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Abstract
Groups can make precise collective estimations in cases like the weight of an object or the

number of items in a volume. However, in others tasks, for example those requiring memory

or mental calculation, subjects often give estimations with large deviations from factual val-

ues. Allowing members of the group to communicate their estimations has the additional

perverse effect of shifting individual estimations even closer to the biased collective estima-

tion. Here we show that this negative effect of social interactions can be turned into a

method to improve collective estimations. We first obtained a statistical model of how

humans change their estimation when receiving the estimates made by other individuals.

We confirmed using existing experimental data its prediction that individuals use the

weighted geometric mean of private and social estimations. We then used this result and

the fact that each individual uses a different value of the social weight to devise a method

that extracts the subgroups resisting social influence. We found that these subgroups of

individuals resisting social influence can make very large improvements in group estima-

tions. This is in contrast to methods using the confidence that each individual declares, for

which we find no improvement in group estimations. Also, our proposed method does not

need to use historical data to weight individuals by performance. These results show the

benefits of using the individual characteristics of the members in a group to better extract

collective wisdom.

Author Summary

We modelled how humans interact, and used the models to find strategies that can make
groups more accurate. Each individual in a group combines private and public informa-
tion to make estimations. But when the public information is biased, social information
has the effect of making groups agree even more on an incorrect collective estimation. We
reasoned that not all individuals should be influenced equally by the incorrect public infor-
mation. We obtained a model to understand how private and social information are com-
bined, and used it to obtain a value of social resistance for each individual. We then used
these values of social resistance obtained from the model to extract the subgroup of people
resisting social influence, and found that they give an improved collective estimation.
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Collective intelligence is thus maximal when taking into account individuality in human
behavior.

Introduction
Francis Galton was the first to experimentally demonstrate the advantages of collective estima-
tions [1]. At a farmers’ fair, he found that the median of the independent estimations made by
784 farmers of the weight of a slaughtered ox was better than any of their individual estima-
tions. Since then, collective estimations, computed as mean, median or geometric mean values
of the group, have been shown to improve upon the estimations of most individuals of a group
in several different contexts, an effect popularly known as wisdom of crowds (WOC) [2–8].
However, human crowds can also be notoriously bad at making collective estimations for
many estimation tasks [7, 9]. Social interactions can have an additional negative effect in biased
crowds [8, 9]. When individuals learn the estimations of the other members of the group, they
typically change their own estimation towards the more common values. After social influence,
the collective has thus a distribution of estimations more strongly peaked around the biased
solution. This can give the collective perception of an agreement but the value agreed upon can
be far from the truth [9].

We propose to turn the negative effect of social interactions to our advantage and improve
collective estimations. We do so by taking into account the individuality of the members of the
group. Francis Galton argued for each individual counting the same in the collective estimation
[1]. But for situations in which most individuals are strongly biased, we would be in a better
position with methods selecting the unbiased individuals. Of course, this can be done by find-
ing how well each individual performs in a domain of knowledge and weight them accordingly
for similar tasks [10–12].

Here we do not consider the case of access to a classification of individuals by performance.
Instead we used the impact of social interactions on estimations to extract individuals in the
following way. We first obtained a model of estimation in a collective and used it to measure
how much each individual of the collective resists social influence. We tested the model by
reanalyzing a dataset in which subjects made estimations before and after social influence [9].
This is a rich dataset that can be used as a reference to test models of social influence [13]. In
these experiments subjects were asked to privately estimate the answer to six questions [9]:
‘What is the length of the border between Switzerland and Italy in kilometers?’, ‘How many
rapes were officially registered in Switzerland in 2006?’, ‘How many assaults were officially reg-
istered in Switzerland in 2006?’, ‘What is the population density of Switzerland in inhabitants
per square kilometer?’, ‘How many murders were officially registered in Switzerland in 2006?’
and ‘How many more inhabitants did Zurich gain in 2006?’ After their private estimation for
each question, each subject could receive social interactions consisting in either receiving on a
computer screen a diagram depicting the private estimations of each member of the group
(‘full information’ condition) or more simply their arithmetic mean (‘aggregated information’
condition). To test that the observed effects were due to social interactions, they also used con-
trol groups that also estimated twice but without social influence in between (‘no information’
condition). The experimental data was obtained using 144 people organized in 12 groups of 12
people. Each group was asked 6 questions, 2 in each of the three conditions.

We used our model to classify each individual by their resistance to social influence as a
measure of confidence on their private information. Our proposal is then to use the geometric
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mean of the estimations of individuals with high social resistance as a better estimator than the
WOC, as we show for the dataset from reference [9].

