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Abstract

Background: The incorporation of prior biological knowledge in the analysis of microarray data
has become important in the reconstruction of transcription regulatory networks in a cell. Most of
the current research has been focused on the integration of multiple sets of microarray data as well
as curated databases for a genome scale reconstruction. However, individual researchers are more
interested in the extraction of most useful information from the data of their hypothesis-driven
microarray experiments. How to compile the prior biological knowledge from literature to
facilitate new hypothesis generation from a microarray experiment is the focus of this work. We
propose a novel method based on the statistical analysis of reported gene interactions in PubMed
literature.

Results: Using Gene Ontology (GO) Molecular Function annotation for reported gene regulatory
interactions in PubMed literature, a statistical analysis method was proposed for the derivation of
a likelihood of interaction (LOI) score for a pair of genes. The LOIl-score and the Pearson
correlation coefficient of gene profiles were utilized to check if a pair of query genes would be in
the above specified interaction. The method was validated in the analysis of two gene sets formed
from the yeast Saccharomyces cerevisiae cell cycle microarray data. It was found that high
percentage of identified interactions shares GO Biological Process annotations (39.5% for a 102
interaction enriched gene set and 23.0% for a larger 999 cyclically expressed gene set).

Conclusion: This method can uncover novel biologically relevant gene interactions. With
stringent confidence levels, small interaction networks can be identified for further establishment
of a hypothesis testable by biological experiment. This procedure is computationally inexpensive
and can be used as a preprocessing procedure for screening potential biologically relevant gene
pairs subject to the analysis with sophisticated statistical methods.
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Background

Microarrays are routinely used to simultaneously assess
the relative expression levels of many thousands of gene
transcripts in biological samples. Increasingly sophisti-
cated techniques have been developed to detect those
transcripts among thousands whose expression levels
have significantly changed in response to the selected
experimental conditions. Yet these lists of differentially
expressed genes, however highly refined, are of limited
use in themselves. A deeper understanding of the underly-
ing biological mechanisms depends on the identification
of how these genes are interacting with the cell. Through
the development of gene interaction networks, microarray
data evolve from being descriptive to being predictive.

The use of various statistical methods for identifying sig-
nificant transcriptional regulatory interactions and for
uncovering the corresponding regulatory network struc-
tures is a major step toward that direction [1-13]. How-
ever, microarray data themselves do not provide enough
information for the definitive identification of regulatory
interactions within the cell. The inclusion of other biolog-
ical information is essential. Recently, several groups have
proposed methods of constructing regulatory networks
based on microarray gene expressions and other large sets
of high throughput data [14-16]. Particularly, the meth-
ods in [15,16] can perform analysis of a highly diverse col-
lection of genome-wide data sets, which include gene
expression, protein interactions, growth phenotype data,
and transcription factor binding, to reveal the modular
organization of the yeast system.

The identification of regulatory networks at genome scale
is important. However, it does not address the issue of
analyzing a single set of microarray data obtained from a
specific hypothesis-driven experiment. It is possible that
the network structure derived based on the above method
may be not all observed in a single microarray experiment
that was conducted under specific experimental condi-
tions. Therefore, it remains an important task for individ-
ual investigators to identify the interactions that are most
consistent with the data. There are several databases to
which a set of genes can be submitted for querying of pos-
sible pathways. However, the discovery of new pathways
is often not possible by using these databases. This situa-
tion has become a major obstacle for deriving new testa-
ble hypotheses from a single set of microarray data
conducted by an individual research group.

On the other hand, the large body of information hidden
in the published literature has not been effectively inte-
grated in the microarray data analysis. Several groups [17-
19] have attempted to utilize prior biological knowledge
to substantially reduce false positives in the outcomes
from the data-driven approaches. Herrgard et al . [18]
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have evaluated networks reconciled from gene expression
data, known genome-scale regulatory network structures
generated from annotated genome information, well-
curated databases, and primary research literature. Jenssen
et al. [20] proposed a gene-to-gene co-citation network for
13,712 named human genes by an automated analysis of
titles and abstract in over 10 million MEDLINE records.
PathwayAssist 3.0 analysis software by Ariadne Genomics
[21] also provides networks for a set of query genes based
on a natural language search algorithm of all available
PubMed published abstracts. The limitation of these
methods is their inability of discovering novel interac-
tions, since the reported interactions in literature are often
used to overlap with the interactions identified from the
analysis of microarray data.

Ideally, a method for determining gene interaction net-
works would have the ability to (1) use the large amount
of prior biological knowledge available to researchers and
(2) identify novel gene interactions in a set of microarray
expression data for a specific study. The method proposed
here attempts to address these two requirements. Our
method is designed to identify small number of testable
hypotheses from a specific microarray data set and col-
lected biological observations.

In order to evaluate our method, we define the type of
gene interaction considered in this paper as follows. As
microarray experiments measure changes in gene expres-
sion, the gene interaction used here will be restricted to
what might be reasonably expected to be observed in a
microarray experiment: a change in the expression of a
regulator gene modulates the expression of a target gene.
These pairwise interactions form the gene interaction net-
work of a particular system under a particular condition.

Results

Datasets

The datasets used in this study are subsets of cell-cycle
dependent genes in the budding yeast Saccharomyces cer-
evisiae microarray experiments [22]. These microarray
experiments were designed to create a comprehensive list
of yeast genes whose transcription levels were expressed
periodically within the cell cycle. Microarrays were pre-
pared for this study by printing PCR-generated probes. In
order to study cell cycle related gene expression, the cell
cycles of yeast cultures needed to be synchronized. A sam-
ple of growth media would contain cells all in the same
stage of the cell cycle. The study used for synchronization
of the cell cycle is alpha-factor based. Alpha-factor, a sign-
aling pheromone, causes cells to undergo cell cycle arrest.
Pelleting the cells and re-suspending them in fresh media
permits normal cell cycle to continue. For the alpha-factor
experiment, the gene expressions of cell cycle synchro-
nized yeast cultures were collected over 18 time points
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taken in 7-minute intervals. This time series covers more
than two complete cycles of cell division.

