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Abstract

Online social networks such as Facebook, Twitter and Gowalla allow people to communicate and interact across borders. In
past years online social networks have become increasingly important for studying the behavior of individuals, group
formation, and the emergence of online societies. Here we focus on the characterization of the average growth of online
social networks and try to understand which are possible processes behind seemingly long-range temporal correlated
collective behavior. In agreement with recent findings, but in contrast to Gibrat’s law of proportionate growth, we find
scaling in the average growth rate and its standard deviation. In contrast, Renren and Twitter deviate, however, in certain
important aspects significantly from those found in many social and economic systems. Whereas independent methods
suggest no significance for temporally long-range correlated behavior for Renren and Twitter, a scaling analysis of the
standard deviation does suggest long-range temporal correlated growth in Gowalla. However, we demonstrate that
seemingly long-range temporal correlations in the growth of online social networks, such as in Gowalla, can be explained by
a decomposition into temporally and spatially independent growth processes with a large variety of entry rates. Our analysis
thus suggests that temporally or spatially correlated behavior does not play a major role in the growth of online social
networks.
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Introduction

Online social networks (OSNs) have become increasingly

important as they allow us to interact across any geographical

scale. Communication networks, transport networks and OSNs

are often interconnected and interdependent. This opens up great

economic and social opportunities but can also involve consider-

able risks such as cascading breakdowns [1]. The study of OSNs is

of importance for understanding the behavior of individuals,

groups and societies. Hence, particular types of growth in social,

economic and other networked systems have attracted a lot of

attraction in the past years [2–8].

Gibrat’s law states that both the average growth rate and the

standard deviation of the growth rate of a given observable are

constant and independent of the specific value of the observable

[9]. However, this empirical law, originally observed in economic

systems, has been challenged by many socio-economic studies

[10,11], notably very recently [4,5,8].

Any social growth dynamics is expected to depend on social

factors such as gender, age, social status and so forth. Unfortu-

nately, available datasets that comprise such information are

typically too small to investigate emergent scaling or large-scale

collective behavior. In this paper, we focus on the population

growth dynamics of three large OSNs. Our datasets do not resolve

individual social factors but their size allows for studying scaling

and long-range correlations, both temporally and spatially.

We find evidence for certain scaling laws in the growth rate and

the variance, although for Renren and Twitter the exponents

characterizing fluctuations are found to deviate from those that

have been reported previously for social and economic systems.

These deviations carry important information about the growth of

online social systems. In particular, we find that the relative

number of registered users increases almost temporally and

spatially independently of each other. This contrasts the behavior

of offline growth in many social and economic systems where

growth is a long-range correlated process and thus a collective

phenomenon. Even for Gowalla where scaling indicates long-

range correlated growth a decomposition into independent growth

processes unravels the seemingly long-range collective behavior to

be a mere artifact of the large variability of entry rates [12].

Data

We analyze three OSN datasets. The first OSN Renren (rr),

often referred to as the ‘‘Chinese Facebook’’, is one of the largest

online social networks in China. The dataset covers about

1,000,000 users in the time period of January 2006 to December

2010 (60 months) with online interactions from over 10,000
registered locations.

The second OSN data set, comes from a subset of Twitter (tw),

a microblogging online social service sited in the United States. It

covers more than 250,000 members between August 2006 and

September 2010 (50 months) from about 9,000 locations.

The third OSN, Gowalla (gw), was an online check in social

service launched in 2007 and closed in 2012 in the United States.

Users were able to check in at certain locations, referred to as Spots,

either through a mobile phone application or Gowalla’s mobile

website. Among other things, checking-in allowed for the dropping

or swapping of virtual items. The dataset covers 21 months (from
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February 2009 to October 2010) with around 200,000 members

from about 5,000 locations.

We acquired the first two datasets by crawling user profiles in

the web sites from Renren.com [13] and Twitter.com [14]

through their APIs. We only crawled the user profiles which are

publicly available. The Gowalla dataset is obtained from a shared

data source [15] by other researchers. Due to the tremendous size

of OSNs, we only acquired a sampled subset of each OSN. To

eliminate sample bias we deployed the Breadth First Search (BFS)

bias correction procedure by Kurant et al. [16].

For these three datasets we define a population at a location l (an

integer number ID) at time t as the set of all users with home

location l. The spatial resolution of the location refers to as a city

code, associated with the administrative area (i.e. the city name) of

the user’s home location. For Renren and Twitter we assume the

registered location of the user as the user’s home location. For

Figure 1. Scaling in average growth rate and standard deviation. Both Sr(S0)T and s(rDS0) as a function of the initial population size S0

exhibit a power law, Sr(S0)T*S{a
0 , s(rDS0)*S

{b
0 . Renren: Sr(S0)T*S{0:07

0 (R2~0:326), s(rDS0)*S{0:45
0 (R2~0:526), that is, arr~0:07, brr~0:45,

Twitter: atw~0:04 (R2~0:142), btw~0:37 (R2~0:531), Gowalla: agw~0:09 (R2~0:343), bgw~0:35 (R2~0:625). All values are obtained from MLE.

