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Abstract
Purpose of Review Perinatal HIV-1 infection is associated with an increased risk for neurologic impairments.With limited access
to clinical specimens, animal models could advance our understanding of pediatric central nervous system (CNS) disease and
viral persistence. Here, we summarize current findings on HIV-1 CNS infection from nonhuman primate (NHP) models and
discuss their implications for improving pediatric clinical outcomes.
Recent Findings SIV/SHIV can be found in the CNS of infant macaques within 48 h of challenge. Recent studies show an
impermeable BBB during SIV infection, suggesting neuroinvasion in post-partum infection is likely not wholly attributed to
barrier dysfunction. Histopathological findings reveal dramatic reductions in hippocampal neuronal populations and myelination
in infected infant macaques, providing a link for cognitive impairments seen in pediatric cases. Evidence from humans and NHPs
support the CNS as a functional latent reservoir, harbored in myeloid cells that may require unique eradication strategies.
Summary Studies in NHP models are uncovering early events, causes, and therapeutic targets of CNS disease as well as
highlighting the importance of age-specific studies that capture the distinct features of pediatric HIV-1 infection.
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Introduction

Globally, 1.7 million children are currently living with HIV-1
infection, with 160,000 new infections occurring annually [1].
The majority of new pediatric infections occur through
mother-to-child transmission (MTCT) in utero, intrapartum,
or post-partum through breast milk. While the mechanisms
are not completely defined, HIV-1-infected infants experience
a rapid progression of disease as compared to infected adults,
with over 50% of HIV-1-infected children dying before the

age of two in the absence of antiretroviral therapy (ART) [2].
ART has greatly reduced HIV-1-related morbidity and mortal-
ity but, alone, cannot purge the viral reservoir that is seeded
early in infection. In the majority of HIV-1-infected individ-
uals, interruption of ART leads to viral rebound, making daily
adherence to medication a lifelong requirement to control vi-
rus replication. A handful of pediatric cases of prolonged
ART-free remission have been reported, reflecting opportuni-
ties of early ART initiation, a strategy that will likely not be
applicable to the majority of ongoing infections worldwide
[3–5].

Consequences of HIV-1 infection that impact non-AIDS
aspects of health are an ongoing challenge in clinical care. A
vast range of neurological complications, collectively termed
HIV-associated neurocognitive disorders (HANDs), have
been reported in HIV-1-infected individuals. Even with
ART, HAND is associated with greater risk for disease pro-
gression and poorer morbidity [6]. It is estimated that up to
50% of ART-treated children will develop neurologic compli-
cations [7–11]. Clinical manifestations include mild to severe
neurocognitive impairment, delays inmotor development, and
behavioral psychiatric conditions such as depression and
attention-deficit hyperactivity disorder (ADHD). Progressive
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encephalopathy, described to compromise brain growth, is a
prominent and severe presentation in untreated pediatric in-
fection [12]. In fact, the incidence of encephalopathy is higher
in infants than adults in the first year of infection, which may
be reflective of pathologic events during fetal and early post-
natal brain development [13]. While early diagnosis and ART
initiation halts and partially reverses progression, static en-
cephalopathy can persist after treatment [14].

The direct cause of developmental disorders is unclear but
may be due to factors such as poor penetrance of ART to the
central nervous system (CNS) leading to continuous un-
checked viral replication in the brain, chronic neuroinflamma-
tion, or neurotoxic effects of long-term ART treatment. While
these factors have been explored in adults, there is a critical
need to further understand these aspects of disease in children
who are exposed to HIV and ART during periods of rapid
brain development and are often infected orally through
breastfeeding, an understudied yet relevant and dominant mu-
cosal transmission route in pediatric infection [15]. Animal
models are an important means to address these questions,
with the advantage of overcoming challenges faced when
using human samples such as limited access to anatomical
sites, small sample volumes, and lack of control over experi-
mental variables (i.e., viral dose, transmission route, and time
of ART initiation and duration).