Two subsets of the data were selected for our study. The
first is a subset of 102 genes that includes 10 known tran-
scription regulators and their possible regulatory targets
[23]. This set is highly enriched for known interacting
genes involved in the Saccharomyces cell cycle.

The second subset is comprised of 999 of the most cycli-
cally regulated genes in the microarray experiments. In the
analysis of a hypothesis-driven experiment, it is neither
necessary nor logical to investigate every gene in the
genome of an organism. It can be expected that the major-
ity of genes in the genome are irrelevant to the biological
phenomenon under investigation. It might be reasonable,
for example, to restrict analysis to those genes observed to
undergo statistically significant changes or genes that are
detected as being significantly expressed. As the data were
collected in an experiment to observe genes that are
instrumental to directing cell cycle activities, only those
genes identified as being cyclically expressed will be used
in our analysis. Though there is a number of methods that
have been used in the past for finding cyclic expression
patterns [24-27], the method used here most resembles
that of Filkov et al . [28]. In this, stretches of gene expres-
sion data are compared against themselves to look for
recurring patterns of expression. This was carried out
through the computation of the cyclic correlation coeffi-
cient (CCC) of a gene. See Methods section for the defini-
tion. The 999 genes with the highest CCC were selected
for analysis. The expressions of the genes were identified
to fit well with their expected phase in the mitotic cycle.
The annotations of these genes were identified to be
enriched for annotations specific to cell cycle.

Identify gene interaction pairs from the likelihood of
interaction scores and the modified Pearson correlation
coefficients

One of the goals of this study is to identify gene pairs that
are likely to interact on the basis of prior biological
knowledge. The likelihood of interaction (LOI) score is
the result of efforts to achieve this goal. Using prior infor-
mation in the PubMed database of scientific publications,
information about previously observed gene interactions
was collected and used to generate an LOI-score for a gene
pair. This score was used to determine if a gene pair is
likely a potential interaction pair or not (for details see
Methods). If the gene pair closely resembles gene interac-
tion pairs frequently observed in the literature, it is con-
sidered likely and should have a high LOI-score; if the
gene pair has little similarity to previously observed gene
interactions, their interaction is considered unlikely and
should have a negative LOI-score. LOI-scores for all possi-
ble pairs of genes from a set of query genes obtained from
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an experiment will be assigned and arranged in an LOI-
score matrix. An excel template of the program for calcu-
lating LOI-scores was made available [29].

On the other hand, a modified Pearson correlation coeffi-
cient (PCC) was used to identify the possible gene interac-
tion pairs from the microarray data. A regulation
interaction defined in this genetic network is a gene whose
change in expression levels has an effect on the subse-
quent expression of another gene. The 1-time point shift
of the putative target gene relative to the regulator gene
used here identifies this type of causal relationships in a
simplified way.

Two sets of possible gene interactions are considered sig-
nificant after the multiple hypothesis testing: one
obtained from LOI-scores and the other one obtained
from PCCs. The former set is determined by our prior bio-
logical knowledge on a given set of genes collected from
scientific literature. The latter set includes statistically sig-
nificant interactions identified from the analysis of the
microarray data from a specific hypothesis-driven experi-
ment. The overlap of these two sets forms a network of
gene interactions. These interactions in the network were
analyzed to determine how many of the previously pub-
lished interactions were identified, as well as the number
of gene interaction pairs in which both the regulator and
the target sharing at least one Biological Process (BP)
annotation as provided by the Gene Ontology (GO) Slim
Mapper [30] in Saccharomyces Genome Database. Good
gene interaction networks are expected to be enriched for
both previously published gene interactions and interac-
tion pairs that share GO BP annotations.

Results of using different thresholds g for false positive
rate (fdr) [31] for each set, denoted by LOIfdr(q ) and
PCC.fdr(q ) for LOI-scores and PCCs respectively, and
their common sets with different thresholds are presented
below.

102-gene set

The results for the 102-gene cell cycle set are summarized
in Table 1. At PCC.fdr(0.05), 1377 regulatory interaction
pairs are identified, 30 (2.3%) of which had been previ-
ously reported in an automated survey of the scientific lit-
erature, and 526 (38.2%) interaction pairs share at least
one GO BP annotation between the regulator and the tar-
get. At LOLfdr(0.05), 2,237 regulatory interaction pairs
are identified, 142 (6.3%) of which have been previously
reported, and 809 (36.2%) of the identified interaction
pairs share a GO BP annotation between the regulator and
target. Combining LOI.fdr(0.05) and PCC.fdr(0.05), the
method generates a network of 289 interaction pairs, 22
(7.6%) of which have been previously reported and 114
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(39.4%) of the identified interaction pairs share a GO BP
annotation between the regulator and target.

999-gene set

Results for the set of 999 cyclically expressed genes are
summarized in Table 2. At PCC.fdr(0.05), 5,987 regula-
tory interaction pairs are identified, 27 (0.45%) of which
had been previously reported in an automated survey of
the scientific literature, and 813 (13.6%) interaction pairs
share at least one GO BP annotation between the regula-
tor and the target. At LOLfdr(0.05), 95,222 interaction
pairs are identified, 224 (0.24%) of which have been pre-
viously reported, and 12,963 (13.6%) of the identified
interaction pairs share a GO BP annotation between the
regulator and target. The set of interaction pairs with an
LOLfdr(q ) less than 0.005 shows slight improvement
over that of LOLfdr(0.005). Combining LOIfdr(0.05)
and PCC.fdr(0.05) in the 999-gene set, the method gener-
ates a network of 757 interaction pairs, 15 (2.0%) of
which have been previously reported and 174 (23.0%) of
the identified interaction pairs share a GO BP annotation
between the regulator and target, a significant increase.

Table I: Results for the 102-gene set
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From Tables 1 and 2, it can be seen that the total number
of previously published interactions remains almost
entirely the same at different PCC.fdr(q¢ ) when the
LOLfdr(q ) stringency is fixed at any level. Increasing
LOLfdr(gq ) has the effect of reducing the total number of
predicted interactions without reducing the total number
of previously published interactions. In every case, fixing
the loosely restrictive PCC.fdr(0.1), the application of
increasingly stringent LOLfdr(q ) improves the generated
interaction network with respect to the percent of identi-
fied edges that have been previously published. This can
be explained as follows. The LOI-scores for most of the
published interactions in both sets are associated with
substantially lower P-values in comparison to those
unpublished pairs. More stringent LOLfdr(q ) can elimi-
nate those unpublished pairs with relatively higher P-val-
ues for LOI-scores without excluding published pairs. The
remaining unpublished pairs are likely to have LOI-scores
with statistically significance and therefore are likely novel
interacting pairs.

