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Background: What is Big Data?
In the biomedical informatics domain, big data is a new para-
digm and an ecosystem that transforms case-based studies to 
large-scale, data-driven research. It is widely accepted that the 
characteristics of big data are defined by three major features, 
commonly known as the 3Vs: volume, variety, and velocity.

First and most significantly, the volume of data is grow-
ing exponentially in the biomedical informatics fields.1–7 For 
example, the ProteomicsDB8 covers 92% (18,097 of 19,629) 
of known human genes that are annotated in the Swiss-Prot 
database. ProteomicsDB has a data volume of 5.17 TB. In the 
clinical realm, the promotion of the HITECH Act9 has nearly 
tripled the adoption rate of electronic health records (EHRs) 
in hospitals to 44% from 2009 to 2012. Data from millions of 
patients have already been collected and stored in an electronic 
format, and these accumulated data could potentially enhance 
health-care services and increase research opportunities.10,11 
In addition, medical imaging (eg, MRI, CT scans) produces 
vast amounts of data with even more complex features and 
broader dimensions. One such example is the Visible Human 
Project, which has archived 39 GB of female datasets.12 These 

and other datasets will provide future opportunities for large 
aggregate collection and analysis.

The second feature of big data is the variety of data types 
and structures. The ecosystem of biomedical big data comprises 
many different levels of data sources to create a rich array of 
data for researchers. For example, sequencing technologies 
produce “omics” data systematically at almost all levels of cel-
lular components, from genomics, proteomics, and metabo-
lomics to protein interaction and phenomics.13 Much of the 
data that are unstructured14 (eg, notes from EHRs,15,16 clinical 
trial results,17,18 medical images,19 and medical sensors) pro-
vide many opportunities and a unique challenge to formulate 
new investigations.

The third characteristic of big data, velocity, refers to pro-
ducing and processing data. The new generation of sequenc-
ing technologies enables the production of billions of DNA 
sequence data each day at a relatively low cost. Because faster 
speeds are required for gene sequencing,1,20 big data technolo-
gies will be tailored to match the speed of producing data, as is 
required to process them. Similarly, in the public health field, 
big data technologies will provide biomedical researchers with 
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time-saving tools for discovering new patterns among popula-
tion groups using social media data.21,22

Big Data technologies
Biomedical scientists are facing new challenges of storing, 
 managing, and analyzing massive amounts of datasets.23 The 
characteristics of big data require powerful and novel technolo-
gies to extract useful information and enable more broad-based 
health-care solutions. In most of the cases reported, we found 
multiple technologies that were used together, such as  artificial  
intelligence (AI), along with Hadoop®,24 and data mining tools.

Parallel computing is one of the fundamental infrastruc-
tures for managing big data tasks. It is capable of executing 
algorithm tasks simultaneously on a cluster of machines or 
supercomputers. In recent years, novel parallel computing 
models, such as MapReduce25 by Google, have been proposed 
for a new big data infrastructure. More recently, an open-source 
MapReduce package called Hadoop24 was released by Apache 
for distributed data management. The Hadoop Distributed 
File System (HDFS) supports concurrent data access to clus-
tered machines. Hadoop-based services can also be viewed as 
cloud-computing platforms, which allow for centralized data 
storage as well as remote access across the Internet.

As such, cloud computing is a novel model for sharing con-
figurable computational resources over the network26 and can 
serve as an infrastructure, platform, and/or software for pro-
viding an integrated solution. Furthermore, cloud computing 
can improve system speed, agility, and flexibility because it 
reduces the need to maintain hardware or software capacities 
and requires fewer resources for system maintenance, such as 
installation, configuration, and testing. Many new big data 
applications are based on cloud technologies.

research Methods
We searched four bibliographic databases to find related 
research articles: (1) PubMed, (2) ScienceDirect, (3) Springer, 
and (4) Scopus. In searching these databases, we used the main 
keywords “big data,” “health care,” and “biomedical.” Then, 
we selected papers based on the following inclusion criteria:

1. The paper was written in English and published within 
the past five years (2000–2015).

2. The paper discussed the design and use of a big data 
application in the biomedical and health-care domains.

3. The paper reported a new pipeline or method for processing 
big data and discussed the performance of the method.

4. The paper evaluated the performance of new or existing 
big data applications.

The following exclusion criteria were used to filter out 
irrelevant papers:

1. The paper did not discuss any specific big data applica-
tions (eg, general comments about big data).

2. The paper was a tutorial or a course material.
3. The paper was not in the four focus areas: bioinformatics, 

clinical informatics, public health informatics, and imag-
ing informatics.

Two searches were performed. In the first search, the first 
author (JL) and the second author (MW) of the present study 
began the search process based on the main keywords. All 
potentially related papers were collected by reviewing the title 
and abstract. This initial search resulted in 755 papers from 
2000 to 2015. In the second search, the second author (MW) 
and the third author (DG) screened the papers based on the 
abovementioned inclusion and exclusion criteria and sub-
sequently selected 94 candidate papers. Finally, each author of 
the present study evaluated the final selection by reading the 
content of the papers, and consensus was reached to review 68 
papers for this study.