Results
To understand the effect of social interactions in estimation, we first tested whether we could
model each person in a group as an estimator of some quantity according to their private and
the social information. We have already used this modeling approach for fish and ant groups
choosing among a low number of options [14, 15]. Here we adapt it to the case of human data
in which individuals estimate quantities that can take any positive real number and the distri-
bution of estimations before social interactions is a log-normal [9, 16–18]. For the analysis of
experimental data it is thus useful to take the logarithm of the raw estimations {xi} to obtain {yi
� logxi}, whose distribution is then a Gaussian. We obtained that if before social interactions
this Gaussian has mean μp and standard deviation σp,N ðmp; spÞ, after social interactions the
distribution of estimations is predicted to be of the form (see S1 Text)

fYðyÞ ¼ N ðwpmp þ wsms; sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ws

p Þ: ð1Þ

The predicted distribution in Eq 1 is also a Gaussian in the logarithm of estimations, but its
mean and standard deviation have changed. The mean μf is at a value combination of the
private mean μp and a parameter μs that summarizes the impact of social information,
mf ¼ wpmp þ wsms, with wp and ws the private and social weights with values between 0 and 1

and with wp þ ws ¼ 1. The form of μs in Eq 1 depends on the type of social interactions, and

we considered two types. One in which each individual receives the estimations from all mem-
bers of the group, for which we found that μs is of the form μs � log(xs), where xs is the geomet-
ric mean of the estimations (see S1 Text):

xs ¼
Yn
i¼1

xi

 !1=n

: ð2Þ

We also considered a second form of interaction in which each individual receives only the
mean of the estimations of the group, for which the social information is the mean of estima-
tions (see S1 Text)

xs ¼
1

n

Xn
i¼1

xi: ð3Þ

These two types of social information impact Eq 1 differently, with only the second of them
changing the mean after social interactions. This is because in the first case, as the expected
value of the geometric mean of a sample following a log-normal distribution is the median of
the population [19, 20], then we have on average that xs = exp(μp) (see S1 Text), making the
mean the same as before social interactions, μf = μp. In the second form of social interactions
via the arithmetic mean, the expected value is xs ¼ expðmp þ s2

p=2Þ (see S1 Text), making the

mean to shift to higher values after interactions, mf ¼ mp þ wss
2
p=2. Social interactions can

change not only the mean but also the standard deviation of estimations. The predicted stan-

dard deviation after social interactions in Eq 1 is reduced to sf ¼ sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ws

p
, more reduced

the higher the social weight ws, making the group to agree more around the final mean.
We first tested that the predicted distribution in Eq 1 is consistent with the experimental

data in [9]. We standardized the estimations made by each individual using a z-score as z� (y-
μp)/σp, with y the logarithm of the estimation and μp and σp the mean and standard deviation
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for each time in which a group answered a question. This transformation of variables allowed
us to pool together estimations from different groups and questions, each having its own mean
and standard deviation. The distribution of the z-score values before social influence has mean
0 and standard deviation 1,N ð0; 1Þ (Fig 1A and 1B, blue). It transforms after social influence

according to Eq 1 intoN ð0; ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ws

p Þ for the ‘full information’ condition (see S1 Text). This

correctly predicts that the distribution of z-score values after social interactions cannot be dis-
tinguished from a Gaussian (p>0.27; Kolmogorov-Smirnov test), does not change the mean
(p = 0.14, permutation test; see Methods) and reduces the standard deviation (p<10−9,

Fig 1. Comparison of statistical predictions against experiments of social influence. (A) Probability distribution of estimations before (no info, blue) and
after (full info, red) receiving the estimations made by other members of the group. Estimations are pooled from 24 different experiments obtained using
different groups and questions, and are plotted together using a z-score, z� (log(x)-μp)/σp, with x the estimation and μp and σp the mean and standard
deviation before social interactions for each experiment. Points are experimental frequencies sampled at intervals of width 0.25 and solid line is a Gaussian
fit. Shadowed surface is the area in which 95 per cent of the experiments are expected by the Gaussian fit. The statistical prediction is that after social
interactions the distribution of answers is also a Gaussian in the logarithmic domain with the samemean and smaller standard deviation. (B) Same as (A) but
before (no info, blue) and after (aggregated info, red) giving subjects the mean of the estimation of all subjects. The statistical prediction is that after social
interactions the distribution of answers is also a Gaussian in the logarithmic domain with higher mean and smaller standard deviation. (C) Real vs predicted
estimations after social interactions from Eq 4 as logx2 ¼ wplogx1 þ wslogxs using ws ¼ 0:53. Different colors correspond to the six estimation tasks. (D)
Distribution of experimental social weights with Gaussian kernel smoothing (see Methods). Data taken from Lorenz et al. [9]

doi:10.1371/journal.pcbi.1004594.g001
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permutation test). Unless otherwise stated, in the remainder of the paper we use permutations

to obtain p-values. The predicted formN ð0; ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ws

p Þ gives a very good fit to the data and

the standard deviation of the data corresponds to a value of the social weight in Eq 1 of ws ¼
0:53 (Fig 1A, red).

