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Abstract: The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset
in life sciences. This can be realised by using their spontaneous asymmetric partitioning over
two macromolecular aqueous phases in equilibrium with one another. Such phases can already
form while mixing two different types of macromolecules in water. We investigate the effect of
polydispersity of the macromolecules on the two-phase formation. We study theoretically the phase
behavior of a model polydisperse system: an asymmetric binary mixture of hard spheres, of which
the smaller component is monodisperse and the larger component is polydisperse. The interactions
are modelled in terms of the second virial coefficient and are assumed to be additive hard sphere
interactions. The polydisperse component is subdivided into sub-components and has an average
size ten times the size of the monodisperse component. We calculate the theoretical liquid–liquid
phase separation boundary (the binodal), the critical point, and the spinodal. We vary the distribution
of the polydisperse component in terms of skewness, modality, polydispersity, and number of sub-
components. We compare the phase behavior of the polydisperse mixtures with their concomittant
monodisperse mixtures. We find that the largest species in the larger (polydisperse) component
causes the largest shift in the position of the phase boundary, critical point, and spinodal compared to
the binary monodisperse binary mixtures. The polydisperse component also shows fractionation. The
smaller species of the polydisperse component favor the phase enriched in the smaller component.
This phase also has a higher-volume fraction compared to the monodisperse mixture.

Keywords: polydispersity; hard spheres; phase behavior; virial coefficient

1. Introduction

The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset
which can be realised by using spontaneous asymmetric partitioning over two aqueous
macroscopic phases [1]. The formation of such two phases can be induced by mixing two
different types of macromolecules in an aqueous phase and depends on the polydispersity
of the macromolecules. The prediction of such phase formation thus forms an important
aspect of life science applications. Apart from applications, the formation of separate
aqueous phases from the cytoplasm has also received interest in the last decade [2]. Inter-
estingly, the pre-assembly mechanism during evolution as described recently [3] may be
speculatively related to the same separation processes.

The formation of separate aqueous phases is usually studied using mixtures of two
monodisperse components. However, components in nature are usually not that simple
or well-defined. Often, components will exhibit polydispersity in terms of their size, shape,
and charge, which is often ignored when studying phase behavior. In order to study the
effects of polydispersity theoretically, we chose the following model system: hard spheres.
Their separation into two phases is driven by two different physical mechanisms. One
mechanism involves only excluded volume interactions, where the minimum distance
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between the particles is determined by the sum of their respective radii [4], where only
a certain asymmetry in the sizes of the particles in the mixture is necessary [5]. This
asymmetry leads to the depletion of small spheres around the large spheres and as a
result to an effective attraction (depletion interaction) between the larger spheres [6]. This
mechanism is referred to as additive hard sphere (HS) model. The case resembling the
second physical mechanism is characterised by the minimum distance between the particles
being larger or smaller than the sum of their respective radii. This case is referred to as non-
additive hard sphere (NAHS) model. In both cases, upon phase separation, the mixture
will demix into two (or more) phases, each enriched in one of the components. In this work,
we will focus on the first type: binary mixtures with significant asymmetry in their size.

In most studies on the phase behavior of binary mixtures, the polydispersity of the
components is ignored. However, from experiments with for example gelatin and dextran,
it is found that polydispersity has an influence on the phase behavior. The polydispersity
of both components leads to significant fractionation, especially for dextran [7].

Polydispersity has an effect on the depletion interaction. With increasing polydis-
persity, the repulsive barrier decreases, leading to an enhanced rate of flocculation of the
large colloidal particles [8]. Additionally, Waltz and co-authors [9] studied the depletion
interaction in a solution of normally distributed macromolecules and showed that poly-
dispersity can lead to increased flocculation through the formation of secondary potential
energy minima. In later studies, they found that polydispersity significantly lowered the
magnitude of the repulsive structural barrier, which can be understood in terms of a change
in the depletion of the macromolecules from the gap [10]. The polydispersity of the smaller
component affects the pair potential between the large particles [11]. This effect on the
depletion interaction can stabilize the particle suspension in the short term but will still
destabilize over time [12].

