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Impaired skeletal muscle fatty acid oxidation has been suggested
to contribute to insulin resistance and glucose intolerance. How-
ever, increasing muscle fatty acid oxidation may cause a reciprocal
decrease in glucose oxidation, which might impair insulin sensi-
tivity and glucose tolerance. We therefore investigated what effect
inhibition of mitochondrial fatty acid uptake has on whole-body
glucose tolerance and insulin sensitivity in obese insulin-resistant
mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat)
for 12 weeks to develop insulin resistance. Subsequent treatment
of mice for 4 weeks with the carnitine palmitoyltransferase-1
inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved
whole-body glucose tolerance and insulin sensitivity. Exercise
capacity was increased in oxfenicine-treated mice, which was
accompanied by an increased respiratory exchange ratio. In the
gastrocnemius muscle, oxfenicine increased pyruvate dehydroge-
nase activity, membrane GLUT4 content, and insulin-stimulated
Akt phosphorylation. Intramyocellular levels of lipid intermediates,
including ceramide, long-chain acyl CoA, and diacylglycerol, were
also decreased. Our results demonstrate that inhibition of mito-
chondrial fatty acid uptake improves insulin sensitivity in diet-
induced obese mice. This is associated with increased carbohydrate
utilization and improved insulin signaling in the skeletal muscle,
suggestive of an operating Randle Cycle in muscle. Diabetes
62:711–720, 2013

O
besity is a major problem in Western society,
with 10% of the population being overweight or
obese (1). It imposes health risks on individu-
als, including insulin resistance and type 2 di-

abetes, leading to an increased risk for hypertension,
dyslipidemia, and cardiovascular diseases such as heart
failure (2).

Insulin resistance occurs when there is an inability of
the body to take up and use glucose as a source of energy
upon insulin stimulation. Insulin resistance affects a num-
ber of tissues, including liver, skeletal muscle, pancreas,
adipose tissue, and the heart. Skeletal muscle accounts
for more than 70% of whole-body glucose utilization (3)
and is therefore the most important organ system con-
trolling blood glucose levels and overall insulin sensitivity.
Thus, any therapeutic approach that can improve the

responsiveness to insulin in skeletal muscle may be benefi-
cial to whole-body insulin sensitivity and glucose tolerance.

Insulin resistance in skeletal muscle is accompanied by
an imbalance between fatty acid uptake and fatty acid
b-oxidation (4,5). Excess intracellular accumulation of
fatty acids and their metabolites has been implicated as
a key mediator of insulin resistance. These metabolites
include diacylglycerol (DAG) (6), ceramide (7,8), and long-
chain acyl CoA (9), all of which have been shown to be
elevated in obesity and/or diabetes. Indeed, one thera-
peutic approach for treatment of insulin resistance is to
increase fatty acid oxidation, thereby decreasing the levels
of these metabolites. Furthermore, genetic and pharmaco-
logical manipulation of certain fatty acid oxidation–related
genes to promote fatty acid oxidation has been shown to
improve insulin sensitivity (10–12).

Although increasing fatty acid oxidation may alleviate
insulin resistance via decreasing lipid metabolites, other
evidence suggests that increasing fatty acid oxidation may
not be beneficial for the treatment of insulin resistance in
obese and diabetic individuals. First, fatty acid oxidation
rates have been shown to be increased in obesity and di-
abetes (13,14). Second, increased fatty acid oxidation is
also associated with an increase in incomplete fatty acid
oxidation (15,16), which has been shown to promote in-
sulin resistance. Furthermore, increasing fatty acid oxi-
dation may also potentially decrease the oxidation of
glucose in muscle due to the reciprocal relationship be-
tween fatty acid and glucose oxidation, termed the Randle
Cycle (17). The Randle Cycle was first demonstrated in the
isolated heart and in diaphragm strips. However, its op-
eration in muscle still remains controversial (18).