Big Data Applications
Bioinformatics applications. Bioinformatics research 

analyzes biological system variations at the molecular level. 
With current trends in personalized medicine, there is an 
increasing need to produce, store, and analyze these  massive 
datasets in a manageable time frame. Next-generation sequenc-
ing technology enables genomic data acquisition in a short 
period of time.27,28 The role of big data techniques in bioinfor-
matics applications is to provide data repositories,  computing 
infrastructure, and efficient data manipulation tools for inves-
tigators to gather and analyze biological information. Taylor 
discusses that Hadoop and MapReduce are currently used 
extensively within the biomedical field.29

This section classifies big data technologies/tools into four 
categories: (1) data storage and retrieval, (2) error identifica-
tion, (3) data analysis, and (4) platform integration deployment. 
These categories are correlated and may overlap; for instance, 
most data input applications may support simple data analysis, 
or vice versa. However, our classification in the present study 
is based only on the main functions of each technology.

Data storage and retrieval. Nowadays, a sequencing 
machine can produce millions of short DNA sequencing data 
during one run. The sequencing data need to be mapped to 
specific reference genomes in order to be used for additional 
analysis, such as genotype and expression variation  analysis. 
CloudBurst30 is a parallel computing model that facilitates the 
genome mapping process. CloudBurst parallelizes the short-
read mapping process to improve the scalability of reading 
large sequencing data. The CloudBurst model was evaluated 
using a 25-core cluster, and the results indicate that the speed 
to process seven million short-reads was almost 24 times 
faster than a single-core machine. The CloudBurst team 
have  developed new tools based on CloudBurst to  support 
 biomedical research, such as Contrail31 for assembling large 
genomes and Crossbow32 for identifying single nucleotide 
polymorphisms (SNPs) from  sequencing data.
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DistMap33 is a toolkit for distributed short-read mapping 
on a Hadoop cluster. DistMap aims to increase the support of 
different types of mappers to cover a wider range of sequenc-
ing applications. The nine supported mapper types include 
BWA, Bowtie, Bowtie2, GSNAP, SOAP, STAR, Bismark, 
BSMAP, and TopHat. A mapping workflow is integrated into 
DistMap, which can be operated with simple commands. For 
example, an evaluation test was done using a 13-node clus-
ter, making it an effective application for mapping short-read 
data. The BWA mapper can perform 500 million read pairs 
(247 GB) in about six hours using DistMap, which is 13 times 
faster than a single-node mapper.

SeqWare34 is a query engine built on the Apache HBase35 
database to help bioinformatics researchers access large-scale 
whole-genome datasets. The SeqWare team created an inter-
active interface to integrate genome browsers and tools. In a 
prototyping analysis, the U87MG and 1102GBM tumor data-
bases were loaded, and the team used this engine to compare 
the Berkeley DB and HBase back end for loading and export-
ing variant data capabilities. The results show that the  Berkeley 
DB solution is faster when reading 6M variants, while the 
HBase solution is faster when reading more than 6M variants.

The Read Annotation Pipeline®36 by the DNA Data Bank 
of Japan (DDBJ) is a cloud-based pipeline for high-throughput 
analysis of next-generation sequencing data. DDBJ initiated 
this cloud-computing system to support sequencing analysis. 
It offers a user-friendly interface to process sequencing data-
sets, which supports two levels of analysis: (1) the basic-level 
tools accept FASTQ format data and preprocess them to trim 
low-quality bases and (2) during the second analysis, the data 
are mapped to genome references or assembled on supercom-
puters. This pipeline uses the Galaxy interface for advanced 
analysis, such as SNP detection, RNA-sequencing (RNA-
seq) analysis, and ChIP-seq analysis. In a benchmark testing, 
DDBJ finished mapping 34.7 million sequencing reads to a 
383-MB reference genome in 6.5 hours.

Hydra37 is a scalable proteomic search engine that uses 
the Hadoop-distributed computing framework. Hydra is 
a software package for processing large peptide and spectra 
databases, implementing a distributed computing environ-
ment that supports the scalable searching of massive amounts 
of spectrometry data. The proteomic search in Hydra is divided 
into two steps: (1) generating a peptide database and (2) scor-
ing the spectra and retrieving the data. The system is capable 
of performing 27 billion peptide scorings in about 40 minutes 
on a 43-node Hadoop cluster.