For the ‘aggregated information’ condition, the Gaussian distribution in Eq 1 for the z-score

values is after social interactions of the formN ðwssp=2;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ws

p Þ (see S1 Text). The value of
the final mean depends on the standard deviation of estimations before the interaction, σp, that
is different for each of the 24 experiments [9] in which each of the 12 groups answered two
questions in the ‘aggregated information’ condition. Using for each experiment the value of σp
before social interactions and the value of ws for the same group but in the ‘full information’
condition, we can predict the shift in mean and the reduction of standard deviation for the 24
experimental cases (S1 Fig). However, a simpler analysis can be made neglecting the variability
of values in σp across the 24 experiments, and instead pool all the data and consider the predic-

tion only using the mean value sp asN ðwssp=2;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ws

p Þ; with sp = 1.39, and ws ¼ 0:53

from the ‘full information’ condition. The predicted shift in the mean, wssp=2 ¼ 0:39, and the

reduction in standard deviation,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ws

p ¼ 0:68, correspond well with the experimental data

(Fig 1B, red) and with the more complete prediction using the sum of 24 Gaussians predicted
for each experiment (S1 Fig). It correctly predicts a shift of the mean to higher values (p<10−6)
and a reduced standard deviation (p<10−6) that was not found to be different to the one in the
‘full information’ condition (p = 0.45). An alternative Bayesian test [21] shows similar results
for the problems studied here (see Methods and S1 Table for a summary of permutations and
Bayesian significance tests). In addition, this test obtains when two quantities are likely taking
the same value and not only when they are not found to be different, as in the case of the stan-
dard deviation in the ‘aggregated information’ and ‘full information’ conditions (S1 Table). In
the ‘no information’ condition, subjects repeat the estimation with no social interactions in
between and we found no significant change in the parameters of the distribution of estima-
tions (S2 Fig, p>0.5; see also Bayesian test in S1 Table). This shows that the effects seen after
social interactions are due to the interaction and not to a repetition of the estimation.

Once we tested the close correspondence between the statistical model in Eq 1 and the
experimental data, we considered a simple model for an individual that is consistent with the
statistical predictions. Specifically, an individual that privately estimates x1 and, upon reception
of the social information, gives a new estimation x2 related to x1 through a linear combination
in the logarithmic domain,

y2 ¼ wpy1 þ wsms: ð4Þ

with {y1,2 � logx1,2}, is consistent with the statistics in Eq 1. This implies that the second
estimation can be predicted from the first estimation and the social information as
log x2 ¼ wplogx1 þ wslogxs, which is found to be a good approximation for the data with ws ¼
0:53 (Fig 1C). A more common rule used in the modelling of social influence in humans is the
linear combination rule x2 ¼ wpx1 þ wsxs[13, 22–24], but Eq 4 is a linear combination in the

logarithmic domain or, equivalently, a weighted geometric mean between private and social
information,

x2 ¼ x
wp
1 xws

s : ð5Þ

So far we have assumed that each individual uses the same value of the social weight ws.
However, there might be individual differences, with some individuals less influenced by social
information. Using wp þ ws ¼ 1 and Eq 4 we can obtain a different value of the social weight
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for each individual as

ws ¼
y2 � y1
ms � y1

: ð6Þ

The distribution across the group of values of the social weight ws in Eq 6 shows a striking
structure of individual differences (Fig 1D). Some individuals resist social influence (peak at
ws ¼ 0 in Fig 1D), others shift almost completely to the social information (peak at ws ¼ 1),
others combine private and social information (values between 0 and 1), and even some shift
to values farther from the private value than the social value (ws > 1) or to values in a direction
opposite to the social value (ws < 0).

We took advantage of the individuality and extracted the geometric mean of those individu-
als that resist social influence. To gain intuition on how to perform this extraction we consid-
ered the following exploration of the data. We obtained the joint density of social weights ws

and private estimations y = log(x1) for the question ‘What is the length of the Swiss/Italian bor-
der?’ (Fig 2A). To obtain different levels of resolution, we used the following Gaussian smooth-
ing of the data [25]

f ðws; yÞ ¼
1

2psws
syn

Xn
i¼1

exp �ðws � ws;iÞ2
2s2

ws

� ðy � yiÞ2
2s2

y

 !
ð7Þ

with ws;i and yi = log(x1,i) the social weight and the private estimation of individual i, respec-

tively, sy � ŝyn
�1=gy and sws

� ŝws
n�1=gws with ŝy and ŝws

the sample standard deviation of

each variable. We varied the resolution coefficient gws
while keeping γy at its optimal value of γy

= 6 [25] to see whether there is a consistent tendency for individuals with different social
weights to give different estimations (Fig 2A). At the lowest resolution considered, gws

¼ 6,

there is a clear tendency of individuals with lower social weight to give higher estimations of
the border length between Switzerland and Italy (Fig 2A, gws

¼ 6). At resolution gws
¼ 2, 3 and

4 the density splits into two peaks, one at high ws and another at low ws (Fig 2A, gws
¼ 2,3,4). It

is thus clear that for this question the individuals with lower social weight tend to give higher
estimations.