Carnitine palmitoyltransferase-1 (CPT-1) is an important
enzyme involved in the regulation of mitochondrial fatty
acid oxidation. CPT-1 catalyzes the conversion of cyto-
plasmic long-chain acyl CoA to acylcarnitine, which then
enters into the mitochondria for fatty acid b-oxidation.
This enzyme is located on the outer mitochondrial mem-
brane and is the rate-limiting enzyme for mitochondrial
fatty acid uptake (19–21). Although genetic knockouts of
the liver (22) and the muscle (23) isoforms of CPT-1 have
been shown to be embryonically lethal, pharmacological
inhibition of CPT-1 has been shown to effectively reduce
fatty acid oxidation (16,24).

Oxfenicine (4-hydroxy-L-glycine) is an inhibitor of fatty
acid oxidation that acts by inhibiting CPT-1. Transamination
of oxfenicine to its metabolite, 4-hydroxyphenylglyoxylate,
is required for its pharmacological actions (24). Heart mi-
tochondrial CPT-1 is more sensitive to oxfenicine and
4-hydroxyphenylglyoxylate inhibition than the liver isoform
of CPT-1 (25). Because the muscle isoform of CPT-1 is the
predominant isoform in the heart and skeletal muscle (26),
administration of oxfenicine in vivo would preferentially
inhibit fatty acid oxidation in skeletal muscles.
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In this study, we sought to determine whether decreas-
ing rather than increasing fatty acid oxidation in skeletal
muscle may alleviate whole-body insulin resistance. We
hypothesized that the pharmacological inhibition of CPT-1
would decrease fatty acid oxidation while increasing
glucose oxidation via a Randle Cycle mechanism in skeletal
muscle. We also investigated whether this decrease in fatty
acid oxidation is accompanied by an improvement in insulin
sensitivity.

RESEARCH DESIGN AND METHODS

Animal handling. All studies were approved by the University of Alberta
Health Sciences Animal Policy and Welfare Committee and conformed to the
guidelines of the Canadian Council on Animal Care. Male C57/BL6 mice (12
weeks old; 20–25 g) were randomly assigned to a low-fat diet (LFD) of 13%
calories from fat (4% fat by weight) or a high-fat diet (HFD) of 60% calories
from fat (Research Diets Inc.) and fed the respective diet for 12 weeks. Mice
were housed one per cage in a temperature-controlled room and maintained
on a 12/12-h light–dark cycle. Mice had ad libitum access to food and water.
Body weights and food intake were measured at the same time each day.

