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Purpose: The emergence of genomic targeted therapy has improved the prospects of treatment for breast cancer (BC). However, 
genetic testing relies on invasive and sophisticated procedures.
Patients and Methods: Here, we performed ultrasound (US) and target sequencing to unravel the possible association between US 
radiomics features and somatic mutations in TNBC (n=83) and non-TNBC (n=83) patients. Least absolute shrinkage and selection 
operator (Lasso) were utilized to perform radiomic feature selection. The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis was utilized to identify the signaling pathways associated with radiomic features.
Results: Thirteen differently represented radiomic features were identified in TNBC and non-TNBC, including tumor shape, textual, 
and intensity features. The US radiomic–gene pairs were differently exhibited between TNBC and non-TNBC. Further investigation 
with KEGG verified radiomic–pathway (ie, JAK-STAT, MAPK, Ras, Wnt, microRNAs in cancer, PI3K-Akt) associations in TNBC 
and non-TNBC.
Conclusion: The pivotal network provided the connections of US radiogenomic signature and target sequencing for non-invasive 
genetic assessment of precise BC treatment.
Keywords: triple-negative breast cancer, radiomics, somatic mutation, signaling pathway

Introduction
Triple-negative breast cancer (TNBC) is an aggressive subtype of BC that does not express the estrogen receptor (ER), 
progesterone receptor (PR), or human epidermal growth factor receptor (HER2) amplification/overexpression, accounting 
for 10–20% of newly diagnosed BC.1 Studies have shown that the 5-year survival rate of patients with TNBC is only 
77%, compared with 93% for other types.2 There is consensus that TNBC represents highly inter-and intra-tumor 
heterogeneity, and this may have implications for TNBC treatment choice. Advancement in genomics has fueled the 
efforts toward “precision oncology”, targeting cancers based on their genetic mutations, including TP53, BRCA, and 
PIK3CA.3–7 Genetic mutations are optimized to discover molecular biomarkers predicting prognosis and response to 
treatments, helping to foresee the emergence of unexplained drug resistance.8 Nevertheless, the comprehensive applica-
tion of genomic profiles in clinical testing is limited by the low likelihood of identifying high responders using large 
panels of genes,9 and obtaining serial samples of tumor tissue is impractical and complicated by spatial heterogeneity and 
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sampling bias. Therefore, there is an urgent need for a new approach to identify genetic information, which will facilitate 
the timely inclusion of patients with prognostic and predictive biomarkers into personalized treatment strategies.

Radiomics is an attractive approach mining high-throughput quantitative image features associated with different 
variables of interest to create decision support models.10–13 Ultrasound (US) imaging is commonly applied in BC 
detection and diagnosis because it can assess the morphology, orientation, internal structure, and margins of the entire 
tumor.14 US radiomic features and algorithms have been recently explored for their role in differentiating TNBC.15–17 

Moreover, a change in the radiogenomics landscape, delta-radiomics,18 during follow-up may provide a non-invasive 
predictive marker for such patients because numerous biopsies and repeated genomic testing are often impossible. 
However, the disconnection between the predictor model and biological meaning has limited the widespread clinical 
translation of such tools. Although efforts to reintroduce biological meaning into radiomics have attracted much attention 
in the field of genomic correlates, most studies have focused on a few genes or have relied on observer-dependent 
semiquantitative features that make replication difficult.10,15 Only a few studies have investigated the associations 
between tumor imaging phenotype and the underlying molecular landscape.19,20

Therefore, by performing a pathway analysis in TNBC and non-TNBC, we aim to discover the associations between 
US phenotypes of breast cancer and their underlying molecular biology derived from gene mutation data.

Methods
Study Design and Participants
The study participants design was illustrated in Figure S1. A total of 443 suspected BC patients were recruited between 
January 1, 2020 and June 30, 2021. In this prospective study, we excluded participants whose tumors were not present or 
not complete in the subtracted image on US (N=21) and who underwent biopsy before US examination (n = 35). Then, 
we excluded patients with benign lesions (n = 37). Eighty-three TNBC and 267 non-TNBC BC patients were included. 
To resolve the class imbalance problem, 184 non-TNBC patients were randomly excluded. Finally, 83 TNBC and 83 non- 
TNBC BC patients were included. This study was approved by the institutional review board of Fudan University 
Shanghai Cancer Center. Informed consent has been signed by each participant and the study was conducted in 
accordance with the Declaration of Helsinki.