At the first impression, it seems that the 102-gene set per-
formed better than the 999-gene set. There are, however,
proportionately far fewer published interactions in the

LOI.fdr(q) PCC.fdr(q) Number of Published Same GO BP % Published % Same GO-
Edges Edges Annotation BP
Identified
A GO-simple  NoRestriction 9147 171 2418 1.9 26.6
B NoRestriction PCC(0.1) 1701 37 633 22 372
NoRestriction PCC(0.05) 1377 30 526 22 382
NoRestriction PCC(0.005) 346 12 156 35 45.1
C LOI(.1) NoRestriction 2312 142 840 6.1 36.3
LOI(0.05) NoRestriction 2237 142 809 6.3 36.2
LOI(0.005) NoRestriction 1976 136 577 6.9 292
D LOI(.1) PCC(0.1) 354 26 138 7.3 39.0
LOI(0.05) PCC(0.1) 345 26 133 7.5 38.6
LOI(0.005) PCC(0.1) 308 26 10l 84 328
E LOI(.1) PCC(0.05) 298 22 119 74 399
LOI(0.05) PCC(0.05) 289 22 114 7.6 39.4
LOI(0.005) PCC(0.05) 257 22 87 8.6 339
F LOI(.1) PCC(0.005) 69 10 32 14.5 46.4
LOI(0.05) PCC(0.005) 68 10 31 14.7 45.6
LOI(0.005) PCC(0.005) 64 10 29 15.6 453
A: GO-simple: a pair of genes is considered potentially interacting if one of their GO annotation pairs has been reported.
B: set of interactions obtained by applying only PCC thresholds;
C: set of interactions obtained by applying only LOI thresholds;
D: common set of interactions obtained by applying different LOI thresholds and a fixed PCC.fdr(0.1);
E: common set of interactions obtained by applying different LOI thresholds and a fixed PCC.fdr(0.05);
F: common set of interactions obtained by applying different LOI thresholds and a fixed PCC.fdr(0.005).
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Table 2: Results for the 999-gene set
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LOI.fdr(q) PCC.fdr(q) Number of Published Same GO BP % Published % Same GO-

Edges Edges Annotation BP
Identified

A GO-simple  NoRestriction 730688 641 60691 0.09 8.3
B NoRestriction PCC(0.1) 18350 62 2280 0.34 12.4
NoRestriction PCC(0.05) 5987 27 813 0.45 13.6
NoRestriction PCC(0.005) 931 4 144 0.43 I15.5
C LOI(0.1) NoRestriction 96742 226 13220 0.23 13.7
LOI(0.05) NoRestriction 95222 224 12963 0.24 13.6
LOI(0.005) NoRestriction 90875 202 12326 0.22 13.6
D LOI(0.1) PCC(0.1) 2196 25 468 .14 21.3
LOI(0.05) PCC(0.1) 2145 25 453 1.17 21.1
LOI(0.005) PCC(0.1) 2053 23 434 1.12 21.1
E LOI(0.1) PCC(0.05) 781 15 177 1.92 22.7
LOI(0.05) PCC(0.05) 757 15 174 1.98 23.0
LOI(0.005) PCC(0.05) 733 15 170 2.05 23.2
F LOI(0.1) PCC(0.005) 163 2 48 1.23 294
LOI(0.05) PCC(0.005) 159 2 48 1.26 30.2
LOI(0.005) PCC(0.005) 153 2 48 1.31 31.4

A: GO-simple: a pair of genes is considered potentially interacting if one of their GO annotation pairs has been reported.

B: set of interactions obtained by applying only PCC thresholds;
C: set of interactions obtained by applying only LOI thresholds;

D: common set of interactions obtained by applying different LOI thresholds and a fixed PCC.fdr(0.1);
E: common set of interactions obtained by applying different LOI thresholds and a fixed PCC.fdr(0.05);
F: common set of interactions obtained by applying different LOI thresholds and a fixed PCC.fdr(0.005).

999-gene set (0.09% of total possible interactions) than in
the 102-gene set (1.9% of total possible interactions). For
the 102-gene set, interaction set determined the thresh-
olds LOLfdr(0.05) and PCC.fdr(0.05) has 7.6% pub-
lished interactions, which is about a 4-fold increase over
the 1.9% published interactions out of all possible inter-
actions. For the 999-gene set, the interaction set deter-
mined by the thresholds LOI.fdr(0.05) and PCC.fdr(0.05)
has 2.0% published interactions, which is about a 22-fold
increase over the 0.09% published interactions out of all
possible interactions. Therefore, the result for the 999-
gene set is actually a considerable improvement over the
result for the 102-gene set. The method does a better job
of finding published interactions in a search space where
published interactions are proportionately much sparser.

Similarly, the distributions of GO BP annotations in the
102-gene and 999-gene sets have a significant effect on the
generated interaction networks. The 102-gene set was
selected to include known cell cycle regulated genes and
thus tend to be enriched for a more limited selection of
largely cell cycle related GO BP annotations. 26.4% of all
possible gene interaction pairs in the 102-gene set share a
GO BP annotation. The 999-gene set, on the other hand,

was selected solely on the observed experimental data. Of
all possible interaction pairs in the 999-gene set, there are
8.3% interaction pairs that share a GO BP annotation. A
breakdown of the numbers of shared GO BP annotations
for the identified interactions in the 999-gene set is shown
in Table 3. Though the 102-gene set appears to perform
better, identifying 39.4% (a 1.5-fold increase) interaction
pairs that share a GO BP annotation compared to the 999-
gene set with 23.0% (an almost 2.7-fold increase) at
LOIL.fdr(0.05) and PCC.fdr (0.05). Again, the method is
actually doing a better job on the larger 999-gene set for
finding matching GO BP annotation interaction pairs
from a less enriched background.