At the end of 12 weeks, animals were injected daily with the CPT-1 inhibitor,
oxfenicine (150 mg/kg i.p.) suspended in 13 PBS, or vehicle control for 4
weeks. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were
performed after 2 weeks of oxfenicine treatment. Mice were fasted for 16 h
and given an intraperitoneal glucose injection at a dose of 2 g/kg body weight.
Blood glucose was measured with Accu Check Advantage system (Roche) at
15-min intervals for 90 min. Forty eight hours after the GTT, mice were fasted
for 16 h and given an intraperitoneal insulin injection at a dose of 0.3 units/kg
body weight. Blood glucose was measured with Accu Check Advantage sys-
tem at 15-min intervals for 90 min.
Whole-body in vivo metabolic assessment. In vivo metabolic assessment via
indirect calorimetry was performed using the Oxymax CLAMS (Columbus
Instruments). Animals were initially acclimatized in the system for 24 h, and the
subsequent 24-h period was used for data collection.
Exercise capacity testing. Exercise capacity was performed by running
animals on a calibrated, motor-driven treadmill (Columbus Instruments) at
a speed of 3 m/min for 1 min, followed by increasing speeds of 4 m/min for 1 min,
5 m/min for 1 min, 6 m/min for 3 min, 8 m/min for 14 min, 9 m/min for 10 min, 10
m/min for 7 min, 12 m/min for 7 min, and 14 m/min until exhaustion. The first 6
min were used as an acclimatization period for the animals. Exhaustion was
determined as the animal spending .10 consecutive seconds on the shock grid.
Tissue handling. At the end of the 4-week treatment protocol, animals were
killed via an intraperitoneal injection of sodium pentobarbital (12 mg) in the fed
state in the middle of the dark cycle. Tissues were excised and immediately
frozen in liquid nitrogen.
Determination of intramyocellular lipid intermediates. Short-chain CoA
esters were determined in 6% perchloric acid extracts from frozen tissues, as
described previously (27). Long-chain acyl CoA esters were analyzed with
high-performance liquid chromatography, as described previously (28). Tri-
acylglycerol (TAG) was extracted from tissue according to the method of
Folch (29). Tissue diacylglycerol (DAG) and ceramides were determined using
an assay previously described (7,30).
Determination of mitochondrial enzyme activities. Citrate synthase activity
was measured in tissue homogenates by monitoring the rate of reduction of
5,59-dithio-bis(2-nitrobenzoic acid) at 412 nm. Activity of b-hydroxyacyl CoA
dehydrogenate (b-HAD) was measured in tissue homogenates by monitoring the
rate of disappearance of NADH. Pyruvate dehydrogenase (PDH) complex ac-
tivity was determined using a modification of the radioisotope-coupled enzyme
assay described previously (31,32).
Membrane fractionation and immunoblot analysis. Frozen powdered tis-
sue was homogenized using a Polytron homogenizer for 30 s at 4°C in ho-
mogenization buffer containing 50 mmol/L Tris HCl (pH 8), 1 mmol/L EDTA,
10% (w/v) glycerol, 0.02% Brij-35, phosphatase inhibitors I and II (1:100),
protease inhibitor (1:1000), and 1 mmol/L dithiothreitol. After centrifugation at
10,000g for 20 min at 4°C, protein content was measured using the Bradford
protein assay.

In experiments where detection of membrane contents of proteins was
required, powdered tissues were homogenized and subfractionated by dif-
ferential centrifugation using a commercially available protein extraction kit
(Calbiochem). To determine the expression of enzyme proteins, homogenates
underwent SDS-PAGE. After gel electrophoresis, the fractionated proteins were
transferred to a nitrocellulose membrane using a wet transfer method. The
transfer buffer contained 25 mmol/L Tris, 192 mmol/L glycine, and 20% (v/v)
methanol. Membranes were blocked with 10% (w/v) skim milk powder in Tris-
buffered saline with 0.05% Tween 20 for 1 h at room temperature.

For immunoblotting, membranes were incubated with an appropriate
amount of monoclonal or polyclonal antibodies against the protein of interest at
4°C overnight. Membranes were washed three times with Tris-buffered saline
with 0.05% Tween 20, then probed with a horseradish peroxidase-conjugated
secondary antibody. Membranes were then washed with Tris-buffered saline
with 0.05% Tween 20. Target proteins were visualized using an ECL Western
blotting kit (PerkinElmer Inc, Waltham, MA).
Statistical analysis. All data are presented as the mean6 SEM. Student t test
was used to evaluate the statistical significance of differences among the HFD
mice administered vehicle (HF+vehicle) and those that received oxfenicine
(HF+oxfenicine). One-way ANOVA with a Bonferroni post hoc test was used
to evaluate the statistical significance of differences among multiple groups.
Values of P , 0.05 were considered significant.