We then extracted the individuals with lowest social weight. A simple method consists in
extracting all individuals with a social weight below the value that gives a result significantly
different to WOC (Fig 2B). Specifically, we started from the complete group and its geometric
mean as the WOC value. For this case, the WOC value is 302 km (Fig 2B). We then eliminated
individuals one by one from highest to lowest values of the social weight keeping those with
jwsj � o, with o a decreasing positive real number. With the remaining individuals, we com-
puted the geometric mean. For o in the interval between 0.1 and 0.5 of individuals with high
resistance, the geometric mean increases to values close to 800 km. At the lowest values of o
there is a drop in the geometric mean, but the number of individuals is also low. To isolate the
relevant individuals, we found which values of o give a geometric mean significantly different
from the WOC (Fig 2B, green dots for p<0.05 and red dots for p<0.01). The significant values
of o are in the interval from 0.06 to 0.45, which correspond to groups whose geometric mean
lies between 816 and 464 km, respectively. We then tested that we obtain similar estimations
using the complete interval of significant values of o or only the value of o giving the highest
significance. Specifically, for the complete interval of significant o we used the following
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measure that weighted more the values of o with higher significance as

resist 1 �

Z 0

0:5

qðoÞxgeom1 ðjwsj � oÞdoZ 0

0:5

qðoÞdo
ð8Þ

Fig 2. Wisdom of those resisting social influence for the question ‘What is the length of the Swiss/Italian border?’ (A) Joint probability density of
social weights ws and estimations y = log(x1) and computed by Gaussian smoothing, Eq 7, of data (one black dot per individual). Smoothing from lowest
resolution in the direction of the social weight ws (gwS

= 6) to highest resolution (gwS
= 2). (B) Geometric mean of estimations for groups containing individuals

with social weight jwsj � o. At low o the groups are formed by individuals resisting social influence. Blue dots: Groups with prediction not significantly
different to wisdom of the crowd (WOC). Green dots: groups significantly different fromWOC at p<0.05. Red dots: p<0.01. Value labelled ‘resist 1’ computed
from individuals with low social weights and contributing more the values of o with higher significance (Eq 8). Value labelled ‘resist 2’ computed as ‘resist 1’
but not weighting the different o differently depending on significance levels. Line labelled ‘resist 3’ corresponds to the value of o with highest significance.
(C) Two clusters in the space of estimations and social weights obtained using Gaussian mixtures [26]. White ellipses delimit the area that contains 95% of
the probability density for each of the bivariate Gaussians [27]. (D) Visual summary of the relative errors made byWOC, the three variants of the method in
(B) and the center of the clusters obtained at low social weight at four levels of resolution in (C). Data taken from Lorenz et al. [9].

doi:10.1371/journal.pcbi.1004594.g002
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with xgeom1 ðjwsj � oÞ the geometric mean of the estimations of individuals with social weight
jwsj � o, qðoÞ ¼ 0:05� pðoÞ if the p-value obeys pðoÞ < 0:05 and qðoÞ ¼ 0 otherwise,
and only counting those groups with sufficiently low social weight, o � 0:5. The prediction
obtained in this way is 714 km, that deviates only -2.7% from the true value of 734 km while
the WOC value of 302 km deviates -59% (Fig 2B, ‘resist 1’, ‘truth’ and ‘WOC’). An alternative
to Eq 8 would also use the values of o giving significance but weighted all of them equally, giv-
ing 689 km, -6.2% off the true value (Fig 2B, ‘resist 2’). Another variant would only take into
account a single value of o with the highest significance (p = 0.0002) that corresponds to
o ¼ 0:25. This gives the prediction of 780 km, 6.3% off the true value (Fig 2B, ‘resist 3’). The
three variants give very similar predictions and a large improvement over WOC.

We also used a second class of methods based on the finding that resisting individuals can
form peaks in the joint distribution of estimations and social weight (Fig 2A). Methods using
the peaks will in general use less individuals but should be valuable when the peaks are clear in
the distribution, that is, when they are sharp and separated from other peaks. Specifically, we
used clustering by Gaussian mixtures [26]. The advantage of this method is that, although it
depends on the distribution and therefore on the value of the resolution gws

, it is very robust to

changes in its value. For the question about the length of the Swiss/Italian border, we obtained
that the geometric mean of the cluster of people with low social weight is 422, 481, 512 and 491
km for gws

= 2, 3, 4 and 6, respectively (Fig 2C). In particular, it is not necessary that the value

gws
chosen for the clustering corresponds with a distribution showing peaks. For example, the

distribution with gws
= 6 does not show peaks and it is clustered into approximately the same

two clusters than the distribution with gws
= 3 that shows two clear peaks. The values obtained

are -42%, -34%, -30% and -33% off the true value of 734 km. The cluster at high social weight
correspond to individuals with larger errors (-69%, -67%, -71% and -67% for gws

= 2, 3, 4 and 6,

respectively). WOC is typically a value between the ones at low and at high social weights, here
302, -59% off the true value.