Nonhuman primate (NHP) models of HIV/AIDS have long
been a powerful platform that have advanced our understand-
ing of HIV transmission, pathogenesis, and persistence.While
investigations of pediatric HIV-1 CNS infection using this
animal model are limited, findings from these studies are
uncovering key differences from adults in neuropathogenesis
that could inform advancements in pediatric care (summarized
in Table 1). The purpose of this review is to provide insights
recently gained from NHPmodels of pediatric infection of the
CNS as well as discuss their implications for the future devel-
opment of therapies and cure strategies for children livingwith
HIV-1.

SIVs and SHIVs in HIV Research

Asian NHPs, namely rhesus (Macaca mulatta), pigtailed
(Macaca nemestrina), and cynomolgus (Macaca fascicaluris)
macaques, have become the most commonly used and widely
accepted animal models for HIV-1 infection [16–18].
Additionally, neurodevelopment is similar between infant
humans and macaques, making them suitable for studies of
neurologic disease [19–21]. With some variability between
species, most Asian macaques are readily infected with simian
immunodeficiency virus (SIV) and model key viral and im-
mune features of infection such as gradual CD4+ Tcell deple-
tion, progression to AIDS, suppression of viremia with ART,
and effective transmission through mucosal routes [22]. The

low prevalence of CNS disease with the most commonly used
strains of SIV can present a challenge for neuropathogenesis
studies in macaques, however. As such, SIV and HIV neuro-
tropic strains have been developed and optimized in macaque
species to yield more consistent outcomes of CNS disease
(Table 2; further described in “NHP Models of Accelerated
CNS Disease”).

Although SIV-macaque models have been widely used for
studies of HIV-1 transmission, immunopathogenesis, vaccina-
tion, and cure, differences in SIV and HIV-1 can make it dif-
ficult to address certain experimental questions. For instance,
the efficacy of vaccines or entry inhibitors developed against
the HIV-1 envelope, a site of heavy divergence between SIV
and HIV-1, cannot be directly tested using an SIV challenge.
Simian/human immunodeficiency viruses (SHIVs) expressing
HIV-1 Env glycoproteins or proteins targeted by
antiretrovirals have been constructed to address this gap in
translational studies. While initial chimeric variants showed
poor replication in macaques, the pathogenicity of next-
generation SHIVs has been improved by serial-passage and
enhanced affinity for macaque entry receptors [23, 24•, 25,
26]. Studies demonstrating neuroinvasion of SHIV variants
in the pediatric NHP setting are limited. The value of these
viruses in pre-clinical studies warrants their further character-
ization and development for investigations of CNS infection.

It is important to consider that studies to date, and described
in this review, encompass pediatric NHPmodels using a range
of species, age at challenge, route of infection, virus, and dose
(Tables 1 and 2). Thus, it is key to balance reported findings
with the suitability of the model used to address the aspect of
CNS infection under investigation (i.e., neuroinvasion, target
cells of infection, reservoirs, neurological symptoms, etc.).

CNS Entry and Localization

Timing

Studies in adult macaques have yielded conflicting models of
timing for systemic dissemination after mucosal challenge.
While studies of SIV vaginal transmission have reported viral
production confined at the port of entry for days before spread,
others using the same model have detected virus in draining
lymph nodes within 24 h [27–29]. Evidence from orally in-
fected infant rhesus macaques shows rapid dissemination of
virus to proximal tissues, with viral RNA found in the periph-
ery by 2 days post-challenge [30•, 31]. Thus, after infection
across the oral mucosa, the virus quickly gains access to
draining lymph nodes of the head and neck which could me-
diate early invasion of other anatomical sites [30•, 31].