Studying the phase behavior of polydisperse mixtures is challenging, since a poly-
disperse component effectively consists of a large number of sub-components, each with
a different size and possibly also different shape or charge [13]. Some theoretical work
has been conducted on predicting the phase behavior of polydisperse components. Cot-
terman and co-authors used continuous and semi-continuous distributions to predict the
fluid-vapor phase diagram of polydisperse components [14,15]. Santos and co-authors [16]
studied the phase behavior of polydisperse compounds such as polystyrene and polyethy-
lene glycol. They found that the polymer polydispersity played a crucial role in the phase
behavior: the broad size distributions lead to a wide range of depletion attractions, giving
rise to spinodal decomposition and preventing gelation. Bellier-Castella and co-authors [17]
used a van der Waals approximation for free energy to study the phase behavior of poly-
disperse fluids composed of spherical particles. They found the onset of a three-phase
co-existence at a higher polydispersity. Fasolo and co-authors [18] studied theoretically the
equilibrium phase behavior of mixtures of polydisperse hard-sphere collids and monodis-
perse polymers based on the Asakura–Oosawa model. They found that with polydispersity,
significant fractionation occurred. Polydispersity delayed the onset of both gas–liquid and
fluid–solid separation. Additionally, Sear and co-authors [19] used the Asakura–Oosawa
model to predict the phase behavior between a monodisperse colloid and a polydisperse
polymer. They found that polydispersity increased the extent of the fluid–fluid co-existence.
Warren [20] studied the interaction between hard spheres with a bimodal size distribu-
tion and found that demixing caused additional size partitioning and fractionation. We
note that an approximation up to the third moment distribution used in that work is
equivalent to the second-order virial approximation. See also, for example, [21]. Kang
and co-authors used a universal quasi-chemical (UNIQUAC) model to predict the phase
behavior of aqueous polymer systems. They found that the polydispersity of the polymers
enlarged the two-phase region considerably near the plait point and resulted in smaller
miscibility regions far from the plait point. They also found that the average molecular
weights of polymers in the phases differed significantly and these differences increased
with a larger polydispersity; due to this fractionation, the polydispersity of each polymer
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was smaller in each child phase compared to the parent mixture [22]. Others modelled the
phase behavior of non-additive hard-sphere systems using Monte Carlo simulations [23].
They found that, with increasing polydispersity, the miscibility region decreased and that
the critical point shifted towards lower pressures. Additionally, Stapleton and co-authors
used Monte Carlo simulations to predict the phase behavior of mixtures with fixed or
variable polydispersity [24]. They found that mixtures even with a very small degree of
polydispersity resulted in differences in the phase separation and the fractionation between
the coexisting phases.

In this study, we aim to gain a better understanding of how size polydispersity
influences the liquid–liquid phase behavior in binary mixtures, mainly on the position
of the phase boundary, the spinodal, and the critical point. Next, we aim to predict the
fractionation of the polydisperse component between the phases. We model the interactions
between the different components using the second virial coefficient. We note that the
validity of the second-order virial coefficient approximation is limited to dilute systems for
hard spheres, but depending on the type of system, as in the aqueous polymeric systems
in which we are interested for the above-mentioned practical applications, the validity
may increase to the polymer overlap concentration and beyond [25]. This warrants the
exploration of the second-order virial coefficient approach. The resulting calculations form
a stepping stone for expansion to non-additive interactions, polydispersity effects, and
multi-component mixtures for practically relevant systems.

We start the theoretical considerations by reviewing the interaction in a simple system
of a solute in a solvent (Section 2.1). In Sections 2.2 and 2.3, we expand the second virial
coefficients for solutions with one type of solute component to solutions with multiple
distinguishable types of solute components. Section 2.4 describes the theory about the
stability of a mixture, Section 2.5 describes the theory about the critical point, and finally
Section 2.6 describes the theory about the phase boundary. We chose to first describe the
existing theory in order to more easily explain the expressions we used in our calculations.
With the expressions in Section 2, we calculated the phase behavior for different mixtures
with varying polydispersity. In Section 3, we discuss the resulting phase diagrams, in
Section 3.1 we divide the polydisperse component into two sub-components, and in
Section 3.2 we increase the number of sub-components to nine. Finally, we discuss the
fractionation of the polydisperse component in Section 3.3.

2. Theory

We start by deriving the equations of state for dilute solutions. Next, we derive
the virial expansion for solutions with one solute component. Subsequentl, y we derive
the second virial coefficient for mixtures with an arbitrary number of distinguishable
components. This gives us all the parameters we need to define the stability boundary,
the critical point, and phase boundary of a mixture. The resulting system of equations is
solved in Matlab R2017b.

2.1. Dilute Liquid Solutions

We consider a two-component solution, in which one component is the solvent and
the other component is the solute. We define Ns as the number of solvent particles and
Nν as the number of solute particles in a volume V at a temperature T. The total number
of particles in the system is then N = Nν + Ns, and since we assume a dilute solution
Ns >> Nν. The system is in constant thermal contact with the environment, and both the
volume and the number of solute and solvent particles are fixed (canonical ensemble) [26].