Error identification. A number of tools have been devel-
oped to identify errors in sequencing data; SAMQA38 iden-
tifies such errors and ensures that large-scale genomic data 
meet the minimum quality standards. Originally built for 
the National Institutes of Health Cancer Genome Atlas to 
automatically identify and report errors, SAMQA includes a 
set of technical tests to find data abnormalities (eg, sequence 
 alignment/map [SAM] format error, invalid CIGAR value) 

that contain empty reads. For biological tests, researchers can 
set a threshold to filter reads that could be erroneous (empty 
reads) and report them to experts for manual evaluation.  
A comparison of Hadoop, which was tested on a cluster, with 
SAMQA, which was tested on a single-core server, shows that 
the Hadoop cluster processed a 23-GB sample nearly 80 times 
faster (18.25 hours).

ART  39 provides simulation data for sequencing  analysis 
for three major sequencing platforms: 454 Sequencing™, 
 Illumina, and SOLiD. ART has built-in profiles of read error 
and read length and can identify three types of sequencing 
errors: base substitutions, insertions, and deletions.

CloudRS40 is an error-correction algorithm of high-
throughput sequencing data based on a parallel, scalable 
framework. This method is developed based on the RS algo-
rithm.41 The CloudRS team evaluated the system on six dif-
ferent datasets using the GAGE benchmarks,42 and the results 
show that CloudRS has a higher precision rate compared with 
the Reptile43 method.

Data analysis. In addition to the described frameworks 
and toolkits for sequencing data analysis, the Genome Analy­
sis Toolkit (GATK)20,44 is a MapReduce-based programing 
framework designed to support large-scale DNA sequence 
analysis. GATK supports many data formats, including SAM 
files, binary alignment/map (BAM), HapMap, and dbSNP. 
With GATK, “traversal” modules prepare and read sequenc-
ing data into the system and thus provide associated refer-
ences to the data, such as ordering data by loci. The “walker” 
module consumes the data and provides analytics outcomes. 
GATK has been used in the Cancer Genome Atlas and 1000 
Genomes Projects.

The ArrayExpress Archive of Functional Genomics data 
repository45,46 is an international collaboration for integrat-
ing high-throughput genomics data. The repository contains 
30,000 experiments and more than one million assays. About 
80% of the data were extracted from the GEO data repository, 
and the rest 20% were directly submitted to ArrayExpress by 
its users. Each day, the platform is visited by more than 1,000 
different users, and more than 50 GB of data are downloaded. 
The platform also connects with R and GenomeSpace to sup-
port data transition and analysis.

BlueSNP 47 is an R package for genome-wide associa-
tion studies (GWAS) analysis, focusing on statistical tests (eg, 
P-value) to find intensive associations between large geno-
type–phenotype datasets. BlueSNP operates on the Hadoop 
platform, which reduces barriers and improves the efficiency 
of running GWAS analyses on clustered machines. On a 
40-node cluster, BlueSNP analyzed 1,000 phenotypes on 106 
SNPs in 104 individuals within 34 minutes.

Myrna48 is a cloud-based computing pipeline that cal-
culates the differences of gene expression in large RNA-seq 
datasets. RNA-seq data are m-sequencing reads derived from 
mRNA molecules. Myrna supports several functions for RNA-
seq analysis, including reads alignment, normalization, and 
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statistical modeling in an integrated pipeline. Myrna returns 
differential expression of genes into the form of P-value and 
q-value. This system was tested on the Amazon Elastic Com-
pute Cloud (Amazon EC2) using 1.1 billion RNA-seq reads, 
and the results show that Myrna can process data in less than 
two hours; the cost of the test task was around $66.

The Eoulsan package49 implanted a pipeline for analyzing 
the differential transcript expressions, including data imports 
from sequencer reads, data mapping to reference genomes, 
alignment filters, transcription expression calculations, expres-
sion normalizations using edgeR, and detection of differential 
expressions. Eoulsan can be run under three modes: stand-
alone, local cluster, and cloud on Amazon Elastic MapReduce. 
 Eoulsan was tested on Amazon EC2 using eight mouse  samples 
of 188 million reads. The cost for processing the data was 
$18–$66, and the total time ranged from 109 to 822 minutes.

SparkSeq50 is a fast, scalable, cloud-ready software pack-
age for interactive genomic data analysis with nucleotide pre-
cision. SparkSeq provides interactive queries for RNA/DNA 
studies, and the project is implemented on Apache Spark using 
the Hadoop-BAM library for processing bioinformatics files.

Platform integration deployment. The use of big data plat-
forms usually requires a strong grasp of distributed computing 
and networking knowledge. To help biomedical research-
ers embrace big data technology, novel methods are needed 
to integrate existing big data technologies with user-friendly 
operations. The following systems have been developed to help 
achieve this goal.

SeqPig51 reduces the need for bioinformaticians to obtain 
the technological skills needed to use MapReduce. The SeqPig 
project extends the Apache Pig scripts to provide feature-rich 
sequence processing functions. With the help of Hadoop-
BAM,52 SeqPig solves the problem of reading large BAM files 
to feed analysis applications. SeqPig supports commonly used 
sequencing formats, such as FASTQ , SAM, BAM, and QSeq. 
It further sustains commonly used processing tools, such as 
Pileup, base frequency count, read coverage, and distribution.