So far we have seen that using the individuals with lowest social weight we can estimate
‘What is the Swiss/Italian border length?’ better than using WOC. The results were robust
under changes in the method to extract the individuals with low social weights, with a total of 7
variants of the methods used improving over WOC (Fig 2D). We then applied the same meth-
ods to the remaining 5 questions from the experiments in [9]. We found a subpopulation with
a significant resistance to social influence in 3 of the remaining questions (Fig 3 and Table 1 for
a summary; see S4 Fig for the other two questions).

For the question of ‘Number of rapes in 2006 in Switzerland’ the geometric mean of individ-
uals of low social weight as measured by Eq 8 and its two variants gives the same value as there
is a single significative group at a value of 624, much larger than the WOC result of 257 (Fig
3A, ‘resist 1,2,3’). This corresponds to a much smaller error (-2.3%) than the WOC (-60%)
respect to the truth at 639. The distribution of estimations does not show a structure of two
peaks separated at low and high social weight (Fig 3B, gws

= 3,4,6) and at high resolution there

are too many peaks with very few individuals each (Fig 3B, gws
= 2) so a method based on peaks

is not appropriate for this question.
For the ‘Number of assaults in 2006 in Switzerland’, the geometric mean in Eq 8 and the two

variants considered have a large deviation from theWOC value of 3685 to 6654, 6313 and 7557,
respectively (Fig 3C, ‘resist1’,’resist 2’,’resist 3’). They correspond to errors of -28%, -32% and
-18%, respectively, much lower than the -60% error of WOC. The clustering method obtains
the same value of 7699 for gws

= 3, 4 and 6 (Fig 3D, gws
= 3,4,6) and for gws

= 2 the resolution is

too high and reveals at least four peaks with very few individuals per peak (Fig 3D, gws
= 2). For
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Fig 3. Wisdom of those resisting social influence for three questions. Analysis as in Fig 2B and 2C but for the questions (A, B) ‘Howmany rapes were
officially registered in Switzerland in 2006?’, (C, D) ‘Howmany assaults were officially registered in Switzerland in 2006?’, and (E, F) ‘What is the population
density of Switzerland in inhabitants per square kilometer?’ See S3 Fig for densities in (D) and (F) without ellipses. Data taken from Lorenz et al. [9].

doi:10.1371/journal.pcbi.1004594.g003
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gws
= 3,4, and 6 the error is -17% of the true value 9272 compared to the -60% error of the

WOC of 3685.
For the question about the ‘Population density of Switzerland’ the geometric mean in Eq 8

does not find a subpopulation resisting social influence with estimations significantly different
to WOC (Fig 3E). The clustering method finds for gws

= 2,3,4 and 6 the values 174, 177, 177

and 171, respectively (Fig 3F, gws
= 2,3,4,6). Compared to the true value of 184, these values are

-5.7%, -4.0%, -4.0% and -7.2% off the true value of 184 while the WOC value of 115 is -38% off.
Our analysis shows that estimation is improved when there is a subpopulation significantly

resisting social influence. The seven variants of the methods improve uponWOC and in many
cases the improvement is very large (Table 1). The success of the method rests in the correla-
tion between resistance to social influence and closeness to the true value seen in the data. It is
also interesting to consider some properties of the resisting individuals. The proportion of
these individuals is 25±13% using the methods based on Eq 8 and 10±3% for the methods
based on the peaks of the distribution. The individuals that resist social influence are not the
same in all questions. We only find a significant overlap between questions 1 and 2 (S5A Fig,
p<0.05).

Resistance to social information may be viewed as a behavioral measure of confidence, and
the estimation of those resisting social influence as ‘wisdom of the confident’. Its success is not
a trivial result as other measures of confidence like declared confidence in a scale from 1 to 6
does not improve accuracy [28–31]. We thus decided to compare why the two measures give
different results. We found a significant but very low correlation between resistance to social
information and declared confidence (S5B Fig, p<0.001, R2 = 0.03). While there are approxi-
mately equal numbers of resisting and non-resisting individuals (Fig 1D), most of the popula-
tion declares low values of confidence, even the majority of those resisting social influence
(S5C Fig, triangles). Individuals declaring high values of confidence (S5D Fig, triangles), in
general resist social influence more than those with low values, but a relevant proportion does
not resist social influence. The two measures are correlated but are very different and it is then
unsurprising than a method like the one proposed here for social resistance does not work for
declared confidence (S6 Fig).