Discussion

Possible novel interactions in the identified subnetworks
In the network identified at LOLfdr(0.05) and
PCC.fdr(0.05) for the 999-gene set, 15 previously pub-
lished gene interactions were identified. The majority of
these are interactions of transcriptional regulation, specif-
ically the correct identification of transcription factors
SWI4, FKH2, and FHL1 and several of their regulatory tar-
gets [22]. Additionally however, regulatory interactions
other than simple transcription factors were found, such
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as kinase regulatory interaction mechanisms like GIN4
and KCC4 indirectly regulating expression SWE1 [32]. The
correct identification of these known interactions adds
credence to the possibility that some identified interac-
tions which are not previously reported may be novel dis-
coveries. These potential discoveries should be considered
testable hypotheses for future experimentation.

There are a number of such potentially novel discoveries
in the results from the interaction network of the 999-
gene set. Some potential transcription factor regulatory
interactions, specifically (1) FHL1 regulating DED1 and
PFK1, (2) STB1 regulating CDC9, and (3) SWI4 regulating
CDC9 all have regulation targets near appropriate tran-
scription factor binding sites, though these interactions
have not previously been characterized [33].

ASH1 can function as a part of a histone deactylase com-
plex (HDAC) and is annotated as being likely to regulate
many cell cycle related genes, though those interaction
partners are not yet known [34]. Results from this analysis
suggest that HSP150, PIL1, PIR1, PIR3, YLR049C, and
YNLO46W might be, directly or via intermediate gene
interactions, regulated by ASH1. Though it is likely that
many or most of these proposed novel interactions are
false positives, all of them are immediately amenable to
direct experimentation.

Figure 1 shows a subnetwork of interactions previously
unidentified but of potential biological interest. All his-
tone genes HHF1, HHF2, HHT1, HHT2, HTA1, HTA2,
HTB1, and HTB2 are found to 'regulate' genes HEK2,
HTZ1, SAS3, SGS1, and SIM1. The proteins encoded by

Table 3: Breakdown of the numbers of shared GO BP
annotations in the 999-gene set

Number GO ID GO-BP Annotation

71 GO:0006996 Organelle organization and
biogenesis

DNA metabolic process

Cell cycle

Protein modification
Response to stress
Anatomical structure
morphogenesis

Transcription

Meiosis

Cytoskeleton organization and
biogenesis

Pseudohyphal growth
Generation of precursor
metabolites and energy
Cytokinesis

Cell budding

Ribosome biogenesis and assembly

53 GO:0006259
40 GO:0007049
25 GO:0006464
13 GO:0006950
8 GO:0009653

7 GO:0006350
2 GO:0007126
| GO:0007010

| GO:0007124
| GO:0006091

| GO:0000910
| GO:0007114
| GO:0042254
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Figure |

In this figure, interactions identified by analysis but not previ-
ously reported are observed to have potential biological
interest. Genes and gene products are ovals, solid arrows are
identified, directed interactions, dashed lines with arrows are
more general interactions implied by this subnetwork. Purple
box identifies those proteins that physically interact to form
a functional unit. In this figure, cell cycle-regulated transcrip-
tion factors (yellow) and protein kinase KCC4 concurrently
regulates HSLI and MNNI. MNN| subsequently regulates
PMT1-5. KCC4 and HSLI (orange) are genes that associate
with morphogenesis, septin checkpoints, and bud neck [32,
38-40]. MNNI and PMT -5 [green] are mannosyltrans-
ferases [41, 42]. These seemingly unrelated groups of genes
and functions are united by the observation of Gladfelter, et
al. [43] that the cell wall at the base of the bud is derived
from mannose-rich glycoproteins that are delivered through
the secretory pathway, and they suggest that septins target
secretory vesicles to the base of the bud. Thus, the sub net-
work identified here uniting cell cycle-regulating transcription
factors with bud neck and septin checkpoint and mannosyl-
transferases, though not explicitly previously identified, is
consistent with previous biological observations.

these histone genes are known to form large complexes
that bind genomic DNA into chromatin. Though it is
unlikely that the histones directly regulate other genes, it
may be reasonable to speculate that the histone complex
are working together as a functional unit to interact with
genes that control genome stability, chromosome pack-
ing, and cell-cycle specific DNA replication, making genes
physically available to subsequent transcription.

In Figure 2, another set of unreported, but biologically
interesting interactions identified by this method is pre-
sented. In this subnetwork, cell cycle related regulatory
elements are determined to regulate the expression of two
sets of genes: one is annotated to be associated with bud
neck and septin checkpoint, and the other is annotated as
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mannosyltransferases. These two sets of genes and func-
tions are united by the fact that the cell wall at the bud
neck of the dividing yeast cell is derived from mannose-
rich glycoproteins. Thus, this method correctly identifies a
causal relationship between the regulation of genes that
direct the yeast bud neck and the mannosyltransferase
complexes that are needed to modify the proteins present
at the bud neck.

Novelty of the proposed method

The proposed method is robust. We tested the predictive
ability of LOI-scores by removing 171 published interac-
tions in the 102-gene set from the initial set of published
4,129 interacting pairs that was used for the calculation of
LOI-scores for GO annotations. A similar predictive abil-
ity of LOI-scores for the 102-gene set was confirmed
(results not shown). Our method has a number of advan-
tages over other methods for determining genetic net-
works. Through the LOI-scores, gene interaction pairs that
have not been previously identified can be uncovered
bounded by biological expectation. A gene interaction
pair need not have been previously observed, but only "be
similar" in their GO MF annotation to previously
observed interaction pairs.

Although a g level of 0.05 was used to identify interac-
tions here, from Tables 1 and 2 it can be seen that at
higher stringencies, superior networks with regard to per-
cent of previously published and percent of interactions
sharing a GO-BP annotation can be found. By adjusting
the stringency of g, this method can generate smaller net-
works that are more likely to contain biologically signifi-
cant interactions. Also the method can be adjusted to give
greater weight to the LOI-scores or the PCCs, depending
on a researcher's interest or nature of the data for analysis.
Given a dataset of high quality or in a well-characterized
system, the PCCs might prove most informative. In a
largely unknown system or when the quality of the exper-
imental data is poor, the LOI-score might be given greater
weight. It was demonstrated that the addition of biologi-
cal information improves the results. This makes this tool
appropriate for hypothesis driven analysis of microarray
data as the researcher can refine queries of the network by
shaping the possibilities with biologically relevant con-
straints.