Current bioinformatics platform also incorporates a vir-
tual machine. CloVR53 is a sequencing analysis package that is 
distributed through a virtual machine. By reducing the tech-
nical barriers for analyzing large sequencing datasets, CloVR 
supports both local desktop and cloud systems to enable high-
throughput data processing. Several automated bioinformatics 
workflows/pipelines are integrated into the virtual machine, 
including whole-genome, metagenome, and 16S rRNA-
sequencing analysis. The CloVR team tested the portability of 
the system on a local machine (4 CPU, 8 GB RAM) and on 
the Amazon EC2 cloud platform (80 CPU), and the results 
show that CloVR is portable on both platforms, while the 
EC2 instance runs about five times faster. Similarly, CloudBio­
Linux54 is a virtual machine solution that provides more than 
135 bioinformatics packages for sequencing analysis, includ-
ing preconfigured tools (eg, GATK, Bowtie, Velvet, FASTX) 
and programing libraries (eg, BioJava, R, Bioconductor).

Deploying the Hadoop cloud platform can be a big chal-
lenge for researchers who do not have a computer science 
background. CloudDOE is a software package that provides 
a simple interface for deploying the Hadoop cloud because 
the Hadoop platform is often too complex for scientists 
without computer science expertise and/or similar technical 
skills. CloudDOE55 is a user-friendly tool for analyzing high-
throughput sequencing data with MapReduce, encapsulating 
the complicated procedures for configuring the Hadoop cloud 
for bioinformatics researchers. Several packages are integrated 
with the CloudDOE package (CloudBurst, CloudBrush, and 
CloudRS), and its operation is further simplified by wizards 
and graphic user interfaces.

clinical informatics applications. Clinical informatics 
focuses on the application of information technology in the 
health-care domain. It includes activity-based research, anal-
ysis of relationship between patient main diagnosis (MD) and 
underlying cause of death (UCD), and storage of data from 
EHRs and other sources (eg, electrophysiological [such as 
EEG] data). In this section, we classified big data technolo-
gies/tools into four categories: (1) data storage and retrieval, 
(2) interactive data retrieval for data sharing, (3) data security, 
and (4) data analysis. Compared with bioinformatics, clini-
cal informatics does not offer many tools for error identifica-
tion but pays more attention to data-sharing and data security 
issues. Its data analysis method is very different from bioin-
formatics, as clinical informatics works with both structured 
and unstructured data, develops specific ontologies, and uses 
natural language processing extensively.

Data storage and retrieval. It is critical to discuss the ways 
in which big data techniques (eg, Hadoop, NoSQL database) 
are used for storing EHRs. The efficient storage of data is espe-
cially important when working with clinical real-time stream 
data.56 Dutta et al evaluated the potential of using Hadoop 
and HBase35 as data warehouses for storing EEG data and 
discussed their high-performance characteristics. Jin et al.57 
analyzed the potential of using Hadoop HDFS and HBase 
for distributed EHRs.

Furthermore, Sahoo et al.58 and Jayapandian et al.59 
proposed a distributed framework for storing and querying 
large amounts of EEG data. Their system, Cloudwave, uses 
Hadoop-based data processing modules to store clinical data, 
and by leveraging the processing power of Hadoop, they 
developed a web-based interface for real-time data visualiza-
tion and retrieval. The Cloudwave team evaluated a dataset 
of 77-GB EEG signal data and compared Cloudwave with 
a stand-alone system; the results show that Cloudwave pro-
cessed five EEG studies in 1 minute, while the stand-alone 
system took more than 20 minutes.

Compared with a traditional relational database that 
handles structured data well, the novel NoSQL is a great 
prospect for storing unstructured data. Mazurek60 proposed 
a system that combines both relational and multidimen-
sional technologies with NoSQL repositories to enable data 
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mining techniques and provide flexibility and speed in data 
 processing. Nguyen et al.61 presented a prototype system for 
storing clinical signal data, where the time series data of clini-
cal sensors are stored within HBase in a way that the row key 
serves as the time stamp of a single value, and the column 
stores patient physiological values that correspond with the 
row key time stamp. To improve the accessibility and read-
ability of the HBase data schema, the metadata are stored in 
MongoDB,62 which is a document-based NoSQL database. 
Google Web Toolkit is incorporated into the system to visual-
ize the clinical signal data.

