With a lead time of 3
months, the RF-Var model is compared with various clas-
sifiers such as decision tree, MLP, SVC, KNeighbor, and
AdaBoost. 0e accuracy and other metrics are shown in
Table 3.

Here the precision rate represents the proportion of
correct predictions where the prediction is a positive ex-
ample, while the accuracy rate represents the proportion of
correct predictions in the prediction results, and the recall
rate denotes the proportion of positive examples in the
sample that are predicted correctly. Assume that the pre-
cision rate is P and the recall rate is R. 0e formula for the F1
score is as follows:

F1 �
2∗P∗R

P + R
. (15)

0emacro average metrics in this table are calculated as
an arithmetic average for each category P and R, while the
weighted average is calculated using the proportion of
samples from each category to the total as the weight. Since
the test set size is set to 5% of the dataset, 37 samples are
adopted for accuracy statistics. For the prediction using 37
samples, the RF-Var model is significantly better than the
above-mentioned classifiers, with a macro average accuracy
of approximately 68%. Details of the 37 samples predicted
using the RF-Var model are shown in Figure 12. 0e RF-
Var model achieved consecutive correct predictions for the
range of sample numbers from 2 to 9, while the high-
frequency oscillations of NAOI from 30 to 35 intervals,
where several incorrect predictions are found. In general,
the RF-Var model has strong predictive power for NAO
variations.

0e subject operating characteristic (ROC) curves for the
37 samples predicted using the above method are shown in
Figure 13. 0e variation prediction of NAOI is a binary
classification problem, and its prediction result contains four
possibilities: true positive (TP), false positive (FP), true
negative (TN), and false TP means the predicted outcome is
up and the true situation is up; FP means the predicted
outcome is up and the true situation is down; TN means the
predicted outcome is down and the true situation is down;
FP means the predicted outcome is down and the true
situation is up. 0e X-axis of the ROC curve is the False
Positive Rate (FPR), the y-axis is the True Positive Rate
(TPR), which is calculated as

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
.

(16)

0e dashed line between the points (0, 0) and (1, 1)
represents the result of random classification, and the area
under the curve (AUC) of the ROC curve is used to measure
the superiority of the classifier. Obviously, the AUC equals
0.5 for random classification, and AUC is less than 0.5 for the

curve under the dashed diagonal line. It indicates poorer
effect and inferior to random classification, while the clas-
sifier with 0.5<AUC< 1 has a certain utilization value, and
the larger the AUC, the better the effect. From Figure 13, the
classification effects are ranked as follows: RF-Var> decision
tree�MLP� SVC�AdaBoost>KNeighbor> random clas-
sification (Actually, the curves for AdaBoost and KNeighbor
do not coincide), and the RF-Var model outstrips other
classifiers obviously. 0e AUCs of the above classifiers are
calculated to be 0.6845 (RF-Var), 0.5962 (decision tree, MLP,
SVC, and AdaBoost), and 0.5577 (KNeighbor), respectively.

Table 3: Prediction results of multiple classifiers.