The method proposed here is also computationally inex-
pensive and could easily be scaled up to accommodate
much larger datasets, while more mathematically inten-
sive procedures require large amounts of processing time.
Alternatively, the method here might be used as an effi-
cient pre-screening of data, limiting the dataset to a
smaller set with highly expected biological relevance
before the data is given over to the analysis by more math-
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Septin
Checkpoint and
Budding

Figure 2

In this figure, interactions identified by analysis but not previ-
ously reported are observed to have potential biological
interest. Genes and their coded proteins are ovals, arrows
are identified, directed interactions, and the purple box
includes those proteins that comprise histone complexes. All
histone genes are identified to concurrently regulate other
genes, correctly identifying HTA2, HTAI, HTBI, HTB2,
HHT I, and HHFI as a single functional unit. All regulated
genes are associated with DNA-interacting proteins, which
are logical functional partners to histone complexes. Regu-
lated genes are: HEK?2, associated with the regulation of tel-
omeres [44, 45]; HTZI, concerned with transcriptional
regulation through heterochromatin structure [46]; SAS3, a
cell cycle related histone acetyltransferase that is involved in
transcriptional regulation [47]; SGSI, involved in mainte-
nance of genome integrity and regulates chromosome synap-
sis and meiotic crossing over [48, 49]; SIMI, a cell cycle-
regulated DNA replication gene [50]; ALK, a cell cyle-regu-
lated protein kinase involved with the response to DNA
damage [51]; FPR4, a nuclear protein with GO annotations
that include chromatin and histone associations [52-54]; and
YPL141C, an unknown protein. The presence of YPLI41C
here however, suggests that its function may be related to
chromatin structure, or cell cycle regulation.

ematically advanced methodologies, e.g. the Bayesian net-
work approach.

Choice of GO MF annotations

There are over two hundred thousand specific annota-
tions in the GO ontology to choose from. However, the
number of yeast genes at a particular annotation is an
important factor in the appropriateness of the specific
annotations used in this study. There must be a sufficient
number of genes of a given annotation for useful statisti-
cal interpretation. If annotations are too general, resulting
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LOI scores would lack the ability to discriminate against
large numbers of possible interaction pairs. Annotations
that are too specific will apply only to a handful of genes
and not have the ability to identify potentially novel inter-
actions. The 23 SGD GO Slim MF annotations [30], not
including the 'molecular function unknown', range in GO
annotation level from second to ninth and contain
between about less than 1% to about 12% of the yeast
genome used here. Lower level GO MF terms do not nec-
essarily include larger proportions of the genome. For
example, it is observed for 'translation regulator activity'
which is at level two and includes 1% of yeast genes, and
'lyase activity' which is at level three and includes 1.5% of
genes (Table S1) [See additional file 1].

Therefore, these 23 annotations, which account a small
percent of the entire GO annotations, are useful for the
summarization of GO annotations at a genomic level
when a broad classification of gene product function is
required. Though the 23 annotations selected by the cura-
tors of the SGD may not be optimized for use in LOI-
scores, these pre-selected annotations are an excellent
place to begin with for the demonstration of the proposed
method.

The use of modified PCC

In this paper, the Pearson correlation coefficient was com-
puted after applying the alignment based on a 1-time
point shift of the gene expression of profile of a target to
that of the corresponding regulator. Although this treat-
ment is a simplification of the potential range of possible
regulatory mechanisms, it was used to demonstrate that
the LOI-method can improve on methods that use only
expression data. This may result in underestimation of the
performance of our proposed method when considering
the common set of predicted interactions from both LOI-
scores and PPC. More sophisticated alignment methods
for the alignment of temporal profiles [35,36] may pro-
vide a better set of predicted interactions.

Our framework for computing LOI-scores is general. LOI-
scores need not to be limited to either previously pub-
lished interactions for an initial starting condition or GO
MF for annotation of gene products. Any current large
database of gene interactions could be used as the basis
for LOI-score calculations and any appropriate gene prod-
uct annotations could be used. The possibilities are lim-
ited only by the availability of data and ways that the most
appropriate datasets and annotations can be applied to
specific biological problems. It is useful to note that the
single-celled yeast has a genome that contains around
6,000 genes. More complex, multicellular organisms like
humans with around 30,000 genes will posses far more
possible interactions and it is likely that finer grained
annotations than those used for yeast will be necessary.

http://www.biomedcentral.com/1471-2105/8/317

Conclusion

We have proposed a method for generating new hypothe-
ses from microarray data from a single microarray experi-
ment using reported literature in PubMed. The likelihood
of interaction for each pair of GO annotations of Molecu-
lar Function selected by the Saccharomyces Genome Data-
base (SGD) GO Slim Mapper has been derived from the
statistical analysis involved in the reported gene interac-
tion pairs in literature. Combined with the analysis of cor-
relation of microarray expression profiles, it has been
demonstrated that the method can uncover existing and
novel gene interactions in the analysis of the Saccharomy-
ces cerevisiae cell cycle microarray data. The LOI-scores
can be also used as a screen for possible gene interacting
pairs. The output from this simple screening can be used
as the input for other computationally intensive proce-
dures, e.g. Bayesian network for inferring the gene net-
works.