RESULTS

Inhibition of CPT-1 improves glucose tolerance and
insulin sensitivity. As expected, feeding C57/BL6 mice
an HFD (60% kCal from fat) for 12 weeks resulted in
a significant increase in body weight (Supplementary Fig.
1A) and an impairment in glucose tolerance (Supplemen-
tary Fig. 1B) compared with mice fed an LFD. Mice from
the HF+vehicle and the HF+oxfenicine groups lost a small
but significant amount of weight during the experimental
protocol due to handling (as analyzed by a paired t test).
However, treatment of the HFD mice with oxfenicine had
no significant effect on body weight (P = 0.13 between the
HF+vehicle and HF+oxfenicine group by unpaired t test;
Fig. 1A). The GTT administered after treatment of HFD-fed
mice with oxfenicine (150 mg/kg/day) for 2 weeks showed
an improved glucose clearance in the treated mice to
a level that was similar to the LFD control group (Fig. 1B
and C). Moreover, the ITT results showed a small but
significant increase in insulin sensitivity in the oxfenicine-
treated mice (data not shown). This was also corroborated
with the finding that plasma insulin was decreased in
oxfenicine-treated mice compared with vehicle control-
treated HFD-fed mice (Fig. 1D).
Inhibition of CPT-1 increases whole-body carbohydrate
utilization while decreasing fatty acid utilization. In-
direct calorimetry assessment revealed an increase in the
respiratory exchange ratio (RER) in the oxfenicine-treated
mice during the dark cycle, indicating an increased utiliza-
tion of carbohydrates for energy metabolism (Fig. 2A).
Food intake, ambulatory activity, and heat production were
not altered in oxfenicine-treated mice (data not shown).
However, there was a small but significant decrease in
oxygen consumption (Fig. 2C), which is consistent with
the oxygen-sparing effect of increased carbohydrate use.
Plasma glucose (Fig. 2D) was also lower in oxfenicine-
treated mice, although it only reached significance under
fasting conditions. Plasma levels of free fatty acids and
TAG were higher (Fig. 2E and F) in mice treated with
oxfenicine, which was consistent with a decrease in
whole-body fatty acid oxidation. Consistent with the in-
crease in plasma free fatty acid and TAG levels, CPT-1
activity in the gastrocnemius muscles was also decreased
in oxfenicine-treated mice (Fig. 2G). Liver TAG levels
were not significantly different in the oxfenicine-treated
groups, indicating that oxfenicine does not exert a sig-
nificant effect on the liver isoform of CPT-1.

Exercise capacity is decreased in obese and insulin-
resistant mice. Interestingly, together with the improvement
in glucose tolerance, oxfenicine treatment of mice also re-
sulted in an increased exercise capacity (Fig. 3A and B).
Inhibition of CPT-1 improves muscle glucose metabolism
and insulin sensitivity. At the end of the 4-week oxfenicine
treatment period, mice were killed and skeletal muscle
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metabolism was analyzed. Treatment with oxfenicine for
4 weeks resulted in a decrease in CPT-1 activity in the
gastrocnemius muscle of HFD mice (Fig. 2G), despite
a marked decrease in malonyl CoA levels (Supplementary
Fig. 2). Interestingly, together with the decrease in CPT-1
activity in the gastrocnemius muscle, there was a con-
comitant increase in active PDH activity (Fig. 4A), with
no change in total activity (Fig. 4B). This resulted in an
increase in the percentage active PDH complex (Fig. 4C).
Phosphorylation of Akt was also increased when nor-
malized to total Akt content and also when normalized to
plasma insulin levels (Fig. 4D), confirming the improve-
ment in insulin sensitivity. Downstream of Akt activation,
insulin-stimulated plasma membrane GLUT4 content was
increased with oxfenicine treatment (Fig. 4E), suggesting
an increase in muscle insulin sensitivity.
Inhibition of CPT-1 did not decrease fatty acid

b-oxidation capacity but decreased fatty acid transport

in skeletal muscle. Although there was a clear decrease in
CPT-1 activity in skeletal muscle (Supplementary Fig. 2A)
as well as an increase in RER (Fig. 2B), indicative of de-
creased fatty acid utilization, we did not observe a decrease
in the expression of the fatty acid b-oxidation enzymes,
3-ketoacyl CoA thiolase (3-KAT; Fig. 5A) or b-HAD (Fig. 5B).
Interestingly, there was an increase in the tricarboxylic acid