While previous reports have shown SIV in neonatal ma-
caque brains within 3 to 7 days of in utero or i.v. challenge,
recent studies of oral transmission have demonstrated even
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earlier infiltration of this site. In a study of 15 infant macaques
infected with SIVmac251 between 3 to 8 weeks of age, SIV
DNA was detectable in the brain as early as 48 h after chal-
lenge [32•]. 40% of infants analyzed at 48 h had detectable
SIV DNA in the cerebrum, with the percentage rising to 67%
by 72 h post-challenge. Similar kinetics of viral DNA distri-
bution in infant macaques have also been reported following
challenge with SHIVSF162P3, with viral DNA detectable in the
cerebellum within 1 day of challenge [30•]. Both studies also
measured RNA levels to assess if DNA-positive tissues were
sites of productive infection. In the SIVmac251-infected

macaques, viral RNA was only detected in 1/15 macaque
brains and no RNA was detected in the CSF within 96 h.
SHIVSF162P3 RNAwas only found in the cerebellum at 14 days
but not at 1 day post-challenge. Undetectable levels of RNA in
the CNS of these animals before 72 h post-infection may be
reflective of recent immigration of infected cells to this site,
before localized replication and spread.

Understanding how and when the virus disseminates into
the CNS in pediatric HIV-1 infection could reveal how long
the window of opportunity is to impede neuroinvasion. The
use of oral infection in these described infant macaque studies

Table 1 Key CNS disease findings from pediatric NHP studies

Study Age at
challenge

Macaque
species

Infection
route

Virus Dose Key CNS finding

Amedee et al
[32•]

3–8 weeks M. mulatta Oral SIVmac251 5 × 104 TCID50 SIV DNAwas detectable in the cerebellum by 48 h
post challenge, but SIV RNA is largely
undetectable in both brain tissue and CSF.

Hessell et al
[30•]

1 month M. mulatta Oral SHIVSF162P3 50% AID50 Viral DNA, but not RNA, was detectable in the
cerebellum by 24 h post challenge.

Delery et al
[37••]

0–3 months M. mulatta i.v. and
intrarectal

SIVmac251,
SIVmac239,
SIVΔB670,
or SIV0302

Variable Incidence of encephalitis was age-dependent.
Reduced susceptibility to encephalitis in neonates
was attributed to a less permeable BBB and a
lower frequency of CCR5+ cells in the brain as
compared to juvenile/adult macaques.

Lane et al [39] In uteroa M. mulatta Direct fetal
inoculation
by i.p.
injection

SIVmac251 103 TCID50 Viral DNA, RNA, and protein is widely detectable
throughout the fetal brain, but did not localize
around vessels by 15 d.p.i. Virus was found most
frequently in the cortical white matter. Frequency
of virally-infected cells in the brain was lower than
juveniles/adults and encephalitis was less
common.

Westmoreland
et al [38]

1 day M. mulatta i.v. SIVmac251,
SIVmac239,
or
SIVma-

c239/316

20 ng p27/kg Detected SIV DNA across multiple brain regions but
reported lower levels of viral protein or RNA in
neonates compared to juveniles/adults.
SIV-infected cells were identified near vessels in
brain.

Mavigner et al
[69••]

4–5 months M. mulatta Oral SIVmac251 105 TCID50 Comparable levels of viral RNA in the brain of
ART-suppressed and viremic infants, a finding
distinct from adult macaques. Poor ART
penetrance to the brain and low to undetectable
levels of ART drugs in the CSF, as measured by
LS-MS/MS.

Curtis et al
[51]

1 week M. mulatta i.v. SIVmac251 100 TCID50 Neuronal reduction of the hippocampus in
SIV-infected infants compared to healthy controls
that was more pronounced in orally-infected vs.
i.v.-infected infants.

Carryl et al
[52••]

9–20 weeks M. mulatta Oral SIVmac251 5000 TCID50

Kinman et al
[63]

36 days M. nemestrina i.v. or
intrathecal

HIV-2287 103 TCID50 Viral RNAwas detectable in CSF at multiple
timepoints post infection. Neurocognitive
development was delayed in all macaques, but was
more severe in i.v.-infected infants.

Worlein et al
[64]

In uterob M. nemestrina i.v.
inoculation
of dam

HIV-2287 10, 103, or 104

TCID50

Delayed motor and cognitive development in
infected infants compared to healthy age-matched
controls.

a Infections were timed at GD 65 (early 2nd trimester), 110 (early third trimester), or 130 (mid third trimester)
b Pregnant dams were i.v. inoculated during the third trimester of pregnancy
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makes the findings of particular relevance for breastfeeding
transmission, the route by which the majority of new pediatric
HIV-1 infections are now acquired.