Table 1. Comparison of true value, ‘wisdom of the crowds’ (WOC) and the prediction from the subgroup of individuals resisting social information.
resist 1 computed from individuals with low social weights and contributing more the values of o with higher significance (Eq 8). resist 2 computed as ‘resist
1’ but not weighting the differento differently depending on significance levels. resist 3 corresponds to the value ofo with highest significance. gws

= 6, 4, 3, 2
give the central values of the peaks at low social weights obtained from a Gaussian mixture at a resolution in the direction of social weight ws obtained intro-
ducing the values of gws

in Eq 7. Border, ‘What is length of the Swiss/Italian border?’ Rapes, ‘Howmany rapes were officially registered in Switzerland in
2006?’ Assaults, ‘Howmany assaults were officially registered in Switzerland in 2006?’ Population, ‘What is the population density of Switzerland in inhabi-
tants per square kilometer?’

Question truth WOC resist 1 resist 2 resist 3 gws
¼ 6 gws

¼ 4 gws
¼ 3 gws

¼ 2

Border 734 302 714 689 780 491 512 481 422

(-59%) (-2.7%) (-6.2%) (+6.3%) (-33%) (-30%) (-34%) (-42%)

Rapes 639 257 624 624 624 - - - -

(-60%) (-2.3%) (-2.3%) (-2.3%)

Assaults 9272 3685 6170 5984 7037 7699 7699 7699 3881

(-60%) (-33%) (-35%) (-24%) (-17%) (-17%) (-17%) (-58%)

Population 184 115 - - - 171 177 177 174

(-38%) (-7.3%) (-4.0%) (-4.0%) (-5.7%)

doi:10.1371/journal.pcbi.1004594.t001
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Discussion
We have here proposed to extract information from the collective using those individuals
resisting social influence. The methods proposed extract the information a collective considers
of high private quality. We obtained better collective estimations than the ‘wisdom of crowds’
[1–9] using the data from [9], especially for cases in which the crowd shows a very large bias.
The methods work because resistance to social influence correlates with closeness to the true
value. The correlation does not need to be very strong, that is, we do not need experts [10–12].
Instead, we use the geometric mean of those individuals that get influenced less by social infor-
mation and this group can still show a large standard deviation.

We used two types of methods. One based on Eq 8, taking all individuals below a value of
social weight that give a result different fromWOC. This method gave predictions very close to
true values for those cases in which the joint distribution of estimations and social weight does
not show a complex structure at low social weights. When this method does not give significant
results, one can resort to a method based on clustering in the space defined by estimations and
social weights. This second type of methods takes into account less individuals, but we found
they improve uponWOC. The two methods together can be used to understand the relevant
subjects in the estimation. For example, Eq 8 does not give significant results for the question
on the ‘Population density of Switzerland’ (Fig 3E). Inspection of the density shows that while
there is a strong peak at low social weight with an estimation very different fromWOC (Fig
3F), there are individuals giving much lower estimations and thus making the geometric mean
of individuals with low social weight not different fromWOC.

Our proposal makes use of individuality to improve upon WOC. It is interesting to specu-
late what type of individuality is most compatible with our results. One type of individuality
would simply be that all individuals use a similar procedure to answer a question but their lev-
els of noise are different. One way to model this would be to extend our models to incorporate
that all individuals are most likely to give the correct answer but they have different levels of
noise (S1 Text). This model gives very poor predictions (S1 Text). The reason is that the data
seems more compatible with different subgroups of people with different biases from the truth,
for example the low and high peaks in the joint density in Fig 2A. This can be modelled in that
the most probable estimation is shifted away from the true value with different biases in differ-
ent individuals. As biases are defined respect to truth, this extension of the models would not
be predictive. Instead, we propose the methods in the main text, by which we extract the sub-
group of individuals of low social weight as the more accurate ones on average.

The idea that different individuals or subgroups of individuals have different biases is com-
patible with the existence in the population of different procedures to solve a problem, each of
them with a different bias. According to this view, a possible origin of the data for the question
about the Swiss/Italian border as an example could be the following. This question might be
answered estimating the approximate length of a straight line separating the two countries,
which is 288 km as measured from a map in http://www.freemaptools.com/measure-distance.
htm. Interestingly, the cluster of individuals with highest social weight is characterized by an
estimation of 216±157 km compatible with these very low values. A procedure more sophisti-
cated than simply the length of a straight line consists in using the shape of the border. Another
procedure is to use memorized data to retrieve its value. The cluster at low social weight is char-
acterized by an estimation of 512 ±269 km and the geometric mean at low social weights by
values in the interval 650–800 km, compatible with these more sophisticated procedures. This
idea of different procedures might also explain the different susceptibilities to social informa-
tion. Those individuals using the shape of the Swiss/Italian border would in general not con-
sider as very important social information with values so much lower than their estimations.
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This is because these values would be incompatible with the shape, for example values closer to
a straight line. In contrast, individuals using a straight line approach might be willing to con-
sider higher values, as they might have only taken this approach as a very rough approximation
they could make because they had difficulties finding how to estimate the full shape. All indi-
viduals might declare low confidence levels as they can be very noisy within their approach,
but they might still consider differently values more compatible with other approaches.