Interactive data retrieval for data sharing. Interactive medi-
cal information retrieval is expected to play an important role 
in sharing medical knowledge and integrating data. Many 
researchers have seen the need for such a role and have offered 
possible solutions. Deb and Srirama63 proposed a three-tier 
ecosystem to improve the shortcomings of cloud-enabled social 
networks for eHealth Solutions. Bahga and Madisetti64 devel-
oped a cloud-based approach for interoperable EHRs. Sharp65 
proposed an application architecture based on the cloud 
approach to enhance the interaction between researchers in 
multisite clinical trials. Chen et al.66 discussed the present and 
future aspects of translational informatics based on the cloud 
approach. He et al.67 provided a private cloud platform archi-
tecture for handling enormous data requests from health-care 
services. To handle huge amounts of online heart disease data 
analyses in China, Wang et al.68 used a hybrid XML database 
and the Hadoop/HBase infrastructure to design the “Clinical 
Data Managing and Analyzing System.”

Data security. Schultz69 concluded that vast amounts of 
data can be collected over time and that health-care challenges 
could be met and addressed in response to big data opportuni-
ties. This in turn means that major data technology advance-
ments will enable health-care practitioners to manipulate even 
larger amounts of data in the future. However, interactive data 
retrieval places greater pressure on data security. Sobhy et al.70 
proposed MedCloud, a model that leverages the Hadoop eco-
system to consider compliance issues with HIPAA when 
accessing patient data. Lin et al.71 proposed Home­Diagnosis, 
a cloud-based framework to address challenges with privacy 
protection, ensure highly concurrent and scalable medical 
record retrieval, and conduct data analysis in a self-caring 
setting. To solve these major challenges, a Lucene-based dis-
tributed search cluster was used in Home-Diagnosis, while a 
Hadoop cluster was employed to speed up the process overall.

Data analysis. Predicting disease risk and progression 
over time can be very useful for clinical decision support, 
and building computational models for clinical prediction 
requires a complex pipeline. Ng et al.72 proposed PARAMO 
as a predictive modeling platform for analyzing electronic 
health data. PARAMO supports the generation and reuse of a 
clinical data analysis pipeline for different modeling purposes. 
To efficiently process parallel tasks, PARAMO supports 
 MapReduce, which analyzes data for an immense amount 

of medical data that can be processed in a reasonable time. 
Medical terminology ontologies (eg, ICD, UMLS) were inte-
grated into the PARAMO system, and the analysis was tested 
on a set of EHR data from 5,000 to 300,000 patients using 
a Hadoop cluster; the concurrent task varies from 10 to 160. 
Results show that on this large dataset, 160 concurrent tasks 
are 72 times faster than running on 10 concurrent tasks.

In addition, Zolfaghar et al.73 used big data techniques 
to study the 30-day risk of readmission for congestive heart 
failure patients. The patient data were extracted from the 
National Inpatient Dataset and the Multicare Health System. 
Several algorithms (eg, logistic regression, random forest) 
were used to build a predictive model to analyze the possibil-
ity of patient readmission. The investigators performed several 
tests on more than three million patient records. The results 
showed that the use of big data significantly increased the per-
formance of building a predictive model: the models achieved 
the highest accuracy at 77% and recall at 61%.

Deligiannis et al.74 presented a data-driven prototype 
using MapReduce to diagnose hypertrophic cardiomyopathy 
(HCM), an inherited heart disease that causes cardiac death 
in young athletes. Successful diagnosis of HCM is challeng-
ing due to the large number of potential variables. Deligiannis 
et al believed that the diagnosis rate could be improved by 
using a data-driven analysis. In addition to improved predic-
tive accuracy, the experimental results showed that the overall 
runtime of predictive analysis decreased from nine hours to 
only a few minutes when accessing a dataset of 10,000 real 
medical records – this is a remarkable improvement over pre-
vious analyses and could lead to possible future applications 
for early systematic diagnoses.

Furthermore, the use of big data to analyze clinical data 
could have a significant impact on the medical community. 
A number of researchers have described future possibilities 
for the application of big data analytics. Ghani et al.75 argued 
that the adoption of EHRs and the use of picture archiving 
and communication systems (PACS) have led to the capture 
of mass quantities of digital big data. They also inferred that 
urologists can use big data analytics for decision support, such 
as predicting whether a patient will need readmission to hos-
pital after a cystectomy. Ghani et al anticipated that analytics 
of big data can also be applied to determine whether radia-
tion therapy or prostatectomy should be used for a 75-year-
old patient to avoid immediate risks from advanced prostate 
 cancer. Wang and Krishnan76 gave a systematic review of how 
big data can facilitate outcomes, such as identifying the cau-
sality of patient symptoms, predicting hazards of disease inci-
dence or reoccurrence, and improving primary care quality.

Genta and Sonnenberg77 provided an overview of big data 
in gastroenterology research, stating that the big data method 
is a new tool for finding significant association among large 
amounts of “messy” clinical data. Furthermore, the use of a 
large dataset will rapidly expand for gastroenterologists and 
advance the understanding of digestive diseases. Chawla and 

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82


Luo et al

6 Biomedical informatics insights 2016:8

Davis78 illustrated the overall vision of the big data approach 
to personalized medicine and provided a patient-centered 
framework. Abbott79 explained the contribution of big data to 
perioperative medicine. McGregor80 contended that using big 
data could help predict deadly pediatric medical conditions at 
an early stage, leading to a breakthrough in clinical applica-
tions for neonatal intensive care units. Fahim et al.81 proposed 
a system for active lifestyles and argued that a visual design 
engages users by enhancing their self-motivation.