Mechanisms of Entry

The most widely accepted and supported mechanism of CNS
entry by HIV/SIV is thought to be chemokine-mediated mi-
gration of virally-infected lymphocytes and monocytes across
the blood-brain barrier (BBB), where they can release virus to
resident target cells [33, 34]. Although not as well-character-
ized, other mechanisms have been proposed, including entry
of cell-free virus through a disrupted BBB or direct infection
of cells that line the BBB [35].

Studies of viral CNS entry processes in perinatal infection
are limited but suggest that invasion events may differ by
developmental stage. In infants and neonates, developing ce-
rebral vessels are more susceptible to damage from drugs,
toxins, or neuroinflammation, which could lead to barrier dys-
function [36]. Such damage could provide an opportunity for
CNS invasion by free virus. Delery et al. recently demonstrat-
ed that the BBB of neonatal rhesus macaques actually remains
fairly impermeable during SIV infection [37••]. This would
support the role for entry mediated by a “Trojan Horse” or
infection of BBB-lining cells. In line with this hypothesis is
the previous identification of SIV-infected cells localized to

blood vessels in the brains of neonatal macaques infected
intravenously [38]. Interestingly, virus was rarely found in
these areas in fetal macaques infected in utero [39]. Taken
together, these studies provide preliminary evidence for the
notion that invasion events could differ by developmental
stage at time of infection or transmission route. It is worth
noting a limitation of each of these studies was the use of a
single technique to draw conclusions on mechanisms of viral
invasion. There is more to be learned from carefully designed
studies that utilize a combination of ISH, permeability
markers, and cell tracking to delineate the major mecha-
nism(s) of viral entry into the neonatal brain with the long-
term goal of identifying targets for pre- or post-exposure
prophylaxis.

Sites of Infection

In infant macaques, the prevalence of CNS infection is similar
to that of juveniles and adults, but differences in the distribu-
tion of virally infected cells have been reported. In fetal rhesus
macaques infected in utero with SIVmac251, virus-positive
cells—identified by DNA, RNA, and protein—were present
within the meninges, basal ganglia, stroma of choroid plexus,
external granular layer of the cerebellum, cortical plate, and
cortical white matter within 15 days post-infection [39]. Of
these locations, virus was most frequently found in the cortical
white matter. While SIV can be found across this region in
juvenile and adult macaques, this is typically only under con-
ditions of encephalitis [40, 41], that was not seen in the in-
fants. An additional study, in which newborn macaques were
infected i.v. with SIVmac251, SIVmac239, or SIVmac239/316, also
found detectable SIV DNA across multiple overlapping brain
regions [38]. Here, infected cells were frequently identified in
the cortical gray matter, an area less dominated by SIV infec-
tion in older animals [40, 42].

Altered viral distribution in fetal, neonatal, and juvenile
infection may reflect expansion in cell tropism at early devel-
opmental stages. During gestation, glial and neuronal cells are
mitotically-active, which contrasts the more static nature of
the adult CNS [43]. Brain regions of ongoing cell proliferation
in the fetus, which would be rarer in healthy adults, could then
become a unique site of viral replication. Yet, the question
remains of how such cell types, like astrocytes, could be tar-
gets of infection if they have little to no expression of required
entry receptors. A recent report showed a paucity of CCR5+
cells within the brain of uninfected neonatal macaques, de-
spite SIV-infected neonates having similar viral DNA and
RNA levels in the brain compared to adults [37••]. This sug-
gests the possibility of alternative means for viral spread in a
setting of limited CCR5 availability, such as through the for-
mation of virologic synapses, which could favor infection of
cells that would otherwise be spared from direct receptor-
mediated infection [44]. Whether astrocytes can support

Table 2 Selected viruses used to study HIV in the CNS

SIVmac251 [99]. Highly pathogenic uncloned isolate (viral swarm) that
readily infects lymphocytes and macrophages; demonstrates invasion
of the CNS, but does not consistently cause CNS disease.