Name Precision Recall F1 score

RF-var

Raise (1) 0.60 0.75 0.67
Drop (0) 0.76 0.62 0.68
Macro avg 0.68 0.68 0.68

Weighted avg 0.69 0.68 0.68

Decision tree

Raise (1) 0.43 0.69 0.53
Drop (0) 0.75 0.50 0.60
Macro avg 0.59 0.60 0.56

Weighted avg 0.64 0.57 0.58

MLP

Raise (1) 0.43 0.69 0.53
Drop (0) 0.75 0.50 0.60
Macro avg 0.59 0.60 0.56

Weighted avg 0.64 0.57 0.58

SVC

Raise (1) 0.43 0.69 0.53
Drop (0) 0.75 0.50 0.60
Macro avg 0.59 0.60 0.56

Weighted avg 0.64 0.57 0.58

KNeighbor

Raise (1) 0.40 0.62 0.48
Drop (0) 0.71 0.50 0.59
Macro avg 0.55 0.56 0.54

Weighted avg 0.60 0.54 0.55

AdaBoost

Raise (1) 0.43 0.69 0.53
Drop (0) 0.75 0.50 0.60
Macro avg 0.59 0.60 0.56

Weighted avg 0.64 0.57 0.58
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Figure 12: Prediction results of 37 samples in Table 3 using the RF-
Var model.
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For the four cases of binary classification, the confusion
matrix of the above method is shown in Figure 14, where the
x-axis represents the predicted result and the y-axis repre-
sents the actual situation. 0e 37 samples contain 13 rising
data and 24 falling data. In comparison, all the classifiers
outperformed the prediction of the rising case than the
prediction of the falling case, and the RF-Var model has a
higher correct rate than the other models in both types of
states. As for the KNeighbor classifier, its prediction result in
the rising category is slightly worse than that of the decision
tree, MLP, SVC, and AdaBoost methods.

0e NAOI variation prediction has also been conducted
in different seasons, and the prediction results are displayed
in Figure 15. 0e dataset is split into different seasons, in-
cluding winter (December, January, February), spring
(March, April, May), summer (June, July, August), and
autumn (September, October, November), and separately
predicted. With the same test size ratio of 0.05 and the best
lead time of 5 months, the macro prediction accuracy
achieves 91.67%, 53.33%, 56.67%, and 63.33%, respectively.
0ereinto, the prediction skill in winter significantly sur-
passes those of other seasons. 0e accuracy of prediction in
spring, summer, and autumn are roughly equal. 0e RF-Var
model is fully satisfied with the requirements of NAOI
variation prediction in winter, which has an even greater
impact on global climate.

0e prediction results have also been compared against
several deep learning models proposed by our team
[14, 15]. Figure 16 presents the prediction results of NAOI
variation from 2019-01 to 2021–10. DWT-LSTM and
EEMD-ConvLSTM are both regression models combined
with multi-mode decomposition preprocessing and neural
network layers, and their lead times are set as 3, which is
consistent with the RF-Var model. 0eir outputs are
converted into raise/drop sequences, and there are 34
prediction results. From Figure 16, there are 24, 20, and 18

correct predictions are obtained by the RF-Var model, the
DWT-LSTM model, and the EEMD-ConvLSTM model,
respectively, with the macro average accuracy of 70.18%,
58.82%, and 52.94%. Although DWT-LSTM and EEMD-
ConvLSTM perform well on NAOI multi-step forecasting
within a few days, they may provide less reliability in mid-
term NAOI variation prediction than the RF-Var model
can achieve.

For the same prediction period, RF-Var model is also
compared with the numerical prediction provided by
MATES1.0, which is prediction system focus on the mid-
high latitude-polar atmospheric teleconnection, sea ice, and
snow cover. From 2019-01 to 2021–10, MATES1.0 provides
27 prediction results, and their input fields derive from
NCEP Seasonal Climate Forecasts (CFS) v2, Beijing Climate
Centre Climate System Model (BCC_CSM), and ECMWF
Seasonal Forecast system 4 (S4), which are shortened to CFS,
BCC, and ES in Figure 17. With the lead time of 3 months,
MATES1.0-CFS achieves 8 correct predictions, MATES1.0-
BCC correctly predicts 11 times and MATES1.0-ES obtains
14 correct predictions, which correspond to the macro
average accuracy of 29.24%, 40.00%, and 51.59%, respec-
tively. 0e numerical model has slightly worse performance
in predicting NAOI variation owing to the complexity of the
mechanisms considered in the kinetic equations, and the
predictive skills of the RF-Var model is more reliable than
the NAOI regression model previously proposed by our
team and the established prediction products based on
numerical models.

5.3. Forecastingof SLPUsingAccNetModel. In order to verify
the forecasting effect of AccNet, this paper intends to
forecast the SLP for two types of NAO event durations
between 2010 and 2021. the distribution of NAO events is
shown in Figure 18, red blocks indicate NAO+ events, blue
blocks indicate NAO− events, and the text of the color block
shows the sequential days for the event. Here, a slightly more
rigorous NAO judgmentmethod is adopted: NAOI<−1.0 or
NAOI> 1.0 maintains for 3 days or more, with a total of 123
sets of NAO events are obtained. Among them, 64 cases are
NAO+ events and 59 cases are NAO− events. 0e NAO+

events are mainly distributed in winter and spring while the
NAO− events are mainly distributed in summer and
autumn.