cycle (TCA) enzyme, citrate synthase (CS) (Fig. 5C),
resulting in a decrease in the ratio of b-HAD to CS activity
(Fig. 5D). There was also an increase in peroxisome
proliferator–activated receptor-g coactivator-1a (PGC-
1a) expression in the oxfenicine-treated HFD mice
(Supplementary Fig. 3). With regards to muscle fatty acid
transport proteins, oxfenicine treatment resulted in a de-
creased expression of CD36, which is the major fatty acid
transport protein in muscle (Fig. 5E). Moreover, the level
of CD36 in the plasma membrane, which is indicative
of fatty acid transport rate (33), was also lower in the
oxfenicine-treated mice (Fig. 5F).
Inhibition of CPT-1 decreases fatty acid intermedi-
ates in skeletal muscle. We also measured the levels of
different fatty acid intermediates in gastrocnemius muscle.
Long-chain acyl CoA (Fig. 6A), ceramide (Fig. 6B), and
DAG (Fig. 6C) levels were all decreased in the gastrocne-
mius muscle of oxfenicine-treated mice. However, intra-
myocellular TAG levels were comparable to nontreated
mice (Fig. 6D), indicating there was no accumulation of fatty
acids despite a decrease in other fatty acid intermediates.

DISCUSSION

It has been postulated that insulin resistance can be alle-
viated by increasing fatty acid oxidation in skeletal muscle

FIG. 1. Inhibition of CPT-1 by oxfenicine in HFD-fed (HF) mice improves glucose tolerance and reverses insulin resistance. A: Body weight changes
during drug treatment in HF mice treated with vehicle or oxfenicine (150 mg/kg/day). B: GTT in HF mice treated with vehicle or oxfenicine (150
mg/kg/day). C: Area under the curve (AUC) of GTT in LFD-fed (LF) mice and HF mice treated with vehicle or oxfenicine. D: Plasma insulin levels in
LF mice and HF mice treated with vehicle or oxfenicine. Values represent mean 6 SEM, n = 6–9. GTT and ITT curves were significantly different
between vehicle and oxfenicine groups using two-way ANOVA. Differences were determined using ANOVA, followed by the post hoc Bonferroni
test. *P < 0.05 significantly different from HF vehicle control. †P < 0.05 significantly different from LF control.
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FIG. 2. Energy substrate utilization in HFD-fed (HF) mice is shifted toward carbohydrate oxidation after oxfenicine-treatment. hr, hours. A: Dark
cycle RER curves during a 24-hour period were significantly different between HF mice treated with vehicle and oxfenicine (two-way ANOVA).
Twenty-four-hour average ambulatory activity (B) and average oxygen consumption (C) are shown in HF mice treated with vehicle or oxfenicine.
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(10,11,34). In contrast, we demonstrate that lowering fatty
acid oxidation via pharmacological inhibition of CPT-1
enhances not only glucose metabolism but also insulin
sensitivity in mice with diet-induced obesity (DIO) and
insulin resistance. Furthermore, inhibition of fatty acid
oxidation did not cause an accumulation of fatty acid
intermediates.

In the 1960s, Randle et al. (17) proposed a reciprocal
relationship between glucose and fatty acid oxidation. It
was demonstrated primarily in the heart that inhibition of
fatty acid oxidation could increase glucose metabolism
upon insulin stimulation (17). However, recent studies
have suggested that this reciprocal relationship does not
hold true in skeletal muscle because changes in glucose
uptake can be dissociated from increases in fatty acid
oxidation (18,35). Here, we report that inhibition of mito-
chondrial fatty acid uptake can improve glucose oxidation
at the level of PDH, as well as GLUT4 translocation, sup-
porting the notion of an operating Randle Cycle in skeletal
muscle. Not only is glucose metabolism increased, as evi-
dent from the increase in the RER in oxfenicine-treated
mice, insulin signaling is also improved, as seen from the
decreased plasma insulin levels, increased whole-body

insulin sensitivity, and the increased insulin-stimulated
Akt phosphorylation in skeletal muscle. Furthermore,
muscle glycogen levels (Supplementary Fig. 5A) and
phosphorylation-induced inhibition of glycogen synthase
kinase (GSK), which inhibits glycogen synthase, are also
increased in oxfenicine-treated mice (Supplementary Fig.
5B). Because skeletal muscle accounts for at least 70% of
total insulin-stimulated glucose disposal (3), an improve-
ment of insulin signaling in skeletal muscle itself would
translate into an improvement in whole-body glucose tol-
erance and insulin sensitivity. Importantly, we observed no
difference in body weight, food intake, heat production, or
ambulatory activity between oxfenicine-treated obese
mice and their control counterparts, suggesting that there
is no change in energy intake or expenditure and that the
improvement in glucose tolerance is due to the switch in
energy substrate preference.