US Radiomic Features Extraction
Aixplorer US system (Aixplorer, Supersonic Imagine, Aix-en-Provence, France) equipped with a 4–15 MHz linear array 
transducer was used to conduct US examination. Standardized breast US examination was performed by a certified 
radiologist (J Zhou.) with 8 years of experience, as previously described.21 The regions of interest (ROI) of US images 
were delineated using a trained U-NET network22 (Figure 1). Segmentation revision was performed by an experienced 
radiologist (L Qian, with 5 years of diagnosis experience in breast medical images) where necessary (where contour of 
lesion was not precisely drawn). An open-source package PyRadiomics (version 3.0) in Python was used to determine 
radiomics features on the US image for each ROI.23 A total of 555 radiomic features were included in the analysis. The 
radiomic features were divided into five groups: (I) First-order statistics (eg, mean, standard deviation, skewness); (II) 
Shape and size-based features (eg, sphericity, maximal diameter, elongation); (III) Textual features (eg, entropy, gray- 
level variances: ngtdm [neighborhood grey-tone difference matrix], glszm [size-zone matrix], glcm [co-occurrence 
matrix], glrlm [run-length matrix], gldm [grey-level difference method]); (IV) Wavelet-based features (eg, Wavelet 
energy, Wavelet median); (V) Laplace of Gaussian (LoG) features (eg, LoG Kurtosis, LoG Gray-level non uniformity). 
First-order statistics are based on the histogram of voxel intensity values of the image. Shape and size-based features are 
based on the 2D representation of a tumor. Textual features measure textural structures. Wavelet-based features are 
calculated by first applying Wavelet decomposition to the image before computing groups I and III features. Laplace of 
Gaussian (LoG) features are calculated by applying a LoG filter to the image first, which results in highlighted edges, 
after which I and III features are computed.
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Gene Mutation and Pathway Analysis
Both the tumor samples and matched blood DNA were sequenced using a custom-designed genetic panel of 511 breast 
cancer-specific genes to detect somatic mutation, as previously reported.24 The panel was designed based on the 
integration of The Cancer Genome Atlas (TCGA),25 Memorial Sloan Kettering Cancer Center (MSKCC)26 and FUSCC- 
TNBC datasets.27 DNA fragments captured by probes were pooled and sequenced, 1000× median coverage for tumor 
genomic DNA and 400× median coverage for bold genomic DNA, thereby eliminating germline variant interference and 
ensuring somatic mutations. A mutation was included only if it was shift deletion and insertion, in-frame deletion and 
insertion, missense, nonsense, and splice site modifications.

Pearson correlation was used to examine whether a radiomic feature had a significant association with mutant genes 
for each genotype. This process was repeated for each deep learning feature and all the 511 genes. Differential mutation 
of each gene was evaluated with mutational information using Fisher’s exact test (p < 0.05 as statistically significant). 
Least absolute shrinkage and selection operator (Lasso) regression was used to develop radiomic feature selection for 
discriminating TNBC and non-TNBC. First, N features significantly different between TNBC and non-TNBC were 
selected as the independent variable using t-test. A pre-selected feature set was formed by removing the features with 
high absolute value correlation (>c) with other features. Lasso regression was then used to identify the radiomic features 
significantly different between TNBC and non-TNBC. The biologic processes associated with US radiomic factor were 
identified using KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses of gene mutation data. 
Specifically, a single US radiomic feature could determine an association with a gene set. Only the pathway with 
more than two gene hits and p < 0.05 (Benjamini–Hochberg Procedure) was classified as mutated pathway related to the 
US radiomic feature for a given US factor-gene set pair.

Statistical Analysis
Python version 3.7 and R version 4.2.0 was used for all statistical analyses. The radiomic signature was established using 
an elastic net regression model via Lasso. Features with high similarity were removed to reduce multicollinearity of the 
features in the model. The regularization parameters α were turned using a grid search under 10-fold cross-validation to 
reduce model overfitting. The correlation between mutated genes and radiomic features was identified via Spearman 
correlation. All statistical results were considered significant at p<0.05.