Imaging informatics applications. Imaging informatics 
is the study of methods for generating, managing, and repre-
senting imaging information in various biomedical applica-
tions. It is concerned with how medical images are exchanged 
and analyzed throughout complex health-care systems. With 
the growing need for more personalized care, the need to 
incorporate imaging data into EHRs is rapidly increasing.

In this section, we classified big data technologies/tools 
into three categories: (1) data storage and retrieval, (2) data 
sharing, and (3) data analysis. Imaging informatics devel-
oped almost simultaneously with the advent of EHRs and the 
emergence of clinical informatics; however, it is very different 
from clinical informatics due to the heterogeneous data types 
generated from different modalities of medical images. Data 
security remains an important consideration in this area, but 
because current systems primarily rely on commercial cloud 
platforms and existing protocols, such as digital image com-
munication in medicine (DICOM), there is no research focus-
ing on improving data security in imaging informatics.

Data storage and retrieval. Imaging informatics is pre-
dominantly used for improving the efficiency of image process-
ing workflows, such as storage, retrieval, and interoperation. 
PACS are popular for delivering images to local display work-
stations, which is accomplished primarily through DICOM 
protocols in radiology departments. Many web-based medi-
cal applications have been developed to access PACS, and 
greater use of big data technology has been improving their 
performance. Silva et al.82 proposed an approach to integrate 
the data in PACS, given the current trend among health-care 
institutions to outsource the two important components of 
PACS (DICOM object repository and database system) to 
the cloud. Silva et al proposed to provide an abstract layer 
with a Cloud IO (input/output) stream mechanism to support 
more than one cloud provider despite their differences in data 
access standards.

In addition to big data technologies based on the imple-
mentation of cloud platforms with PACS, Yao et al.83 devel-
oped a massive Hadoop-based medical image retrieval system 
that extracted the characteristics of medical images using a 
Brushlet transform and a local binary pattern algorithm. Then, 
the HDFS stored the image features, followed by the imple-
mentation of MapReduce. The evaluation results indicated a 
decreased error rate in images compared with the result with-
out homomorphic filtering. Similarly, Jai-Andaloussi et al.84 
used the MapReduce computation model and HDFS  storage 

model to address the challenges of content-based image 
retrieval systems. They performed experiments on mammog-
raphy databases and obtained promising results, showing that 
the MapReduce technique can be effectively used for content-
based medical image retrieval.

Data and workflow sharing. PACS primarily provide 
image data archiving and analysis workflow at single sites. 
Radiology groups operating under a disparate delivery model 
(ie, different services offered by different vendors to complete 
a single radiology task) face significant challenges in a data-
sharing infrastructure. Benjamin et al.85 developed Super­
PACS, a system that enables a radiology group that serves 
multiple sites and has disparate PACS, RIS, reporting, and 
other relevant IT systems to view these sites virtually from 
one site and to use one virtual desktop to efficiently complete 
all radiology work and reporting. SuperPACS provides two 
approaches: (1) the federated approach, in which all patient 
data stay local, and (2) the consolidated approach, in which 
the data are stored centrally by a single agent. The agent is 
able to (1) provide an interface for DICOM, HL7, HTTP, 
and XDS standard and nonstandardized data; (2) synchronize 
metadata on local PACS and RIS; (3) cache images and data 
received from local PACS, RIS, any input tool, or another 
agent; (4) archive image data with compression and multitier 
storage, backup, disaster recovery, and image and data life-
cycle management; (5)  provide worklists, folders, routing 
logic, and mechanisms for image and nonimage data; (6) dis-
tribute image data through a web server, including compres-
sion and streaming; and (7) access local and remote data from 
a SuperPACS web client.

Data analysis. Seeking to overcome the challenges brought 
by large-scale (terabytes or petabytes) data derived from path-
ological images, Wang et al.86 proposed Hadoop­GIS, an effi-
cient and cost-effective parallel system. Here, GIS refers to 
spatially derived data management applications, which enable 
real-time spatial queries with the Real-time Spatial Query 
Engine, and integrates both MapReduce-based spatial query 
processing and Hive-based feature query processing. The 
Hadoop-GIS system also offers an easier SQL-like declarative 
query language that is supported by Hive. In the performance 
study, Wang et al used (1) a small-sized cluster for prototype 
tests and (2) a medium-sized cluster for scalability tests on 
real-world data. The results show that Hadoop-GIS increased 
query efficiency and decreased loading and query time.