Bootstrapping suggests 95% confidence for aw0 (violation of Gibrat’s law), and for bgwv0:5 (suggesting long-rang correlations). No statistical

significance is found for bv0:5 for Renren and Twitter. Vertical lines indicate 5% marks (insets).
doi:10.1371/journal.pone.0100023.g001
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Gowalla we assume the most visited location as the home location.

For the spatial analysis we used an assignment of GPS coordinates

(via Google Maps Application Programming Interfaces (API)) to

the location l, and calculated the distance between two locations

via their GPS coordinates. The estimated GPS coordinates of a

user’s home location may thus be incorrect for a certain fraction of

a given population. This, however, may not alter any of the

conclusions made in this article.

Results

Here, we investigate the mean growth rate and its fluctuation in

OSN populations and ask the question how these observables

depend on the initial population size.

We denote the population size, i.e. the number of users with

home location index 1ƒlƒlmax at time 0vtƒT , by Sl(t).
Following Refs. [17–19] we define the logarithmic growth rate r

between time t0 and t1 (t0vt1ƒT ) as

r(S0)~ ln
S1

S0
, ð1Þ

where S0~Sl(t0) and S1~Sl(t1) are the population size at a

location l but at different time points t0 and t1 [5].

To characterize fluctuations, we study the average growth rate

r(S0) and the standard deviation

s(rDS0)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(r(S0){Sr(S0)T)2T

q
ð2Þ

as a function of the initial population size S0, see Figure 1. In other

words, the average growth rate Sr(S0)T corresponds to only those

online populations with size at least S0 until time t0. The

conditional standard deviation of the growth rate s(rDS0) for those

populations expresses the statistical spread or fluctuation of growth

among populations with S0. Both quantities show a power law

dependence on the initial population size,

Figure 2. Complementary cumulative relative fluctuation function. The ccrff, equation (5), as a function of the initial population size S0 . For
Renren and Twitter the ccrff is well fitted by shifted power law *(S0{C){n , with C a constant: (a) Result for Renren: nrr~1:828 (R2~0:997). (b)
Result for Twitter: ntw~1:324 (R2~0:995). (c) For Gowalla the ccrff is bimodal with a cutoff point at S�&93 (obtained from MLE, see methods): the
left part is well fitted by an exponential and the right part is in good agreement with a power law decay, ccrff(S0) *e{mS0 for S0vS� , and ccrff(S0)

*S{n
0 for S0§S� . Fit exponents mgw~0:009 (R2~0:997), and ngw~0:13 (R2~0:966).

doi:10.1371/journal.pone.0100023.g002
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Sr(S0)T*S{a
0 and s(rDS0)*S

{b
0 ð3Þ

with positive exponents a, bw0 (Pv0:05), which suggests a

deviation from the independence of Gibrat’s law that would imply

aGibrat~bGibrat~0. Scale-invariant growth instead of Gibrat’s

proportionate growth has been reported for economic systems

such as firms [10] and countries (b~0:15{0:18) [20], research

and development expenditures at universities (b&0:25) [21],

scientific output (b~0:28{0:40) [22], and more recently for city

population growth (b~0:19{0:27) [4] and online communities

(b~0:15{0:22) [5].

The range of b for Renren and Twitter is in agreement with

those previously reported exponents for b. However, in contrast to

the previous work mentioned above our analysis (employing

maximal likelihood estimation (MLE) and bootstrapping) do not

suggest significant deviations from b~0:5 which would indicate

uncorrelated growth. In contrast, for Gowalla we find b
significantly smaller than b~0:5 (Pv0:05).

Second, we find the range of exponents for the average growth

rate for all studied online social networks significantly above a~0
(Pv0:05) indicating a violation of Gibrat’s proportionate growth,

which is in agreement with social and economic systems

[4,5,10,20–22].

The average growth rate Sr(S0)T and the conditional standard

deviation of the growth rate s(rDS0) allow for direct comparison

with the literature for other social systems and Gibrat’s law but are

only averages. As suggested by studies of certain assets in

economical systems the distribution of the variance can often

exposes important information that cannot be seen in averages

[23].