Figure 1 Radiomics pipeline.
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Results
The Characteristics of Radiomic Features in TNBC and Non-TNBC
The overall study design and flow chart of patient inclusion is shown in Figures 1 and S1. The clinicopathological 
analysis showed that there were no significant differences between the TNBC and non-TNBC groups in age (p = 0.526), 
menopausal status (p = 0.534), T stage (p = 0.895), N stage (p = 0.102), and histologic category (p = 0.663), but there 
was significant difference in pathology grade (p = 0.017). An integrated radiomic-genomic analysis of TNBC and non- 
TNBC was conducted to evaluate the relationship between radiomic phenotypes and molecular pathways (Table S1). 
Thirteen robust and non-redundant radiomic features (Figure 2A) were identified to quantify a panel of phenotypic 
characteristics, such as intratumor homogeneity and heterogeneity. Unsupervised clustering revealed clusters of radiomic 
expression patterns between TNBC and non-TNBC (Figure 2B). The first-order (minimum- and median-) and entropy 
(join-, run-, and dependence-) radiomics features were overrepresented in TNBC compared with those in non-TNBC. 
First-order statistics describe the distribution of voxel intensities within the image region defined by the mask through 
commonly used and basic metrics. Joint entropy measures the randomness or variability in the neighbourhood intensity 
values. Run entropy measures the uncertainty or randomness in the distribution of run lengths and gray levels. A higher 
entropy value indicates that the texture patterns are more heterogeneous.

Figure 2 Characteristics of radiomic features (A) and somatic mutation (B) between TNBC and non-TNBC groups. The asterisk * indicates differently mutated genes 
between TNBC and non-TNBC groups. Radiomics heatmap (C) of unsupervised clustering of radiomic features in breast cancer patients (n = 171) on the x-axis and 
radiomic feature expression (n = 13) on the y-axis, revealed clusters of similar radiomic expression patterns. Clinical patient parameters for showing significant association of 
the radiomic expression patterns with histology (p = 0.001, χ2 test).
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Shape (perimeter), first-order (energy), inverse variance, maximum probability, busyness, small area emphasis (SAE), 
and gray-level non-uniformity normalized (GLNN) were overrepresented in non-TNBC compared with those in TNBC. 
Shape features describe tumor aggressiveness. Tumors are described as spiculated or having “ill-defined borders”, 
indicating their potential to spread to contiguous structures and association with advanced stages.16,28–30 Energy 
measures the magnitude of voxel values in an image. SAE measures the distribution of small size zones. A greater 
SAE value indicates more smaller size zones and more fine textures. GLNN measures the similarity of gray-level 
intensity values in the image. A lower GLNN value indicates a greater similarity in intensity values while a larger value 
indicates a greater sum of the squares of these values. These textural features are sensitive to tumor radiographic 
heterogeneity. Inverse variance measures the variations in the intensity of voxels close to each other and thus quantifies 
another aspect of homogeneity. Maximum probability is defined as the occurrence of the most predominant pair of 
neighbouring intensity values. Busyness measures the change from a pixel to its neighbour. A high busyness value 
indicates a “busy” image, with rapid changes of intensity between pixels and its neighborhood. Busyness and inverse 
variance emphasize voxel pattern from close range intensity. These textural features are related to radiographic 
homogeneity.

Association with Somatic Mutation
A list of the top highly somatic mutated genes is presented in Figure 2C. The US radiomic–gene pair were differently 
exhibited between TNBC and non-TNBC (Figure 3). A total of 27 genes were significantly associated with the 12 radiomic 
features in the TNBC group and 29 genes were significantly associated with 13 radiomic features in the non-TNBC group, 
but only one radiomic–gene pair (Wavelet-HL ngtdm busyness and BRCA1) and five genes (MAP3K1, RYR2, TYK2, 
BRCA1, JAK1) were shared in both TNBC and non-TNBC (Figure 3A and B). The complete lists of all the associations 
between somatic mutation and US radiomics in TNBC and non-TNBC are presented in Tables S2 and S3 (p value <0.05).