Exercise capacity has been shown to be decreased in
DIO mice (7). We show that there is a significant im-
provement in treadmill exercise capacity in oxfenicine-
treated mice. This is associated with an increase in the
RER value as well as a decrease in oxygen consumption.
Previous studies have shown that inhibition of CPT-1 with
oxfenicine may induce cardiac toxicity in the form of hy-
pertrophy (36,37). This has been suggested to be due to its
inhibition of fatty acid oxidation, which limits cardiac en-
ergy reserve and ultimately translates into decreased ex-
ercise capacity (37). In our study, however, we did not
observe signs of increased heart weight (Supplementary
Table 1) nor was there any change in cardiac function
when the hearts were perfused in vitro in the working
mode (data not shown). Thus, it is unlikely that oxfenicine-
treatment caused cardiac hypertrophy in our DIO mouse
model. This is consistent with the findings of Okere et al.
(38), where rats fed an HFD and treated with oxfenicine
exhibited no signs of cardiac hypertrophy. Furthermore,
mice deficient for malonyl CoA decarboxylase have an
elevation in malonyl CoA content and subsequent in-
hibition of CPT-1 and fatty acid oxidation rates but do
not exhibit any signs of cardiac hypertrophy after DIO
(39). We hypothesize that because carbohydrates are
more oxygen-sparing substrates for metabolism with
a higher phosphate-to-oxygen ratio relative to fatty acids
(40), an increase in the RER and a decrease in oxygen
consumption may translate to an increase in metabolic
efficiency.

Increasing fatty acid oxidation has been demonstrated
to alleviate insulin resistance in a number of studies. In
particular, increasing CPT-1 activity by its overexpression
in the extensor digitorum longus muscles of rats has been
demonstrated to improve insulin stimulated glucose up-
take (11). At first glance, the findings from these two
studies seem to be contradictory. However, the increase in
CPT-1 activity in the above-mentioned study is limited to
white muscles, including the extensor digitorum longus and
the tibialis anterior, which are predominantly glycolytic and
have relatively low rates of fatty acid oxidation. It is also
unknown whether increasing CPT-1 activity further in red
muscle, where there is already a higher rate of fatty acid
oxidation and higher abundance of fatty acid transporters,
may improve or worsen insulin sensitivity. Furthermore,

Plasma glucose (D), plasma free fatty acid (E), and plasma TAG (F) are shown under fed and fasting conditions in HF mice treated with vehicle or
oxfenicine. G: CPT-1 activity in gastrocnemius muscles of HF mice treated with vehicle or oxfenicine. H: TAG in livers of HF mice treated with
vehicle or oxfenicine. Values represent mean 6 SEM, n = 6–9. Differences were determined using two-tailed Student t test. *P < 0.05 significantly
different from control.