Since there are numerous NAO events during the de-
cade, this paper takes the NAO+ event from November 10,
2020, as an example to show the forecast results of AccNet
and other deep neural network models during the event
duration. As shown in Figure 19, the event lasts for 6 days, all
of the models are able to form an SLP structure that is close
to the observation value. However, the structural differences
at the lower latitude and the boundary between the two
pressure centers still can be found. Due to the more complex
spatial distribution of the SLP in the later period and the
extremely irregular structure of the pressure center, the
performance of the three models in the latter frames of the
forecast needs to be improved, especially for the variation of
small-scale spatial features.
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Figure 13: ROC curves corresponding to Table 3.
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Figure 20 displays the difference between the forecast
results of each model and the observed data. It can be found
that the higher errors are concentrated in the last two days of
forecasts. In addition, since the closer the difference is to 0,
the lighter the color, it can be seen that the forecast error of
AccNet is significantly smaller than that of ConvLSTM and
CNN+RNN. Even in the first 4 frames where the effect is
slightly better, there are overestimation and overfitting at
locations of higher pressure in ConvLSTM. Although the
structure of CNN+RNN in forecasting SLP in Figure 19 is
similar to the observed values, the shortcomings for cap-
turing temporal features results in a large error in pressure

forecasting. It can be seen that the dynamic connection of
the TrajGRU module inside AccNet has some advantages in
spatial-temporal features learning.

In Table 4, the mean values of each evaluation indicator
for forecasting the decade 2010 to 2021 by these three models
mentioned above are counted. 0ereinto, RMSE and the
mean absolute error (MAE) are commonly used indicators,
and the peak signal to noise ratio (PSNR), the structural
similarity index measure (SSIM), and the Universal Quality
Index (UQI) are indicators tomeasure the image quality.0ey
also can be adopted to estimate the forecast bias of grid points.
0e definition of MAE and PSNR are shown as follows:
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MAE �
1
n

􏽘

n

i�1
Xo − Xf

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

PSNR � 20 · log10
MAXXo����
MSE

√􏼠 􏼡,

whereMSE �
1

mn
􏽘

m−1

i�0
􏽘

n−1

j�0
Xo(i, j) − Xf(i, j)􏽨 􏽩

2
,

(17)

where Xo refers to the observation data, and Xf denotes
the estimated value. MAXXo

denotes the maximum of the
observation data, and m × n is the size of each SLP pattern. A
larger PSNRmeans better forecasting. SSIMcanbe calculated by:

SSIM �
2XoXf + C1

X
2
o + X

2
f + C1

⎛⎝ ⎞⎠

α
2σoσf + C2

σ2o + σ2f + C2

⎛⎝ ⎞⎠

β
σof + C3

σoσf + C3
􏼠 􏼡

c

,

(18)

where Xo and Xf are the mean value of the observation data
and forecasting series, respectively. σo and σf denote the
standard deviation of the ground truth and forecasting,
respectively. σof denotes the covariance of the ground truth
and forecasting. α, β, and c refer to the weighting parameters
of brightness, contrast, and structure, and their values are
all set to 1. C1, C2, and C3 are constants. Assume that
C3 � 0.5C2, SSIM can be simplified as

SSIM �
2XoXf + C1􏼐 􏼑 2σof + C2􏼐 􏼑

X
2
o + X

2
f + C1􏼐 􏼑 σ2o + σ2f + C2􏼐 􏼑

. (19)

UQI is a metric that can measure the similarity between
patterns of observation and forecasting, and it can be written
as
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Figure 19: Forecast results of multiple models for an NAO− event from 2020-11-10 to 2020-11-15.
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Figure 20: Difference between forecast results and observed data in Figure 20.

Table 4: Evaluation indicators of SLP forecasting using multiple
models.

Model RMSE MAE PSNR SSIM UQI
AccNet 5.13 3.96 11.93 0.59 0.90
ConvLSTM 5.78 4.60 11.18 0.56 0.84
CNN+RNN 10.67 8.85 6.99 0.39 0.80
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UQI �
4σof Xo + Xf􏼐 􏼑

X
2
o + X

2
f􏼐 􏼑 σ2o + σ2f􏼐 􏼑

. (20)

SSIM and UQI are both in the range of [−1, 1], and the
closer to 1 SSIM and UQI are, the more reliable forecasting
the model achieves. In all these metrics, AccNet achieves the
best results among the three models, slightly better than
ConvLSTM.