A second and complementary explanation of individuality is that individuals have different
levels of expertise on the subject or even in general exercises of estimation. This level of exper-
tise is probably not high enough for the individuals to declare it, but it would be enough to act
upon it when confronted with social influence.

The methods proposed to improve upon WOC do not correspond to a common situation
in which humans interact naturally. Instead, it is a protocol that can be used to extract high
quality information in human collectives even if it is present only in a minority of the group.
Its value relies on improving uponWOC by eliminating the people that are not confident in
their private estimations. And using how much each individual is influenced by others as a
measure of confidence seems to extract the correct individuals, unlike methods based on
declared confidence [28–31]. Our results point to measures of confidence not based on declara-
tion as a means to gather high quality private information in a group. Response time, persever-
ance or pay-offs in decision systems might be implementations to test experimentally. An open
problem is in which circumstances social influence or these other measures of confidence can
be used by humans to improve individual and collective decisions in naturalistic settings.

Methods
Experimental data from Lorenz et al. [9] can be downloaded from http://www.pnas.org/
content/108/22/9020?tab = ds. In those experiments subjects were asked to estimate five conse-
cutive times for each of six questions described in the main text.

Smoothing of distributions
The distributions were calculated using Gaussian kernel smoothing [25]. The 1D version of
Gaussian kernel smoothing was applied for social weights ws in Fig 1D.

f ðwsÞ ¼
1ffiffiffiffiffiffi
2p

p
sn

Pn
i¼1

e�
ðws�ws;iÞ2

2s2 ; ð9Þ

with fws;ig the values of the social weights obtained from experiments using Eq 6, n the length

of the sample and s � ŝn�1=g the bandwidth with ŝ the standard deviation of the sample and γ
the resolution coefficient. We set the resolution coefficient to half its optimal value [25], g ¼ 5

2
,

a value that allows the visualization of the main structure of the distribution. We were inter-
ested in the interval [0,1] and did not then consider points outside (-1,2) in our calculations of
the bandwidth, avoiding tail effects. The 2D case of Gaussian kernel smoothing is described in
the main text, Eq 7.

Significance tests used for the difference of means or variances
A complete list of significance tests can be found in S1 Table. In the main text, unless otherwise
stated, we computed p-values explicitly without assumptions about the data as the probability
that the experimental result is obtained at random. For example, to find whether two distribu-
tions have a significantly different value of some parameter θ (in our case, the mean or the vari-
ance), we performed a permutations method. We mixed the two samples and randomly

Improving Collective Estimations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004594 November 13, 2015 12 / 16

http://www.pnas.org/content/108/22/9020?tab�=�ds
http://www.pnas.org/content/108/22/9020?tab�=�ds


divided the resulting set into two subsets. Then, we computed the sample value of the parame-
ter in each of the subsets and extracted the difference d� |θ1-θ2|. We repeated this process 106

times, obtaining a distribution of differences d. The significance p is the proportion of d values
bigger than the difference of the parameters between the two original samples.

To find whether the group of individuals with ws � o in Figs 2 and 3 has geometric mean
significantly different fromWOC, we used the following procedure. Each o corresponds to a
subgroup of no individuals. We obtained 105 random sets of no estimations from the whole
crowd and computed the geometric mean of each set, g. The significance of xgeom1 ðws � oÞ is
the proportion of values of g at least as far to the wisdom of the crowd (geometric mean) as
xgeom1 ðws � oÞ.

Significance test used for the method using the distributions
To divide the region of maximum density into two clusters, we performed an Expectation Max-
imization (EM) algorithm to obtain a mixture of two Gaussians [26]. More specifically, for
each value of gws

we selected those individuals whose social weight and estimation ðwsi; log xiÞ
lied in the zone of maximum probability, defined as that where the probability in Eq 7 is at
least equal than half of the maximum. Then an EM algorithm was applied to the selected data
points to find the maximum likelihood estimates of the parameters of a Gaussian mixture with
two components.

Significance test of whether two questions share the same resisting
individuals
To find whether two questions shared a significant number of individuals with low jwsj, we
used the exact expression for the probability that two samples from a finite population have a
certain number of elements in common (see S1 Text).