SIVmac239 [99]. Prototypical pathogenic molecular clone, readily infects
lymphocytes but poorly infects monocytes/macrophages; infects the
CNS.

SIVmac239/316 [38]. Derivative of SIVmac239, differs from SIVmac239 by 8
AA resulting in more productive infection in monocytes/macrophages.

HIV-2287 [63, 100]. Highly pathogenic viral strain developed from culture
supernatant of HIV-2EHO. Infected infant pigtailed macaques show
accelerated CNS disease, including high CSF viral loads and
neurocognitive impairments.

SHIVSF162P3 [101]. Strain of simian human immunodeficiency virus
(SHIV) that results in high acute phase viremia and can lead to simian
AIDS in rhesus macaques. Chimeric virus allows direct testing of
therapies targeting the HIVenvelope.

SIV/17E-Fr + SIV/ΔB670 [102]. Dual tropic virus swarm that results in
full immunosuppressive disease and encephalitis in pigtailed
macaques.

SIV/17E-Fr alone is a neurovirulent molecular clone composed of
SIVmac239 backbone containing Env, Nef, and 3′ LTR genes of viral
isolate obtained from a macaque with fulminant encephalitis
(SIV/17E-Br).

SIV/ΔB670was developed through co-culture of lymph node tissue from
an SIV-infected monkey (B670) with stimulated primary human
mononuclear cells and is immunosuppressive.
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productive infection or reservoir establishment in vivo is still
debated, but the presence of virus or viral products in these
and other cells, such as microglia and perivascular macro-
phages, could contribute to bursts of viral release or inflam-
mation from persistent antigen exposure [45–48]. Extending
studies to identify anatomical foci and target cells of HIV/SIV
perinatal infection could guide targeted delivery of therapeu-
tics into these regions of early viral replication.

Neuropathogenesis

Histopathological Findings

Differences in virus localization throughout the brain in pedi-
atric infection, as described in the previous section, raises the
possibility of altered or accelerated pathogenesis of neurologic
disease induced by HIV/SIV in this age group. Previous his-
tological findings in rhesus macaques infected with SIV in
utero or shortly after birth show brain pathologies that closely
resemble those seen in HIV-1-infected children [49, 50].
Decreased brain growth, evident after 2 months of infection,
has been reported in SIV-infected neonatal macaques [38].
Perivascular infiltrates of mononuclear cells, mineralization
of vessels in the basal ganglia, and proliferation of glial cells
could also be seen within 3 weeks of infection [38, 39].
Although such pathologies were generally associated with
regions where virus was detected, it is unclear whether lesions
or delayed brain growth are the result of direct or indirect
effects of the infection.

A growing body of work is providing anatomical evidence
for neurological impairments and disease observed in pediat-
ric HIV-1 infection. Newborn rhesus macaques infected i.v.
with SIVmac251 have presented with dramatic reductions in
immature neurons and the pyramidal neuron population with-
in the hippocampus at 3 months post-infection [51]. A follow-
up study by Carryl et al. reported more pronounced patholog-
ical findings when animals were infected orally, although oral-
ly infected animals were also older [52••]. Reductions in hip-
pocampal myelination were also evident [53]. Loss of hippo-
campal neuronal cell types and demyelination could explain
the mechanisms underlying the rapid neurocognitive and
neuromotor decline sometimes seen in pediatric HIV-1 pa-
tients, including deficits in memory and the onset of multiple
sclerosis-like illness [54, 55]. Congruency with clinical find-
ings further validates the use of NHP models to evaluate and
improve the course of HIV-1 CNS infection in children.