Since for a given S0 there is only a single value of s(rDS0) (see

Fig. 1), we ask what is the relative variation of s(rDS0) across all

values of s(rDS
0

0) that occur in a given dataset. We thus focus on

the relative fluctuation function (rff),

rff(S0)~s(rDS0)

,X
S
0
0

s(rDS
0
0) ð4Þ

as a function of S0. Specifically, we study the complementary

cumulative relative fluctuation function (ccrff), which is given by

the complement of the integrated rff,

ccrff(S0)~1{
X

S
0
0
ƒS0

rff(S
0
0): ð5Þ

We chose the ccrff representation because it shows (if exists) a

clearer scaling than the rff and thus better exposes different

(scaling) regimes. The ccrff is obtained by collecting all locations

with a given value of S0 using exponential binning (see Fig. 2 and

Methods).

In contrast to Renren and Twitter where we find no significant

bimodality, for Gowalla the ccrff as a function of S0 exhibits a

remarkable bimodal behavior.

Figure 3. Gowalla: Temporal short- and long-term correlations in the population growth rate. Short-term correlations for S0vS� (log-lin
plots), C(t)*e{ct , and long-term correlations for S0§S� (log-log plots), C(t)*t{d . Fits using MLE suggest c~0:13 (R2~0:992), d~0:73

(R2~0:955); log-log-scaling for determining the coefficient of determination for the power law, and log-linear-scaling for the exponential.
doi:10.1371/journal.pone.0100023.g003

Figure 4. Gowalla: Decomposition of the growth into indepen-
dent short-term correlated population growth processes. ACF
for the three data sets according to the superposition scheme explained
in the text. The power law exponents from fitting C(t)*t{dsur

obtained
from the decomposition via surrogate data (sur). Best fits from MLE:
dsur~0:59 (R2~0:986).
doi:10.1371/journal.pone.0100023.g004
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For Gowalla, Figure 2C suggests a bimodal distribution of

standard deviations, characterized by an exponential decay that is

followed by a power law

ccrff(S0)~
e{mS0 (S0vS�)

S{n
0 (S0§S�)

, ð6Þ

S�~93 for Gowalla marks the crossover point (determined from

MLE, see Methods). MLE suggests that the power law decay is

characterized by the exponent ngw~0:13 (R2~0:966).

Gowalla: Correlations in the growth rate
The above findings suggest to consider two groups of locations:

one group with initial population size S0vS�, and the other one

with initial population size S0§S�. We study the monthly

population growth rates for each location and calculate their

autocorrelation function (ACF) [24–26]. For S0vS� the ensemble

averaged ACF exhibits an exponential decay, C(t)*e{ct,

indicating that the population growth is short-term correlated,

see Figure 3A. We obtain the exponent c~0:13 (R2~0:992 from

MLE), which is equivalent to a correlation time constant of about

two weeks.

In contrast, for S0§S� the ACF is well described by a power

law, C(t)*t{d with power law exponent d~0:73 (R2~0:955
from MLE), see Figure 3B.

This is consistent with long-term correlations characterized byP?
t~{? C(t)~?, see [27] and references therein.

Superposition model
Seemingly long-range correlation can often be explained by a

finite set of independent processes whose superposition accounts

for the algebraic decay in the ACF, and the divergence of its

infinite sum. In 1979 van der Ziel established that any ensemble of

uncoupled short-range correlated stochastic oscillators is sufficient

for explaining long-range correlations in their superposition, if and

only if the time constants of the mixed processes are sufficiently

broadly distributed [12]. More recently, it has been shown that a

superposition of Poisson processes, together with circadian activity,

very likely account for many scaling laws of human activity

patterns [28]. Here, as the growth rates are broadly distributed, we

follow this spirit by considering a superposition of populations and

surrogate time series from these, see Methods.

Gowalla’s population growth of the superposition ensemble

obtained from a random selection of population with S0vS�

results in the occurrence of seemingly long-term correlations for

Figure 5. Spatial independence of the population growth rates. The mean correlation coefficient ScT of the population growth rate as a
function of geographical distance (log-log plot). (a) for Renren: plateau at about ScrrT&0:80, (b) for Twitter: SctwT&0:73, (c) for Gowalla: ScgwT&0:76.
doi:10.1371/journal.pone.0100023.g005
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locations with S0§S�. The exponents dsur for the surrogate

superpositions (sur) are obtained from fitting the superposition

ensemble averaged ACF by MLE (see Methods) with R2~0:986,

dsur~0:59 (R2~0:986, d~0:73), see Figure 4.

This suggests that the seemingly long-term correlated popula-

tion growth found for locations with S0§S� results from

superpositions of short-term correlated growing populations.

Spatial dependence
To study geographical factors we investigate correlations of the

populations growth rates ri and rj between different places [29,30].

We therefore study the Pearson’s correlation coefficient

c~
S(ri{SriT)(rj{SrjT)T

sisj

, ð7Þ

where si,j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(ri,j{Sri,jT)2

q
is the standard deviation of ri and rj ,

respectively.