FIG. 3. Oxfenicine treatment reverses the impairment of exercise ca-
pacity in HFD-fed (HF) mice. Distance (A) and time (B) run during
exercise challenge on treadmill. Values represent mean 6 SEM, n = 6–9.
Differences were determined using two-tailed Student t test. *P < 0.05
significantly different from control.
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FIG. 4. Oxfenicine treatment improves glucose metabolism and insulin signaling in gastrocnemius muscles of HFD-fed (HF) mice. Active (A), total
(B), and percentage (%) active activity (C) of PDH complex in gastrocnemius muscles of HF mice treated with vehicle or oxfenicine. Phos-
phorylation status (Ser 435) of Akt (D) and levels of phosphorylated Akt normalized to plasma insulin in gastrocnemius muscles of HF mice
treated with vehicle or oxfenicine. E: Membrane content of GLUT4 in gastrocnemius muscles of HFD mice treated with vehicle or oxfenicine.
Values represent mean 6 SEM, n = 6–9. Differences were determined using a two-tailed Student t test. *P < 0.05 significantly different from
control.
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increased insulin-stimulated glucose uptake was only dem-
onstrated in the muscles of interest in that particular study.
Indeed, a recent study by Hoehn et al. (41) showed that
a chronic increase in fatty acid oxidation by the deletion of
acetyl CoA carboxylase was ineffective in improving insulin
resistance, nor could it increase energy expenditure or
promote leanness. These authors also concluded that in-
creasing the metabolism of one fuel would only lead to
a compensatory downregulation in the other with no net
change in energy balance, as initially suggested by Randle
et al. (17). Increasing fatty acid oxidation in skeletal muscle
by intracerebroventricular injection also did not improve
whole-body insulin sensitivity (42). In the current study,
inhibition of CPT-1 activity in muscle is associated with
increased whole-body glucose disposal and whole-body

insulin sensitivity. This is also concomitant with an increase
in insulin stimulated GLUT4 translocation.

Inhibition of CPT-1 by specific CPT-1 inhibitors has been
shown to improve glucose tolerance in studies in diabetic
patients (43). This effect has been suggested to be the
result of inhibition of hepatic glucose production in re-
sponse to decreased fatty acid oxidation in the liver
(44,45). Indeed, etomoxir and other CPT-1 inhibitors have
been shown to be more specific for the liver isoform of
CPT-1, decreasing liver fatty acid oxidation, leading to an
increase in liver TAG (46), a decrease in liver energy
production, and increasing food intake (47). In this study,
we used oxfenicine to inhibit CPT-1, which has been
shown to be more specific to the muscle type CPT-1 rather
than the liver isoform of CPT-1 (24). We did not observe an

FIG. 5. Oxfenicine treatment did not decrease fatty acid oxidation capacity in gastrocnemius muscles of HFD-fed (HF) mice. A: Representative blot
and quantification of 3-KAT expression in gastrocnemius muscle of HF mice treated with vehicle or oxfenicine. b-HAD (BHAD) activity (B), CS
activity (C), and ratio of b-HAD to CS activity (D) in HF mice treated with vehicle or oxfenicine. Total CD36 expression (E) and membrane
expression of CD36 (F) in gastrocnemius muscles of HF mice treated with vehicle or oxfenicine. Values represent mean 6 SEM, n = 6–9. Dif-
ferences were determined using a two-tailed Student t test. *P < 0.05 significantly different from control.
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increase in food intake as reported by others using
etomoxir. This is also consistent with the finding that
oxfenicine treatment improves glucose tolerance with
no change in food intake in muscle-specific peroxisome
proliferator–activated receptor-a–expressing mice (48).
This, together with the lack of change in liver weight (Sup-
plementary Table 1) and hepatic TAG content (Fig. 2H) in
oxfenicine-treated mice, suggests that oxfenicine exerts its
effect on glucose tolerance and insulin sensitivity predom-
inantly via action on the skeletal muscle rather than the liver.

Insulin resistance has been shown to be correlated with
mitochondrial dysfunction and a decrease in the rates of
fatty acid oxidation, leading to a decrease in the ability of
the muscle to convert reducing equivalents of flavin ade-
nine dinucleotide and NADH toward ATP production. As
with a previous study using the same DIO protocol, we did
not observe mitochondrial dysfunction or a decrease in fatty
acid oxidation capacity (7). Treatment with oxfenicine does
not alter the expression and activity of fatty acid oxidation
proteins including 3-KAT and b-HAD, which are already
increased upon high-fat feeding. However, there is an in-
crease in the capacity of CS activity in the oxfenicine-
treated mice, which catalyzes the first committed step of
the TCA cycle. The reduced ratio of b-HAD to CS activity
in the oxfenicine-treated group is suggestive of improved
coupling between fatty acid oxidation and the TCA cycle.
Koves and colleagues (16) demonstrated that the coupling
of TCA cycle with fatty acid oxidation depends on PGC-
1a–dependent muscle gene programming. We did observe
a significant increase in PGC-1a expression in the oxfenicine-
treated mice (Supplementary Fig. 3A). However, whether
transcriptional activity of PGC-1a is changed is unknown,