Encephalitis

Despite the presence of virus in the CNS and the incidence of
neurologic complications in pediatric HIV-1 infection, reports
of encephalitis are scarce [56–58]. SIV-infected infant

macaques also rarely present with multi-nucleated giant cells
in the brain, one histological hallmark of encephalitis [39, 59].
These findings are particularly surprising when one considers
the context of perinatal infection, characterized by high plas-
ma viral loads and rapid disease progression. Seeking to ad-
dress this paradox, a recent retrospective analysis of over 100
SIV-infected rhesus macaques uncovered that incidence of
encephalitis is age-dependent [37••]. In this study, no signs
of encephalitis were seen in any of the animals infected as
neonates (n = 51), with the earliest case observed in an animal
infected at 4 months of age. Incidence in juveniles and adults,
however, reached approximately 25%. While more direct in-
vestigations are needed to uncover features that influence en-
cephalitis susceptibility, these findings highlight the impor-
tance of age-spectrum studies which could uncover not only
mechanisms underlying accelerated disease progression but
also features of protection from HIV-associated pathologies.

NHP Models of Accelerated CNS Disease

Previous studies have shown that about 20–36% of SIVmac-
infected rhesus macaques exhibit neuropathological lesions
and symptoms of CNS disease, a frequency similar to HIV-
1-infected patients [60]. Thus, while SIVmac infection of
rhesus macaques provides a strong homolog to HIV-1 infec-
tion of humans, the infrequency of neuropathology makes it
challenging to use this system for deep investigations of CNS
infection, such as uncovering the cause(s) of neuronal dys-
function or loss and their impact on behavior and cognitive
abilities. Animal models of accelerated and consistent CNS
disease could allow studies of shorter duration with fewer
animals to interrogate these processes.

Zink et al. developed such a system by co-inoculating pig-
tailed macaques with two SIV strains: neurovirulent SIV/17E-
Fr and immunosuppressive SIV/DeltaB670 [61]. Over 90% of
infected animals developed CSF viral loads on the order of
106 copies/ml by 10 days post-inoculation. Within 3 months,
animals progressed to AIDS, developed encephalitis, and
displayed neuronal damage. Importantly, a significantly lower
prevalence of encephalitis was seen in rhesus or cynomolgus
macaques given the same co-inoculation, suggesting that host
genetic factors also play a role in neurological disease out-
come in this model [61, 62]. It could be of great value to apply
this system to fetal or neonatal pigtailed macaques to assess
disease events and their impact on neurodevelopment, as has
been done previously with HIV-2287 [63, 64]. In addition to
high viral loads and neurological lesions, animals in these
studies infected in utero or at 1 month of age showed delays
in motor and cognitive development. While these NHP
models of rapid CNS disease progression may not wholly
reflect immune and viral events seen in the slower progression
of HIV-1 infection, such models could still deepen our under-
standing of the sequence of neuropathologic events as well as
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provide a platform for testing drug candidates that can im-
prove or preserve neurologic functions in pediatric HIV-1
infection.

The CNS as a Latent Reservoir

Viral Persistence on ART

The BBB exists to tightly regulate the entry of solutes and
inhibit invasion of pathogens into the CNS; however, it is this
feature that contributes to low ART drug penetrance as well as
limited immunosurveillance in the CNS [65, 66]. Such cir-
cumstances could provide a sanctuary for virally-infected cells
and permit ongoing replication. Indeed, untreated and ART-
suppressed macaques have comparable frequencies of cells
harboring SIVmac251 RNA or DNA in brain tissue [24•, 67,
68]. Recently, our laboratory reported similar findings com-
paring viremic and ART-suppressed orally-infected infant
rhesus macaques [69••]. In addition, we also observed low
to undetectable ART drug levels across the brain in all ani-
mals, including the cortices, frontal lobe, and basal ganglia.
While these observations clearly demonstrate poor clearance
of SIV in the brain, whether the CNS could serve as a func-
tional latent reservoir has long been a source of controversy.