Supporting Information
S1 Fig. Distribution of estimations before and after receiving the mean estimation for each
experiment. Same analysis as in Fig 1B, but for each of the 24 experiments (A) and the sum of
the 24 Gaussians (B) before (blue) and after (red) receiving the mean value of the estimations.
Points are experimental frequencies at intervals of width 1 (A) and 0.25 (B). Shadowed surface
is the area where the 95 per cent experiments are expected given the theoretical fit. Data taken
from Lorenz et al. [9]
(TIFF)

S2 Fig. Distributions of estimations without interactions. As Fig 1A and 1B in main text,
probability distribution of z-score estimating twice without interactions in between (first: blue,
second: red). Points are experimental frequencies at intervals of width 0.25. Solid line is a
Gaussian fit. Shadowed surface is the area where the 95 per cent experiments are expected
given the theoretical fit. Data taken from Lorenz et al. [9]
(TIFF)

S3 Fig. Joint probability distributions without ellipses. (A) ‘How many assaults were offi-
cially registered in Switzerland in 2006?’, and (B) ‘What is the population density of Switzer-
land in inhabitants per square kilometer?’Data taken from Lorenz et al. [9]
(TIFF)

S4 Fig. Collective estimations of those resisting social influence for two questions not ana-
lyzed in main text. Same as in Fig 3 of main text but for the two remaining experimental
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questions: (A, B) ‘How many murders were officially registered in Switzerland in 2006?’, and’
(C, D) ‘How many more inhabitants did Zurich gain in 2006? No significant subgroup is found
using the method of the geometric mean value (A, C). Using the joint distribution (B, D), we
do not find a clear separation into a peak for a group of individuals resisting social influence
(ws<0.5)and a peak for individuals not resisting the influence (ws>0.5) Data taken from
Lorenz et al. [9]
(TIFF)

S5 Fig. Characterization of individuals resisting social information. (A) Significance of the
coincidence of resisting individuals (ws<0.5) for every pair of the 4 questions analyzed in main
text. There is only a significant overlap of individuals resisting influence for questions 1 and 2
(‘What is the length of the border between Switzerland and Italy in kilometers?’ and ‘How
many rapes were officially registered in Switzerland in 2006?’). (B) Correlation of social weight
(only for |ws|�1) and declared confidence is significant (p<0.0003) but weak (R2 = 0.03)
respect to linear regression (straight line). Triangles at mean social weight for each confidence
value. In colors the joint distribution of social weights and confidence values, showing large
dispersion from regression line. (C) Probability of the declaration of confidence for individuals
resisting (red triangles) and not resisting (blue circles) social influence. (D) Probability that an
individual has a social weight when they declare a low (blue circles) and high confidence (red
triangles). Data taken from Lorenz et al. [9]
(TIFF)

S6 Fig. Collective estimations for individuals declaring confidence.We used a method anal-
ogous to that of Figs 2B, 3A, 3C and 3E in main text but for declared confidence instead of
social weight. Geometric mean of individuals declaring a value of confidence (conf) in their
estimation higher or equal than an integer k. No value is found to be significant (pmin>0.08,
p > 0:54). The experimental questions are: (A) ‘What is the length of the Swiss/Italian bor-
der?’, (B) ‘How many rapes were officially registered in Switzerland in 2006?’, (C) ‘How many
assaults were officially registered in Switzerland in 2006?’, (D) ‘What is the population density
of Switzerland in inhabitants per square kilometer?’, (E) ‘How many murders were officially
registered in Switzerland in 2006?’, and (F) ‘How many more inhabitants did Zurich gain in
2006?’ Data taken from Lorenz et al. [9]
(TIFF)

S1 Text. Supplementary Text.
(DOCX)

S1 Table. Kolmogorov-Smirnov, permutations and Bayesian significance tests. Summary of
the results of the significance tests in main text. Kolmogorov-Smirnov tests were run with
Matlab to check normality. Permutationsmethod were performed as explained in the main
text (Methods) to test for the equality of means and equality of variances. For the no difference
of means, two sample t-tests were run with Matlab to check compatibility with permutations
method. For the no difference of variances, two sample F-tests were run with Matlab with the
same purpose. No discrepancies in the acceptance/rejection of the null hypothesis were found
in any of the no difference tests. Bayesian tests are based on the likelihood of the experimental
data given a certain value of the parameters. More specifically, we follow the reference [21] in
the main text: Kruschke JK (2013) Bayesian estimation supersedes the t test. J. Exp. Psychol.
Gen. 142(2), 573. The method generates a probability distribution of the most credible values
of the parameters (or their difference for two distribution comparison). If a value falls outside
the 95% highest density interval (HDI) then it is not considered to be a credible value of the
parameter or difference of parameters. For the distribution to be considered credibly normal, a
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value for the degrees of freedom parameter of log10(v)> log10(30)�1.48 is required. Only one
discrepancy was found with the null hypothesis methods, and the Bayesian test cannot accept
the normality of the estimation distribution generated in the second trial of the ‘aggregated
information’ condition. Although the Kolmogorov-Smirnov test did not reject the normality
hypothesis, the p-value was slightly above 0.05. In the main text and in S1 Fig this poor value is
explained by the fact that the distribution is better explained the sum of 24 Gaussians with very
similar parameters.
(DOCX)
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