We investigate the monthly population growth rates and

Pearson’s correlation coefficient between a pair of locations as a

function of the geographic distance of the users. Figure 5 shows the

Pearson’s correlation coefficients for the three data sets. The

average correlation ScT is found at a level of about 0:7{0:8,

effectively independent of the geographic distance. The high value

of the cross correlation agrees well with the plausible assumption

that individuals join online social networks collectively but

independently of the geographic distance to each other.

Discussion

We find scaling in the population growth rate and variance in

online social networks. Our results suggest that the population

growth in online social networks is neither significantly determined

by population size [31] nor by spatial factors. The results deviate

from Gibrat’s law as previously found in many social and

economic systems. The seemingly long-term correlated growth

behavior for Gowalla suggested by scaling in the standard

deviation is explained by a simple decomposition into short-term

correlated population growth with broadly distributed growth

rates. Our method may help interpreting (seemingly) long-range

correlations in the growth of large heterogenous (online) social and

economic systems. Seemingly collective behavior in online social

systems may result from the high variability of loners’ actions and

not from correlated collective behavior.

Methods

Ethics statement
We use the APIs that provided by Renren.com and Twitter.com

for data collection from these two websites. The acquirement of

Renren and Twitter datasets is in accordance with the websites’

terms of service.

Data availability statement
We use three datasets in this article. The Renren and Twitter

datasets can be obtained upon the request, which is ‘‘data

available on request’’. The request can be send to the Computer

Networks Group at University of Göttingen via email (net@cs.uni-

goettingen.de). The Gowalla dataset is obtained from a shared

data source [15] by other researchers. The requester can

download it from snap.stanford.edu, which is ‘‘data available

from online’’.

Exponential binning
Fitting of average, standard deviation and the ccrff is performed

by exponential binning, by which the bins are evenly distributed

on a logarithmic scale. Specifically, the beginning of each bin is

bj ~tcRjs, exponentially increasing in j, with constants c and

Rw1, so that bins have size bjz1{bj&bj(R{1). We use

exponential binning for both Figure 1 (with c~1, R~2) and

Figure 2 (with c~1, R~1:2).

Choice of t0 and t1

The datasets are analyzed within a time window given by the

time points t0 and t1. t1 is chosen as the end point of the data set,

t1 : ~T . For the choice of t0 we consider two factors: the number

of populated locations in the time window and the size of the time

window. A too small t0 would lead to only a few populated

locations whereas any large t0 would reduce the width of the

Figure 6. Selection method fort0. The number of locations with
growing populations (S(t1)wS(t0)) as a function of time. We account
for the tradeoff between a large number of populated locations and a
large time series length t1{t0 by choosing t0 close to the maximum, cf.
Methods. This results (a) for Renren to t0 : ~35, (b) for Twitter to
t0 : ~36, and (c) for Gowalla to t0 : ~14.
doi:10.1371/journal.pone.0100023.g006
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window. Following the methodology of studies in human

population growth in the real world [4] and the human interaction

activities in OSNs [5], we determined t0 as a result from time

when the number of locations with growing populations reaches

the peak. That is, t0 : ~35 for Renren, t0 : ~36 for Twitter and

t0 : ~14 for Gowalla, respectively, see Figure 6.

Determination of S�

To determine the best value for S�, we fit the distribution of

standard deviation with respect to S0 ranging from 0 to 300 by

using MLE. For each S0, we calculate R2 for exponential and

power-law fitting, denoted as R2
exp and R2

pow, respectively. To

characterize the overall fitting quality (FQ) we use

FQ~R2
expR2

pow: ð8Þ

where we use log-log-scaling for determining the coefficient of

determination for the power law, and log-linear-scaling for the

exponential.

We choose S�~argmax(FQ(S0)) where FQ takes its maximum

at the value of S�~93, as shown in Figure 7.

Spatially resolved monthly growth rates
For each location with integer ID l, we extract a time series

from t0 to t1 of the monthly population growth rate according to

equation (1) as rt~ ln Stz1

St
, t0ƒtvt1 being the tth month.

We calculate the autocorrelation function (ACF) from the time

series rt as

C(t)~
S(rt{SrtT)(rtzt{SrtT)T

sr
2

ð9Þ

where t is the time lag and sr is the standard deviation of rt.

Superposition construction
To study superpositions we select all populations at locations

with S0vS�. The randomized surrogate data set is created by

shuffling these entries, and creating a time series from these

shuffled entries as follows.

(1) From the set of populations with S0vS� we select randomly

a population and add up its initial population size S0, irrespective

of its location. (2) We repeat (1) until the sum exceeds S�. This

results in a set of locations whose total initial population size equals

or slightly exceeds S�. We call this set of locations one realization

of a superposition. (3) For each realization we study the temporal

development with respect to total populations size of the thereafter

fixed selected locations. For each superposition we construct a time

series, that is, the population growth rates in monthly resolution,

from t0 to t1. For this set of time series we obtain the ensemble

averaged ACF.
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