Methods

PathwayAssist literature searching tool

There are many repositories of biological data available to
researchers. For this study, the body of published, peer-
reviewed literature in PubMed has been selected. This
body of evidence, often derived from detailed studies of a
handful of biological interactions is likely of higher qual-
ity than massive, false-positive prone screenings. Pathwa-
yAssist 3.0 analysis software by Ariadne Genomics [21]
has been selected to take advantage of the data available
in the published literature. PathwayAssist is a bioinfor-
matics tool that identifies possible interactions between
gene products through a natural language search algo-
rithm of all available PubMed published abstracts. Given
an input set of query genes or gene products, PathwayAs-
sist searches the database of published abstracts, seeking
instances in which genes are identified as interacting
according to the information found in available PubMed
abstracts. The nature of interactions ('expression’, 'regula-
tion', 'genetic interaction', 'binding', 'protein modifica-
tion', and 'chemical modification' as defined in that
software package) can be used to screen for specific types
of interactions. The software returns the set of interactions
with the PubMed references from which those interac-
tions were identified. In this study, interaction types
‘expression’, 'regulation’ and 'protein modification' were
used for the extraction of the published interactions. By
the definitions from PathwayAssist, 'Expression' is most
likely to include interactions that affect gene expression
levels, though it is populated largely by transcription fac-
tor regulators. 'Regulation' contains a mix of regulation of
enzyme activity and regulation of gene expression. 'Pro-
tein modification' contains many specific examples of
gene regulation through the activation or modification of
regulatory proteins. No single interaction type specified
by Pathway Assist can be expected to represent all relevant
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interactions that result in a measurable change in relative
expression levels.

Gene Ontology annotation

Not only is it necessary to acquire a large database of pre-
viously observed gene interactions, it is also necessary to
be able to associate some biological knowledge on the
gene products themselves. To impose biological knowl-
edge on the set of gene products analyzed, annotation
descriptions from the Gene Ontology (GO) were used.
The GO annotation, maintained by the Gene Ontology
Consortium [37] under the Open Biomedical Ontologies
(OBO), is a structured, controlled vocabulary for describ-
ing gene products with regard to their biological process,
molecular function, and cellular component.

Table 4: The 23 GO MF annotations used in the proposed
method

GOID GO MF Annotation
GO:0003674 Molecular function unknown
GO:0016740 Transferase activity
GO:0016787 Hydrolase activity
GO:0030528 Transcription regulator activity
GO:0005198 Structural molecule activity
GO:0005215 Transporter activity
GO:0005515 Protein binding

GO:0003677 DNA binding

GO:0003723 RNA binding

GO:0016491 Oxidoreductase activity
GO:0030234 Enzyme regulator activity
GO:0004672 Protein kinase activity
GO:0006874 Ligase activity

GO:0008233 Peptidase activity
GO:0016779 Nucleotidyltransferase activity
GO:0004871 Signal transducer activity
GO:0004386 Helicase activity

GO:0006874 Ligase activity

GO:0045182 Translation regulator activity
GO:0016853 Isomerase activity
GO:0004721 Phosphoprotein phosphatase activity
GO:0003774 Moter activity

Other Other

Molecular function unknown (GO: 0003674) from the GO slim
annotation terms was included in the set of annotations for the
calculation of LOI scores. In the yeast genome, there are nearly two
thousand genes (about one third of the genome) that have the
annotation 'molecular function' according to the SGD. From the set
of interactions identified by 'Pathway Studio', nearly 15% involve a
target or regulator of the annotation 'molecular function unknown'.
Although a gene product's annotation may not yet characterized, it
still can participate in biologically meaningful interactions for the
analysis of microarray data. The consideration of the frequency at
which a gene with undermined function is involved in an interacting
partner with known annotations allows the LOI-method for the
potential identification of useful biological interactions even when the
function of one of the genes remains unknown. Ideally, as biological
information of an organism's entire set of expressed proteins
becomes known, the necessity of including an annotation of
unknown molecular function will vanish.

http://www.biomedcentral.com/1471-2105/8/317

GO annotation is an appealing resource for identifying
biological information associated with a given gene prod-
uct for use in automated analysis because its rigorously
controlled vocabulary makes it applicable to computer-
based searches. In this study, GO Molecular Function
(MF) annotation is primarily used to impose biological
knowledge on genes in the study set. MF annotation, a
description of a gene product's biochemical activities, is
the least ambiguous annotation and likely the most useful
descriptor for how a gene product can physically interact
with other gene products. MF annotation can also be esti-
mated from sequence data, making it the most appropri-
ate definition to describe gene products not well
characterized by experimental data. A relatively non-spe-
cific MF annotation was selected for use in this analysis. In
contrary, Biological Process (BP) annotation is more sub-
jective and might actually inhibit the ability to identify
novel interactions. An annotation of a given BP should
not preclude the possibility that the gene product can act
in other, as yet uncharacterized biological processes. Cel-
lular Component GO annotations, though possibly can
be well estimated from sequence data, is not likely to
describe gene products in a way that is appropriate to their
interactions with other gene products. Therefore, BP
annotation was used for validation of biological plausibil-
ity of the identified interactions in our study.

The GO Slim Mapper [30] in Saccharomyces Genome
Database (SGD) was used to extract 23 GO MF annota-
tions with broad descriptions of molecular functions. This
set of specific annotations was selected by the curators of
the SGD at the Department of Genetics of the School of
Medicine, Stanford University. The 23 GO MF annota-
tions are listed in Table 4.

Identify "true" interactions

Yeast cell cycle microarray data has the advantage of being
a well-studied biological phenomenon and is also one of
the key datasets from which many studies of gene interac-
tion network draw.

In order to test the accuracy of the method proposed here,
it is necessary to have some expectations as to the true
gene interaction network. However, the 'true' gene net-
work is not known and depends upon the chosen defini-
tion of gene interaction. For this study, the ‘true'
interactions were derived from the database of Pathwa-
yAssist by submitting the list of genes and querying for
instances of published interactions between these genes
limited to interaction types 'expression' and 'regulation’. It
should be noted that this is not a so-called 'golden stand-
ard' set for a true evaluation of the learning outcome. Nev-
ertheless, this list of previously published gene interaction
pairs can be reasonably considered to be 'true' gene inter-
actions in this dataset. One hundred seventy one and 729
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GO Molecular Function annotation