To examine the differences in the forecasting effective-
ness of NAO event models for different phases, for AccNet
and ConvLSTM with similar performance in Table 4, the
RMSE frequency distributions of these two models for
forecasting 64 NAO+ events and 59 NAO− events are

plotted in Figure 21. It can be seen that AccNet has a smaller
range of RMSE distribution. In the NAO+ event cases, the
RMSE frequency distribution of AccNet is mainly in the
range of [2, 6], while that of ConvLSTM is in [3, 7]. For the
NAO− event, the high-frequency number range of AccNet is
concentrated in [2, 4], while ConvLSTM is located in [3, 6].
For these twomodels, the forecasting effects of NAO− events
are slightly better than that of NAO+ events. Combined with
the evaluation metrics for each spatio-temporal prediction
model in Table 4, it shows that TrajGRU, a structural unit
that aggregates states in the form of learning trajectories, is
more flexible than the fixed connection structure of
ConvLSTM and CNN+RNN in the highly diverse NAO
event test set.
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Figure 21: RMSE frequency distribution of AccNet and ConvLSTM forecasting of NAO events in Figure 18. (a) RMSE frequency of AccNet
for NAO+. (b) RMSE frequency of ConvLSTMfor NAO+. (c) RMSE frequency of AccNet for NAO−. (d)RMSE frequency of ConvLSTMfor
NAO+.
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6. Discussion and Conclusions

NAO is the most dominant atmospheric circulation mode in
the Northern Hemisphere during winter and has a profound
influence on the weather in Eurasia and even the global
climate. 0e causes of climate phenomena have become
unstable and complex due to the dramatic climate changes
and human activities in the last two decades. At the same
time, physical mechanisms that have not yet been studied
increase the difficulty of providing reliable prediction and
forecasting. As an alternative to climate prediction and
weather forecasting, deep learning methods show great
potential.

In this paper, we demonstrate a midtermNAOI variation
prediction model and short-term SLP prediction model that
consider the correlation between ENSO and NAO. First, the
correlation between ENSO and NAO is analyzed using
monthly average NAOI and Niño3.4 historical series data,
and the series from 1960 to 2021 are split into six groups at
10-year intervals, and the correlation details are explored
using RWTLCC and wavelet coherence methods, respec-
tively.0e results show that the ENSO-guided NAO changes
are dominated during 1980–1982 and 1991–1993. And the
intensity and duration of the ENSO-NAO coherence are
higher around 1997 to 2000. From 2015 to 2017, the evo-
lution of NAO triggered by the fluctuation of ENSO showed
a high correlation. 0e NAO variability near 1973.12 and
2010.12 has also been proved to be connected with ENSO
events in the same period. 0e RF-Var method is used to
transform the NAOI variation prediction into a binary
classification problem, which could achieve 68% accuracy,
outperforming other widely used classifier models, the re-
gression NAOI prediction model, and models based on
numerical models. For the grid-point SLP forecasting, in
addition to SLP and GH, which are directly related to NAO,
SST, which can characterize ENSO, and V-wind and
U-wind, whose sensitivity was verified in our works for
identifying the OPR of NAO, were chosen as inputs. 0e
above variables are fed into AccNet for training, and AccNet
is a deep neural network with a multi-channel and encoder-
decoder structure. Moreover, AccNet uses ACC, which
evaluates the spatial correlation of geological information, as
its activation function, and shows excellent performance in
forecasting NAO events during 2010–2021, effectively im-
proving the forecasting skill of NAO− .

Data Availability

0e monthly average NAOI data are provided by the CPC
website (https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/pna/nao.shtml), and the monthly average Niño
indices data are provided by the NOAA website (https://psl.
noaa.gov/gcos_wgsp/Timeseries/). SLP, V-wind, U-wind,
and GH are provided by NCEP reanalysis data with a res-
olution of 2.5°×2.5° and daily time resolution, and the grid
size of each frame is 25×53. SSTs are obtained from NOAA
high-resolution SST daily value data with a resolution of
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iable=Sea+Level+Pressure&group=0&submit=Search).
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