US radiomics differently presented among the gene-mutated TNBC and non-TNBC (Table 1). Original glcm Joint 
entropy, original shape2D perimeter, and Wavelet-LH first-order energy were underrepresented in BRCA1-mutated 
TNBC while Wavelet-HL ngtdm busyness, Wavelet-HL glcm inverse variance, and Wavelet-HL glcm maximum were 
underrepresented in BRCA1-mutated non-TNBC. Moreover, Wavelet-HL gldm dependence entropy and Wavelet-HH 
glrlm run entropy were overrepresented in both BRCA1-mutated TNBC and non-TNBC (Figure 3A and B). The 

Figure 3 The association between mutated genes and radiomic features ((A), TNBC; (B), non-TNBC).
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representation of these features indicates that BRCA1-mutated TNBC is more likely to be homogeneous and smaller, 
while BRCA1-mutated non-TNBC is more likely to be heterogeneous. FOXA1 and ATM were differently mutated in 
TNBC and non-TNBC groups. FOXA1-mutated non-TNBC was associated with overrepresentation of original glcm 
joint entropy, while ATM-mutated TNBC was associated with underrepresentation of Wavelet-L first-order minimum. 
Moreover, TP53-mutated non-TNBC was associated with overrepresentation of Wavelet-HL ngtdm busyness, original 
shape2D perimeter, Wavelet-LH first-order energy, and underrepresentation of Wavelet-LH first-order minimum. These 
results indicate that TP53-mutated non-TNBC is more likely to be heterogeneous.

Association with KEGG Pathway Analysis
The associations of somatic gene mutations at the pathway level were examined through KEGG analysis (Figure 4). 
A total of 55 and 106 radiomic pathway associations were identified in TNBC and non-TNBC groups, respectively 
(Tables S4 and S5). The distinct radiomic features were associated with distinct biological processes in TNBC and non- 
TNBC groups. For example, Wavelet-based intensity features were mainly associated with category of human diseases 
pathway in both TNBC and non-TNBC. Textural features were mainly associated with category of human diseases 
pathway in TNBC, while Wavelet-based textural features were mainly associated with category of human diseases and 
environmental information processing pathway in non-TNBC. Shape features were mainly associated with category of 
organismal systems pathway in non-TNBC.

Further examples of radiomic–pathway in BC are illustrated in Figure 5. Eleven signaling pathways were associated 
with 5 radiomic features in TNBC, and 13 signaling pathways were associated with 9 radiomic features in non-TNBC, 
respectively. Radiomic features were associated with 8 signal pathways (EGFR tyrosine kinase inhibitor resistance, JAK- 
STAT signaling pathway, MAPK signaling pathway, microRNAs in cancer, necroptosis, PI3K-Akt signaling pathway, 

Table 1 Radiomic-Genomic Association Within TNBC and Non-TNBC

Features TNBC Non-TNBC

Overrepresented Underrepresented Overrepresented Underrepresented

Wavelet-HL gldm dependence 

entropy

CTCF GRIN2A, MAP3K1 PDGFRB, BRCA1, PKD1 FASN, PIK3CG

Original glcm joint entropy ARID1B, TLR4, TYK2, 

FLT1

KMT2D, BCR, TERT, 

RB1

MAP3K1, PBRM1, 

FOXA1, PTEN

FASN, PIK3CG

Wavelet-HH glrlm run entropy CTCF GRIN2A, MAP1A JAK1, TYK2, AXL, 
BRCA1

FASN, PIK3CG

Wavelet-HL ngtdm busyness BCR, FGFR3 HSP90AB1, BRCA1 CREBBP, TP53, FASN, 

USH2A

ABL1, ARID2, BRCA1, 

PALB2
Original shape2D perimeter FGFR3 BRCA1 FASN, KCNB2, NF2, 

USH2A, TP53

ABL1, ARID2, PALB2

Original-glrlm gray-level non- 
uniformity normalized

KMT2D, RET, FES, 
MAP3K2, GPR32

TLR4, MAP2K4 DNMT1, RYR2, 
SMARCA4

MAP3K1, PBRM1

Wavelet-LL first-order minimum JAK1, JAK3, RYR2 ATM, FGFR3 CDH1, ARID2 EHMT2, PARP1, ESR1