http://www.biomedcentral.com/1471-2105/8/317

A B ¢ D E F H I J K L M N O P @ R 8 T U V W
A Molecular function unknown 6|1 504 1 4 3 2 Bl 1
B Transferase activity 10 | 60|12 | 38| 3 2010 |M4 3 (6 |[ae| 1 1|29 3 1
C Hydrolase activity a |11 2 51 a 1 6 9 1 9 8 1 2 £
D Transcription regulator activity 395 | 247 | 246 | 214 | 67 | 212|158 [ 143 | 88 | 163 | 105 | 66 | 62 | 34 | 10 [ 34 | 12 |38 |18 [ 16 | 9 |13 | 41
E Structural molecule activity 1 2
F Transporter activity 2|1 3 1 2 1
G Protein binding B2 |1 f1e| 3|21 |2]6|3[1B]1w0]3]3 41|86 |1]5 1] 3
H DNA binding 245|164 | 176 | 146 | 44 [122| 102 | 37 |64 [ 79 [ 71 |43 |37 | 23| 9 |23 | 9 |w |12 13| 8 [11]|25
I RMA binding 2 2 2 1
J Oxidoreductase activity 1 1 1
K Enzyme regulator activity 1 6 [ 3 ]10 315 0|5 1 [ 1 1
L Protein kinase activity 4 |50 [10[24 ) 2|28 |13 15 | 43 1 24 3
M Ligase activity 1 1 1 1
N Peptidase activity 1 1 1 1 1
0 Nucleotidyltransferase activity 1 2 1 1
P Signal transclucer activity 4|39 (1219|465 |16 3|5 [0|2w]|3 1| 27 11|12 3
Q Helicase activity 1 1 1 4 1 2
R Lyase activity 3 2
S Translation regulator activity 1
T Isomerase activity 1 2 1
U Phosphoprotein phosphatase activity [ 3 5
V' Motor activity 2 a
W Other 3 1 1

Figure 3

Numbers of pairs of GO MF annotations counted in the reported interactions. 2,457 yeast genes used to identify
4,192 directed gene interaction pairs by PathwayAssist. The set of 2,457 yeast genes was annotated with one of 23 GO molec-
ular function annotation. This yielded 5,014 annotated interaction pairs.

previously published gene interactions were identified
respectively in the 102-gene set and in the set of 999 cycli-
cally expressed genes.

Generate LOI-scores for gene annotations

Two thousand four hundred and fifty seven yeast genes
were selected from the Saccharomyces cerevisiae database
of PathwayAssist 3.0 and used to identify 4,192 directed
gene interaction pairs of interaction types "Expression",
"Regulation”, and "Protein Modification" as defined in
that software package. These gene interactions are sug-
gested by 4,446 observed facts from the automated litera-
ture search. The same set of 2,457 yeast genes was
annotated with one of the 23 GO MF annotations by the
SGD GO Slim Mapper [30].

Using the 4,192 interacting gene pairs, the GO MF anno-
tations of the regulator and the target genes were consid-
ered. Five thousand and fourteen pairs of a regulator of
one annotation modulating the expression of an anno-
tated target were observed. Due to the fact that some gene
products have multiple GO annotations, this exceeds the
4,192 interaction pairs in the dataset. The number of
times a specific GO annotation is observed to modulate
the expression of another specific GO annotation was
counted (Figure 3). For example, of the 5,014 pairs of
interactions, 163 instances were observed for regulators of
the annotation 'transcription regulator activity' regulating
genes of the annotation 'oxidoreductase activity'.

The distribution of GO annotations in the table of gene
interaction pair is heterogeneous, dependent on both the
number of observations of gene interactions and the fre-
quency of GO annotations in the gene interactions. From
this table of observations, it is necessary to determine if
pairs of GO annotations found in gene interactions at a
frequency is greater than random, given the distribution
of those GO annotations in the observed data. To address
this question, the following procedure was used to calcu-
late the distribution of LOI-scores for pairs of GO annota-
tions for randomly generated interaction pairs. At each
iteration, 4,192 gene pairs were drawn from the set of
published gene interactions with a randomly selected
gene for the regulator and randomly selected gene for the
target. For each permutation, the calculated number of
times a specific GO annotation regulated the expression
of another specific GO annotation was recorded. An aver-
age and standard deviation for randomly observed GO
pairs were generated from all 10,000 iterations. An LOI-
score for each GO annotation pair was generated as a Z-
score:

LOIij = (Oij - Xij )/Sij ’

where LOI;; is the Z-score for interaction GO molecular
function annotation pair GO; and GO, Oj; is the number
of times that genes of annotations GO; and GO; were
observed in regulator to target relationships in the litera-
ture-derived dataset. X;; and §;; are the average number of
times and standard deviation respectively from the proce-
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dure for interaction pair of annotations GO;and GO;. The ~ CCC = MAX { PEARSON ((X ;,...X ), (X 1, X 5)) }; ¢
LOI-scores calculated from the above procedure are =9,8,7,6,

shown in Figure 4. A negative LOJ;;-score indicates that a

particular GO-annotation pair occurs less frequently than ~ where PEARSON is the Pearson correlation coefficient
expected by random chance. A positive LOI-score indi-  between two sets of values, X ;is a gene's expression at
cates an interaction between GO annotations occurs more  time i, t is the size of window for comparing one length
frequently than expected at random. A score near zero  of gene expression values with another. Windows of size
indicates that the frequency occurs at a level near that 9, 8, 7, and 6 were used for this analysis. Windows of these
expected by random. As a general estimation of the utility ~ sizes should be suitable for finding cyclic patterns in 18
of the information encoded in this figure, it is observed  time points with more than two, but less than three com-
that the GO annotations for a pair of 'transcription regu-  plete cycles measured.

lator activity' and 'DNA binding activity' have the highest

LOI-scores, as would be reasonably expected for genes = The modified Pearson correlation coefficient (PCC)

annotated as regulators of expression. The modified Pearson correlation coefficient is defined
based on one time shift. For each pair of regulator profile
Generate LOIl-scores for gene interactions X and target profile Y, the coefficient is defined as

The table of calculated LOI-scores for GO annotation

pairs was used to generate a matrix of LOI-scores for all PCC = PEARSON((X ; . X 5,...X,, 1), (Y, Y5,..Y )
possible gene interaction pairs in the subsets of the yeast

cell cycle microarray data. The 23 annotations described =~ where n is the number of time points.

previously were applied to the genes in the subsets. For a

possible interaction pair between two genes, their annota-  Assign P-values to LOI-scores and PCCs
tions were used for the assignment of a LOI-score for the  In order to determine the statistically significant gene
likelihood of that interaction from the previously calcu-  interaction pairs, P-values need to be assigned to LOI-

lated table of LOI-scores. If a gene possessed multiple  scores of gene interaction pairs and PCCs. The P-values for
annotations, then a LOI-score was averaged between all =~ LOI-scores were assigned based on the assumptions that
possible pairs of annotations for a given potential interac-  the LOI-score for a pair of interaction is normally distrib-

tion pair. uted (Figure S1- Figure S3) [see additional file 2].
Calculate cyclic correlation coefficients To obtain P -values for PCCs , the following steps were
The cyclic correlation coefficient (CCC) is defined as fol-  performed.

lows.