because it has also been suggested that the activity of
PGC-1a is dependent not only on its abundance but also
on its posttranslational modification, including phos-
phorylation (49) and acetylation (50), which we have yet to
assess.

Our finding that fatty acid intermediates in skeletal
muscle are decreased in the oxfenicine-treated mice is
somewhat surprising. Indeed, the rationale for therapeutic
approaches to alleviate insulin resistance by increasing
fatty acid oxidation in skeletal muscle advocated by
a number of research groups is based on the observed
increase in fatty acid intermediates such as long-chain acyl
CoA (51), ceramide (7,8) and DAG (6) in the skeletal
muscle of insulin-resistant animal models, which have all
been implicated as key mediators of insulin resistance. A
number of studies aiming at increasing fatty acid oxidation
have demonstrated success at improving glucose tolerance
(10–12). In contrast, treatment of high-fat fed rats with
etomoxir, another CPT-1 inhibitor, results in an increase in
intramyocellular lipid intermediates as opposed to the
decrease we see in the current study (52). However, the
increase in intramyocellular lipid metabolites is also ac-
companied by a worsening of insulin resistance in HFD-fed
rats. The decrease in fatty acid intermediates in the current
study may be attributed to the compensatory decrease in
long-chain fatty acid uptake at the plasma membrane due
to negative feedback (53,54), which has previously been
shown to be absent in the hearts of etomoxir-treated rats
(53). However, it should be noted that the decrease in fatty
acid transport into the cell is consistent with the obser-
vation that CPT-1 is the major flux control enzyme for
long-chain acyl CoA in tissues with high rates of fatty acid

FIG. 6. Oxfenicine treatment reduces intramyocellular levels of lipid metabolites in gastrocnemius muscles of HFD-fed (HF) mice. Levels of long-
chain acyl CoA (A), ceramide (B), DAG (C), and TAG (D) in gastrocnemius muscles of HF mice treated with vehicle or oxfenicine. Values rep-
resent mean 6 SEM, n = 6–9. Differences were determined using a two-tailed Student t test. *P < 0.05 significantly different from control.
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oxidation, including the liver and skeletal muscle (53,55).
Indeed, we have observed a decrease in the expression
and membrane translocation of CD36, the major plasma
membrane fatty acid transporters in the muscle cells. The
decrease in fatty acid uptake into the muscle cells is also
evident from the increased plasma fatty acid levels in
oxfenicine-treated mice.

It has been demonstrated that fatty acid intermediates
such as DAG may activate proinflammatory proteins, in-
cluding Jun NH2-terminal kinase (JNK) and IkB kinase
(IKK), to phosphorylate and inactivate insulin receptor
substrate-1 proteins (6,56), leading to insulin resistance.
However, we observed no change in the phosphorylation
of JNK and IKK in oxfenicine-treated DIO mice (Supple-
mentary Fig. 3B), suggesting that the increase in insulin
sensitivity in these mice is not due to the decrease in the
levels of these metabolites or the activation of proin-
flammatory proteins.

In conclusion, we herein report that reducing fatty acid
oxidation by pharmacological inhibition of CPT-1 with
oxfenicine improves whole-body glucose tolerance and
insulin sensitivity in DIO mice. Insulin signaling in skeletal
muscle is enhanced, as evident from the increased levels
of active PDH and membrane GLUT4 expression. The
improved glucose tolerance is also accompanied by a de-
crease in lipid metabolites in the DIO mice. These findings
suggest that therapeutic strategies aiming at reducing ex-
cessive fatty acid oxidation in muscle may improve insulin
resistance.
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