To analyze cardiac imaging and medical data to opti-
mize clinical diagnosis and treatment, Dilsizian and Siegel87 
proposed a framework to integrate AI, massive parallel com-
puting, and big data mining and argued that these technolo-
gies are critical components for evidence-based personalized 
medicine. They also argued that big data mining techniques 
would be used for next-generation AI techniques in which 
large numbers of possible factors (eg, whether a patient had 
myocardial infarction) could be analyzed and a prediction 
could be completed in less time, thereby improving diagnosis 
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and treatment. Using a cardiac imaging field as a focus area, 
Dilsizian and Siegel showed that the Formation of Optimal 
Cardiovascular Utilization Strategies group introduced the 
use of AI and big data to reduce inappropriate uses of diag-
nostic imaging; such cases decreased from 10% to 5% among 
the 55 participating sites.

In addition, Markonis et al.88 used Hadoop to establish 
a cluster of computing nodes and MapReduce to speed up the 
process. Three cases of use were analyzed: (1) parameter opti-
mization for lung texture classification using support vector 
machines (SVMs), (2) content-based medical image index-
ing, and (3) three-dimensional directional wavelet analysis for 
solid texture classification. Test results in a parallel grid search 
for optimal SVM parameters showed that using concurrent 
map tasks reduced the total runtime from 50 hours to 9 hours 
15 minutes – a significant improvement in computing effi-
ciency while maintaining a good classification performance.

Public health information. As described by Short-
liffe and Cimino,89 public health has three core functions: 
(1) assessment, (2) policy development, and (3) assurance. 
Among these, assessment is the prerequisite and fundamen-
tal function. Assessment primarily involves collecting and 
analyzing data to track and monitor public health status, 
thereby providing evidence for decision making and policy 
development. Assurance is used to validate whether the ser-
vices offered by health institutions have achieved their initial 
target goals for increasing public health outcomes; as such, 
many large public health institutions, such as the Centers for 
Disease  Control and Prevention and the Administration of 
Community  Living, have collected and analyzed very large 
amounts of population health data.

In this section, no new approaches are introduced. 
Instead, we present an integrated view of big data and health 
from a population perspective rather than a single medical/
clinical activity perspective. This section focuses on four areas: 
(1) infectious disease surveillance, (2) population health man-
agement, (3) mental health management, and (4) chronic dis-
ease management.

Infectious disease surveillance. Hay et al.90 discussed the 
opportunities for using big data for global infectious disease 
surveillance. They developed a system that provides real-time 
risk monitoring on map, pointing out that machine learning 
and crowdsourcing have opened new possibilities for devel-
oping a continually updated atlas for disease monitoring. 
Hay et al believed that online social media combined with 
epidemiological information is a valuable new data source for 
facilitating public health surveillance. The use of social media 
for disease monitoring was demonstrated by Young et al.91, in 
which they collected 553,186,016 tweets and extracted more 
than 9,800 with HIV risk-related keywords (eg, sexual behav-
iors and drug use) and geographic annotations. They showed 
that there is a significant positive correlation (P , 0.01) 
between HIV-related tweets and HIV cases based on preva-
lence analysis, illustrating the importance of social media 

(eg, Twitter, Facebook) and its potential impact on monitoring 
global disease occurrence.

Population health management. To study the distribution 
and impact of sociodemographic and medico-administrative 
factors, Lamarche-Vadel et al.92 analyzed the independent 
association of patient MD and UCD. The MD was identified 
by ICD10 code, while the UCD was extracted from a death 
registry. If MD and UCD were different events, then those 
events were found to be independent. Using health insur-
ance data, information from 421,460 deceased patients was 
extracted from 2008 to 2009. The results show that 8.5% of 
inhospital deaths and 19.5% of out-of-hospital deaths were 
independent events and that independent death was more 
common in elderly patients. The results demonstrate that 
large-scale data analysis can be used to effectively analyze the 
association of medical events.

Mental health management. Nambisan et al.93 found that 
messages posted on social media could be used to screen for 
and potentially detect depression. Their analysis is based on 
previous research of the association between depressive dis-
orders and repetitive thoughts/ruminating behavior. Big data 
analytics tools play an important role in their work by  mining 
hidden behavioral and emotional patterns in messages, or 
“tweets,” posted on Twitter. Within these tweets, we may be 
able to detect a disease-related emotion pattern, which is a 
previously hidden symptom. The authors foresee that future 
research could delve deeper into the conversations of the 
depressed users to understand more about their hidden emo-
tions and sentiments. In addition, Dabek and Caban94 pre-
sented a neural network model that can predict the likelihood 
of developing psychological conditions, such as anxiety, behav-
ioral disorders, depression, and post-traumatic stress disorder. 
They also analyzed the effectiveness of their model against a 
dataset of 89,840 patients, and the results show that they can 
achieve an overall accuracy of 82.35% for all conditions.