The sum of the kinetic (K) and potential energies (U) of the system represents the
Hamiltonian (H) of the system, given by:

H(pNν+Ns , qNν+Ns) = K(pNν+Ns) + U(rNν+Ns) (1)
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in which:

K(~p1...~pNν+Ns) =
Nν

∑
i=1

|~pi|2
2m

+
Nν+Ns

∑
i=Nν+1

|~pi|2
2ms

(2)

U(~r1...~rNν+Ns) =
Nν+Ns

∑
i<j

φij(~ri −~rj)

=
Nν

∑
i<j

φij(~ri −~rj) +
Ns

∑
i<j

φij(~ri −~rj) +
Nν

∑
i

Ns

∑
j

φij(~ri −~rj)

= UNν + UNs + UNν Ns (3)

where ~pi is the impulse of particle i, mν is the mass of a solute particle, ms is the mass of a
solvent particle, φij is the pair potential between particle i and j, and ~ri is the position of
particle i.

The canonical partition function (Z) describes the statistical properties of the system
for a given temperature, volume, and number of particles. The partition function is the sum
of all the different individual energy states in which the system can exist. The states of the
system are specified by both the position and the momentum of the particles. Applying the
partition function to dilute solutions makes it possible to reduce the many-body problem
in statistical mechanics to problems of one-body, two-body, three-body, etc.

Z(T, V, Nν, Ns) =
h−(3Nν+3Ns)

Nν!Ns!
×
∫

V
exp (−βH(pNν , pNs , qNν , qNs))

× d~r1...d~rNν+Ns d~p1...d~pNν+Ns (4)

where h is Plank’s constant and β =
1

kT
, in which k is Boltzmann’s constant.

Other thermodynamic variables, such as the Helmholtz free energy, the pressure
and the chemical potential can be expressed in terms of this function or its derivatives.
The Helmholtz free energy (A) for this system is then given by [26]:

A(T, V, Nν, Ns) = −kT ln(Z(T, V, Nν, Ns)) (5)

With the differential of the free energy given by:

dA = −SdT − pdV + ∑
i

µidNi (6)

Therefore, the pressure (p) is given by:

p = −
(

∂A
∂V

)
T,N

=
kT
Z

(
∂Z
∂V

)
T,N

(7)

and the chemical potential (µi) for component i is given by:

µi =

(
∂A
∂Ni

)
T,V,Nα 6=i

= − kT
Z

(
∂Z
∂Ni

)
T,V,Nα 6=i

(8)

Since we focus on particles with hard sphere interaction, we can integrate out the
momentum integrals in Equation (4).

Z(T, V, Nν, Ns) =
Λ−3Nν

ν Λ−3Ns
s

Nν!Ns!
×
∫

V
d~r1...d~rNν+Ns exp (−βU(~r1...~rNν+Ns)) (9)

Z(T, V, Nν, Ns) = Λ−3Nν
ν Λ−3Ns

s Q(T, V, Nν, Ns) (10)
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where Λ =

(
h2

2πmkT

)1/2

is the mean thermal wavelength and Q the configuration integral.

The configuration integral is the integral over all possible configurations of the N molecules
in the system:

Q(T, V, Nν, Ns) =
1

Nν!Ns!

∫
V

d~r1...d~rNν+Ns × exp (−βU(~r1, ...,~rNν+Ns)) (11)

The first three configuration integrals are:

Q1 =
∫

V
d~r1 = V (12)

Q2 =
1
2

∫
V

d~r1d~r2 exp[−βφ(|~r1 −~r2|)] (13)

Q3 =
1
6

∫
V

d~r1d~r2d~r3

× exp{−β[φ(|~r1 −~r2|) + φ(|~r1 −~r3|) + φ(|~r2 −~r3|)]} (14)

The configuration integral Q1 indicates that there is only one particle present in our
selected volume. Q2 indicates there are two particles present in our selected volume:
interacting or not interaction. Q3 indicates there are three particles present in the volume.
These particles can interact with each other or not interact. The number of combinations of
interactions increases significantly when increasing the number of particles.

The configuration integrals can be represented in diagrams where each dot is a particle
present in the volume and a line between the dots indicates interaction:

Q1 = (15)

Q2 =
1
2
( + ) (16)

Q3 =
1
6

(
+ 3 + 3 +

)
(17)

In our analysis, we consider solutions where the solvent particles are present in a much
larger number than the solute particles. This means that solute particles have relatively low
influence on the statistics of the solvent particles. Following the MacMillan-Mayer theory
we can describe the interactions between the solute particles by a potential of mean force
equation and thus can apply additivity of the particle-particle interactions in Equation (3) [27].