Original first-order median JAK3, RYR2 BCR / FASN
Wavelet-LH first-order minimum PIK3CD, JAK3, MAP1A MAPK7 ECT2L TP53, NF2, KCNB2, 

FASN

Wavelet-LH first-order energy BCR BRCA1 CREBBP, KCNB2, NF2, 
USH2A, TP53

ABL1, PALB2 

Wavelet-HL glcm inverse variance GRIN2A COL1A1 / BRCA1, PDGFRB, TYK2, 

JAK1, PKD1
Wavelet-HL glcm maximum 

probability

GRIN2A / / BRCA1, PKD1, PDGFRB, 

JAK1

Wavelet-HH glszm small area 
emphasis

HRAS JAK1, PDGFRB, TYK2
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Figure 4 Overview of all identified statistically significant associations of pathway. Each node represents a genomic or a radiomic phenotype. Each line represents statistically 
significant association. Genomic features were organized into circles via KEGG classification. Radiomic phenotypes are divided into four categories. The node size 
proportional to its association number to other nodes in the category. The signal pathway only included gene number count ≥2.

Figure 5 The association between key signaling pathways of breast cancer and radiomic features in TNBC and non-TNBC.
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NOD-like receptor signaling pathway, Th17 cell differentiation) in both TNBC and non-TNBC groups. However, 
radiomic features were associated with three signal pathways (HIF-1 signaling pathway, chemokine signaling pathway, 
and Toll-like receptor signaling pathway) only in TNBC. Besides, radiomic features were associated with five signal 
pathways (cell cycle, choline metabolism in cancer, PD-L1 expression and PD-1 checkpoint pathway in cancer, Ras 
signaling pathway, and Wnt signaling pathway) only in non-TNBC. Notably, radiomic features were differently 
correlated to the pathways in TNBC and non-TNBC groups, with only three features (3/11) shared between the TNBC 
and non-TNBC groups (original shape2D perimeter, Wavelet HL ngtdm busyness, and original glcm joint entropy). The 
Wavelet-based intensity and textural features were correlated with non-TNBC. These features included Wavelet HH 
glrlm run entropy, Wavelet HL gldm dependence entropy, Wavelet HH glszm SAE, Wavelet LH first-order energy, which 
are sensitive to complex patterns of high variation, as well as Wavelet HL glcm inverse variance, Wavelet HL glcm 
maximum probability, which emphasize voxel pattern from close range intensity. The textural and Wavelet-based 
intensity features were also correlated with TNBC. These features included original glcm joint entropy, original glrlm 
GLNN, which are sensitive to complex patterns of high variation, as well as Wavelet LH first-order minimum, Wavelet 
LL first-order minimum, which emphasize voxel pattern from close range intensity.

Discussion
We evaluated the associations between breast cancer US imaging and genomic sequencing. Our results found 13 US 
radiomic features differently underrepresented between TNBC and non-TNBC. Furthermore, these radiomic features 
were associated with a large number of gene mutation and signaling pathways, with different patterns in TNBC and non- 
TNBC. TNBC exhibited textural and Wavelet-based intensity features associated with human diseases, while non-TNBC 
exhibited Wavelet-based intensity and Wavelet-based textural features associated with human diseases.

Radiologic imaging has presented characteristic features in TNBC.31,32 TNBC frequently presented with a mass (62– 
100%)33–35 and less frequently associated with focal asymmetric density (9–11%) and microcalcification (6-%12%)33,35 

on mammography. The distinctive US features of TNBC included a well-circumscribed margin in 21–27% of the lesions 
with posterior acoustic enhancement (24–41%)36 and absence of echogenic halo (85%).36 MRI exhibited a higher 
presence of rim enhancement (76–88%) in TNBC.37,38 However, these studies are based on semantic features leading 
to subjective discrepancies. Advanced handcrafted radiomic features, the mathematical result of image pixel values 
within ROI, can quantitatively and automatically identify and interpret cancer imaging. Wu et al reported that the margin 
of TNBC is sharper, with a more regular shape than non-TNBC by using nine quantitative US features.16 In this study, 
we extracted US radiomic features based on automatic segmentation using u-net convolutional neural network (CNN) 
(Figure 6), of which a number of radiomic features were differently represented between TNBC and non-TNBC. For 
TNBC, the first-order (minimum- and median-) and entropy (join-, run-, and dependence-) radiomics features were 
overrepresented in this study, indicated that TNBC are more likely to be heterogeneous. The imaging phenotypes like 
heterogeneity may capture and convey pathologic characteristics like lymphocyte infiltration,39 and molecular pathways 
such as tumor metabolism.40 It is feasible that entropy may be a radiomic signature of the biologic activity in TNBC.