Findings from HIV-1-Infected Patients

A growing body of evidence supports the CNS as an anatom-
ical reservoir in HIV-1 infection. HIV-1 RNA has been detect-
ed in the CSF but not in the blood of patients on ART [70–74].
This discordance in CSF and plasma viral loads, termed CSF
viral escape, raises the possibility of ongoing low-level

replication or intermittent bursts of virus production in the
CNS even in the absence of systemic HIV replication [75].
CSF viral escape is more prevalent in adults with neurologic
symptoms or poorer neurocognitive performance, as is higher
levels of persistent HIV DNA in the CSF of adults with vire-
mia suppressed by ART [70, 72, 76, 77•]. Deep-sequencing
analysis has revealed compartmentalized viral evolution with-
in the CSF, evidenced by viral populations genetically distinct
from those in the blood and capable of contributing as an
independent source of viral rebound within the CSF after
ART interruption [78–82]. Extensive analyses in this area
are generally lacking for perinatal infection. One study has
documented CSF compartmentalization by 3 years of age in
up to 50% of ART-naïve children infected with HIV-1 subtype
C [83]. Here, independent replication in the CNS was pro-
posed to occur by early sequestration of a single transmitted
variant to the CNS or by emergence of CNS-adapted variants
in later stages of infection.

Macrophages and Microglia as Viral Reservoirs

Resting memory CD4+ T cells are thought to be the predom-
inant source of replication-competent reservoirs in blood and
peripheral tissues. However, the genome of rebounding virus
cannot always be phylogenetically traced back to proviral ge-
nomes in resting CD4+ T cells, indicating the possible exis-
tence of a non-CD4+ T cell pool of persistent virus [84–86].
Viral DNA and RNA have been found in brain macrophages
and resident microglia of SIV-infected infant and adult rhesus
macaques as well as in HIV-infected patients [31, 38, 40, 45,
69••, 87–89]. Adapting the quantitative viral outgrowth assay
(QVOA) to brain macrophages, Avalos et al. showed these
cell types harbor replication-competent virus in ART-

Fig. 1 Schematic of proposed interaction between HIV/SIV and the CNS
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suppressed pigtailed macaques [90••]. In this same NHPmod-
el, treatment with latency reversing agents in vivo led to focal
reactivation of viral reservoirs in brain macrophages that, in
some animals, occurred independently from the periphery
[91]. Experimental CD4 depletion in SIV-infected rhesus ma-
caques has been shown to result in productive infection of
macrophages and microglia, with peripheral set point viral
loads reaching levels two logs higher than undepleted controls
[88, 92]. Taken together, these studies demonstrate myeloid
cells in the brain can be targets of SIV infection and harbor
replication-competent virus even in the setting of long-term
ART treatment.

Advancements in ART delivery to the CNS will likely be
insufficient for eradication in myeloid cell types, as many
ART drugs already used in the clinic show limited efficacy
in microglia and macrophages [93]. The myeloid lineage also
presents a particular challenge for cure strategies as they can
be long-lived, are capable of self-renewal, and are not effi-
ciently killed by CD8+ T cells [94–96]. Thus, efforts for viral
clearance, like shock and kill strategies, should also be evalu-
ated for activity against myeloid cells and confirmed in infant
models of HIV-1 infection.

Conclusions

NHPmodels have provided valuable insights into HIV-1 CNS
infection, including timing of neuroinvasion, anatomical links
to specific neurologic impairments, and identification of cell
types harboring latent virus (see Table 1 and Fig. 1). However,
there is much to be learned in these areas for perinatally-
infected children. While findings in adult humans and NHPs
can pave the way for progress in the treatment of CNS disease,
it is still critical these studies be validated in pediatric models.
Immune and virologic features unique to pediatric infection
could impact mechanisms that promote persistence or disease
[97•]. For instance, our lab has shown naive CD4+ T cells are
the major contributor to the total CD4+ Tcell reservoir in SIV-
infected infant rhesus macaques, in contrast to central memory
CD4+ T cells in adult macaques [69••]. In addition, infant
rhesus macaques have a higher baseline turnover rate of
monocytes, which further increases during SIV infection and
is associated with rapid progression to AIDS [98]. Such find-
ings highlight the necessity for pediatric-focused studies to
ensure cure strategies and treatments for neurological impair-
ments will be relevant in this age group.
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