‘GO Molecular Function annotation

A B ¢ D E F G H | J K L M N O P Q@ R 8 T U V W
A Molecular function unknown 25| 57|36 10 [-18]-28|-36|-83[-25]|16] -3 [41[-21]) 16| 1 [-37[12]| 18|11 [13[13]) 12|17
B Transferase activity 391 4 23|-86|-11|-34|-23|-15|-27|-24|0982(676|-1.7|-11]| 02 |347|-12|-19]|-12|-14|081|-04|-18
€ Hydrolase activity 3.7|-26]-34|-85(013|-29|-21|-61-21|-26]-25| 1 18|-14]|-09|-06 (005|002 -1 |34 |11 1 1%
D Transcription regulator activity 9.66 U.UB-EU'\ 308|-24 [306|741)|601|369| 12 [3.31]|8.76
E Structural molecule activity 22| -25[-19| 43 |006| 16| -18]-36(-11|-13|14|-18|-08|-07|-04]-16|-05|192|05]-05|-05|-05]-07
F Transporter activity 38|38 |33 (-7 1 | 1527 |85 (1822|217 -3 14|07 (-27|-08 (13| 08(-09|-09(-08[-12
G Protein binding 169|005 07 |-61|-02]|0%4-03|-36(091|-13]211(-03]|018|105|-08|-1.6(015/274|022(365| -1 | 01077
H DMA binding -942-,73 uw-szr ,52-023 001820651407 | -1.9 | 304|717 | 494 | 41 | 208[4.19] 663
I RMA binding 25| 27|21 |-a9|081|a8| 001|392 a5[03] 2 | 4 |08]|05]-17]132|08|-05|-06|-06]|-06]|-08
J Oxidoreductase activity 32|33 27 |-6a|13-22|-21|49|a5]|19| -2 |-2a|13].09]|06|-22|-07|-01]-07|-08]-07|07] -1
K Enzyme regulator activity 3|9 -18]-51| 1523|1644 |18 19 |267]-07 13| -1 |0o7|024|-07 10|07 |-08|-08|062|-02
L Protein kinase activity 232|685 07 |-52|-08|-22]|-15|47|-19]-25 304- 16| 0406|563 09 14| 09| 1 |198]09]13
M Ligase activity i|a7|a2| 4 |09|a4]| 1 |29 a [a2]a3|6|-08|08|04|-14|-04|07|04]|-05|-05[-04]|07
N Peptidase activity A |47[-13]-27|079|11]05]-25(-07|-08| -1 |-13]-08)|-05[-03]-11|-03]129]03|-04]|-04(-04]-05
0 Nucleotidyltransferase activity -01|075| 09| -2 |-04|-07|-08|-16|-05|-06[-07(-08|216|.03 |465|-07(-02|-04(-02|-03|-02(-02]-03
P Signal transclucer activity 009|605\ 068 |-44 (097 03|-13|-32| -0 |015| 2 |687|076|-11|065|798|-08|-04|055|021(147|-08|128
Q Helicase activity 03|12(005(-18|-05|-08[09(029|-06|-07([07(-09|-04|(-03[02|-08|376|-04(02|(681|-02(-03|-04
R Lyase activity A8 A8[15 (2707 A2[15(-22|-08 -1 [02(-14|-07|-05[04-12|-04|-06(04|-.04|-04|-04[086
S Translation regulator activity A4 A2(00(AT7 (080800180507 (07(-08|.04(.04(02(.08|.02(.03(02(.03(-03(.02[04
T Isomerase activity 08| A4 A1 AE|08 (09[40 A6 |06 0808 1 |08 (04(02(.00(.03(.04(03(.03(.03(.03[04
U Phosphoprotein phosphatase activity | -1 [313] .11 |-24 .05 .09 -1 |.19|.06|.07|.08|523|-05|.04 (.02 |492|.03(.04].03].03.03].03.04
V Motor activity 0 (4411|232 |.06[09] -1 |19|.06]07 163 4 |.085]|.04].02|-00|.03].04]|.03|-03|.03 04
W Other 0O (4416|3308 13]|.14|26(.08]41].11[-07(.07]-.05|.03|-04/.04|.06]|.04]|.05|.04|.04]|.08

Figure 4
Likelihood of interaction for a pair of GO MF annotations.
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1) PCCs were obtained for the observed gene expression
profiles.

2)Forb =1,...,B, where B is a prescribed number.

a. Generate a random data set by permuting the gene
expression values over time points.

b. Calculate PCC% for each pair of gene expression pro-

files in the random set.

3) Calculate the empirical P -value for each PCC;:

B
> 1(pcct; > PCCy)
P - value = £=1 ,
B
where I () is an indicator function which is defined as 1

if the condition inside the parenthesis is true, 0 otherwise.

Multiple hypothesis testing

The procedure of Benjamini and Hochberg [31] was used
for multiple hypothesis testing for both LOI-scores and
PCCs. The steps are summarized as follows:

1. Specify a false discovery rate (fdr) g .
2. Sort the list of P -values in increasing order.

3. Find index y, where P-values less than index y, is con-
sidered significant:

Yo =max{y:p, < %,y =1,..,m}

where m is the total number of hypotheses.
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Additional material

Additional file 1

Distribution of number of annotated genes. The data provides the distri-
bution of numbers of annotated genes distribution of at the selected 23 GO
MEF annotations by GO Slim Mapper.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-317-S1.doc]

http://www.biomedcentral.com/1471-2105/8/317

Additional file 2

Examples of histograms of GO MF annotation pairs. The figures provide
evidences that GO annotation pairs follow normal distribution.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-317-S2.doc]
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