US radiomic features can reflect the pathophysiologic processes of cell proliferation, apoptosis, and metastasis in 
breast cancer.41,42 Previous radiogenomics studies have demonstrated that specific imaging phenotypes are associated 
with specific genomic mutations.10,19 For example, imaging features are associated with TP53/PIK3CA mutation based 
on MRI43 and US21 in breast cancer but with limited imaging features. Our study found the radiogenomic features were 
distinct between TNBC and non-TNBC, with few shared radiomic–gene and radiomic–pathway pairs. The under-
representation of original glcm joint entropy, original shape2D perimeter, and Wavelet-LH first-order energy in TNBC 
indicated BRCA1 mutation. Similarly, previous studies showed that BRCA-associated BC exhibits benign morphologic 
features, with circumscribed margin and rim enhancement in MRI and acoustic enhancement in US.44 Cancers with 
BRCA mutation are associated with a deficiency in homologous recombination repair of DNA double-strand breaks, 
resulting genomic instability cytogenetic changes45,46 and poor prognosis.47,48 Recent trials have proved that olaparib, 
a targeted drug for BRAC1 mutation in breast cancer, increases objective response rate of patients with somatic BRCA1/ 
2 mutation.49 ATM, a prognostic and predictive indicator for TNBC,50 is associated with the underrepresentation of 
Wavelet-LL first-order minimum. FGFR3 mutation, a therapeutic option for TNBC,51 is associated with the original 

https://doi.org/10.2147/BCTT.S408997                                                                                                                                                                                                                                

DovePress                                                                                                                                            

Breast Cancer: Targets and Therapy 2023:15 468

Huang et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


shape2D perimeter. These findings suggest that homogenous radiomic features in TNBC may be associated with gene 
mutation, and thus could be a predictor of molecular targets in TNBC precision oncology.

The association between radiomic phenotypes and molecular pathways in TNBC and non-TNBC showed different 
landscapes. Recent studies have shown that targeting both vertical and horizontal pathways is a promising strategy 
for BC treatment. For example, the PI3K-Akt signaling pathway is a promising therapeutic target for TNBC.52 Therefore, 
a tailored anti-PI3K-Akt therapeutic cocktail can be suggested for a patient with high probability of a PI3K-Akt signaling 
pathway. Thus, evaluating the parallel signaling may guide the development of combination therapies. Previous study has 
shown that TNBC patients with residual disease after NAC harbored alterations of cell cycle progression, PI3K/Akt/ 
mTOR, and EGFR tyrosine kinase inhibitor-resistance pathways.53 Compared to the associations at the genomic level, 
we found more statistically significant associations for somatic mutations and signaling pathway. Our findings exhibited 
the pivotal network of TNBC and non-TNBC, which may provide a non-invasive method to evaluate the efficacy of 
treatment.

Limitations of the Study
Several limitations still need to be addressed in our study. First, the relatively small number of patients from a single 
institution limited the statistical power of the results. Therefore, our results must be validated in larger prospective studies 
with multicenter research. Second, downstream biomarkers were not studied at the mRNA and protein levels. However, 
the radiogenomic investigations of breast cancer on the somatic mutation level may provide the basis for examining in- 
depth US image-to-molecule and gene feature associations. Furthermore, animal models should be used to validate the 
intrinsic biological meaning of radiomic features.

Figure 6 Results of u-net convolutional networks for multi-image-based US segmentation. (A) 69-year-old TNBC patient with BRCA+. The lesion is homogeneous. (B) 
A 52-year-old non-TNBC patient with BRCA+. The lesion is larger and heterogeneous.
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Conclusion
In conclusion, ultrasound radiomic features can help to characterize TNBC and non-TNBC noninvasively and are 
associated with subtype-related gene mutation and signaling pathway, which offer potential guidance for targeted therapy.
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