Chronic disease management. Tu et al.95 introduced the 
 Cardiovascular Health in Ambulatory Care Research Team 
(CANHEART), a unique, population-based  observational 
research initiative aimed at measuring and improving cardio-
vascular health and the quality of ambulatory cardio vascular 
care provided in Ontario, Canada. The research focused 
on identifying opportunities to improve the primary and 
 secondary prevention of cardiovascular events in Ontario’s 
diverse multiethnic population. The study included data from 
9.8  million Ontario adults aged $20 years. Data were assem-
bled by linking multiple databases, such as electronic surveys, 
health administration, clinical, laboratory, drug, and electronic 
medical record databases using encoded personal identifiers. 
Follow-up clinical events were collected through record link-
ages to comprehensive hospitalization, emergency department, 
and vital statistics administrative databases. The huge linked 
databases enable the CANHEART study cohort to serve as 
a powerful big data resource for scientific research aimed at 
improving cardiovascular health and health services delivery.
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Kupersmith et al.96 introduced the health IT infrastructure  
in the US Veterans Health Administration’s (VHA) health 
information infrastructure and the factors that made it pos-
sible to achieve chronic disease management for its patients. 
Structured clinical data in the EHRs can be aggregated 
within specialized databases, while unstructured text data, 
such as clinician notes, can be reviewed and abstracted elec-
tronically from a central location. The rich clinical informa-
tion makes it possible for professionals to extract insights; for 
instance, the VHA has identified a high rate of mental illness 
comorbidity (24.5%) among patients with diabetes. The VHA 
also uses EHR data to explore the influence of sex and race/
ethnicity and to understand the extent to which newer psy-
chotropic drugs contribute to poor outcomes, in the context 
that drugs promote weight gain and mental illness itself. The 
VHA also uses this information to identify and track diabetic 
complications, such as early chronic kidney disease without 
renal impairment, as indicated in the record. After identi-
fying patients at high risk for comorbidities or amputation, 
the VHA distributes the information to clinicians to better 
 coordinate patient care.

conclusion
We are currently in the era of “big data,” in which big data 
technology is being rapidly applied to biomedical and health-
care fields. In this review, we demonstrated various examples 
in which big data technology has played an important role 
in modern-day health-care revolution, as it has completely 
changed people’s view of health-care activity. The first three 
sections of this review revealed that big data applications facil-
itate three important clinical activities, while the last section 
(especially the chronic disease management section) draws 
an integrated picture of how separate clinical activities are 
completed in a pipeline to manage individual patients from 
multiple perspectives. We summarized recent progress in the 
most relevant areas in each field, including big data storage 
and retrieval, error identification, data security, data sharing 
and data analysis for electronic patient records, social media 
data, and integrated health databases.

Furthermore, in this review, we learned that bioinfor-
matics is the primary field in which big data analytics are cur-
rently being applied, largely due to the massive volume and 
complexity of bioinformatics data. Big data application in bio-
informatics is relatively mature, with sophisticated platforms 
and tools already in use to help analyze biological data, such as 
gene sequencing mapping tools. However, in other biomedical 
research fields, such as clinical informatics, medical imaging 
informatics, and public health informatics, there is enormous, 
untapped potential for big data applications.

This literature review also showed that: (1) integrating 
different sources of information enables clinicians to depict 
a new view of patient care processes that consider a patient’s 
holistic health status, from genome to behavior; (2) the avail-
ability of novel mobile health technologies facilitates real-time 

data gathering with more accuracy; (3) the implementation 
of distributed platforms enables data archiving and analysis, 
which will further be developed for decision support; and 
(4) the inclusion of geographical and environmental informa-
tion may further increase the ability to interpret gathered data 
and extract new knowledge.

While big data holds significant promise for improving 
health care, there are several common challenges  facing all the 
four fields in using big data technology; the most significant 
problem is the integration of various databases. For example, 
the VHA’s database, VISTA, is not a single system; it is a set of 
128 interlinked systems. This becomes even more complicated 
when databases contain different data types (eg, integrating 
an imaging database or a laboratory test results database into 
existing systems), thereby limiting a system’s ability to make 
queries against all databases to acquire all patient data. The 
lack of standardization for laboratory protocols and  values 
also creates challenges for data integration. For example, 
image data can suffer from technological batch effects when 
they come from different laboratories under different proto-
cols. Efforts are made to normalize data when there is a batch 
effect; this may be easier for image data, but it is intrinsically 
more difficult to normalize laboratory test data.  Security and 
privacy concerns also remain as hurdles to big data integra-
tion and usage in all the four fields, and thus, secure  platforms 
with better communication standards and protocols are 
greatly needed.

In its latest industry analysis report, McKinsey & Com-
pany predicted that big data analytics for the medical field 
will potentially save more than $300 billion per year in US 
health-care costs. Future development of big data applications 
in the biomedical fields holds foreseeable promise because it is 
dependent on the advancement of new data standards, relevant 
research and technology, cooperation in research institutions 
and companies, and strong government incentives.
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