U(~r1, ...,~rNν+Ns) = UNν Nν(~r1, ...,~rNν) + UNν Ns(~r1, ...,~rNν+Ns) + UNs Ns(~rNν+1, ...,~rNν+Ns) (18)

The potential of mean force for dissolved particles (W) is defined according to:

exp(−βW(~r1, ...,~rNν)) =

∫
d~rNν+1, ..., d~rNν+Ns exp(−βU(~r1, ...,~rNν+Ns))(∫

d~rNν+1, ..., d~rNν+Ns

× exp(−βUNs Ns(~rNν+1, ...,~rNν+Ns))

) (19)

Using Equations (11) and (19), the configuration integral becomes [28]:

Q(T, V, Nν, Ns) =
1

Nν!

∫
d~r1...d~rN exp[−βWν(~r1, ...,~rNν)]×

1
Ns!

∫
d~rNν+1...d~rNν+Ns

× exp[−βUNs Ns(~rN+1, ...,~rN+Ns)]

= QW(T, V, Nν, µs)Qs(T, V, Ns) (20)

The Helmholtz free energy Equation (5) of the system then becomes the sum of the
Helmholtz free energy of the solvent and the Helmholtz free energy of the solute:

A(T, V, Nν, NS) = −kT ln(ZW(T, V, Nν, µs))− kT ln(Zs(T, V, Ns)) (21)
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2.2. Second Virial Coefficient of a Dilute Solution with a Single Solute Component

Similar to the expansion of the universal gas law by a virial expansion for real gasses,
we can write a virial expansion for the osmotic pressure, Π, of a solution according to:

βΠ = ρ + B2(T, µs)ρ
2 + B3(T, µs)ρ

3 + ... (22)

With ρ as the number density of the component
(

Nν

V

)
, B2 as the second virial coeffi-

cient, and B3 as the third virial coefficient. The second virial coefficient accounts for the
increase in osmotic pressure due to particle pairwise interaction. The third virial coeffi-
cient accounts for the interaction between three particles. The equation can be expanded
for higher densities with Bn, the nth virial coefficient, which accounts for the interaction
between n different particles.

Until now, we have been using the canonical ensemble to describe the system. In the
canonical ensemble, the number of particles (Nν + Ns), the temperature (T), and the
volume (V) are fixed. The restraint of constant number of particles becomes tedious when
accounting for the interaction between the different particles, therefore we will use the
grand canonical ensemble to derive the virial coefficients. In the grand canonical ensemble,
the temperature (T) and the volume (V) are fixed, as well as the chemical potentials (µi).

We can write the grand canonical partition function independent on Nν and Ns by
performing a transformation of the number of compounds by the chemical potential µν

and µs [26].

Ξ(T, V, µν, µs) =
∞

∑
Nν=0

eβµν Nν ×
∞

∑
Ns=0

eβµs Ns Z(T, V, Nν, Ns)

=
∞

∑
Nν=0

eβµν Nν ZW(T, V, Nν, µs)× Ξs(T, V, µs)

= ΞW(T, V, µν, µs)Ξs(T, V, µs) (23)

The equation of state for the system is given by:

β(p + Π) =
ln (Ξ(T, V, µν, µs))

V
=

ln (Ξs(T, V, µs))

V
+

ln (ΞW(T, V, µν, µs))

V
(24)

In which p is the pressure in the solvent reservoir and the osmotic pressure is given by:

βΠ =
ln (ΞW(T, V, µν, µs))

V
(25)

We can now define the activity as z ≡ eβµ

Λ3

ΞW(T, V, zν, µs) =
∞

∑
N=0

QN(T, V, Nν, µs)zN
ν = 1 + Q1z + Q2z2 + Q3z3 + ... (26)

The osmotic pressure can be written in terms of the logarithm of the grand canoni-
cal ensemble.

βΠ(T, V, zν, µs)V = ln(ΞW(T, V, zν, µS))

= ln(1 + Q1z + Q2z2 + Q3z3 + ...)

= Q1z +
(

Q2 −
1
2

Q2
1

)
z2 +

(
Q3 −Q1Q2 +

1
3

Q3
1

)
z3 + ... (27)
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This can be written as:

βΠ =
∞

∑
l=1

blzl (28)

The coefficient bl is also known as the cluster-integral and it indicats interaction among
l compounds.

b1 =
Q1

V
(29)

b2 =
Q2 − 1

2 Q2
1

V
(30)

b3 =
Q3 −Q1Q2 +

1
3 Q3

1
V

(31)

Just as that configuration integrals can be written in diagrams (see Equations (15)–(17)),
the cluster integrals can also be written as diagrams [29]:

b1 =
1
V
( ) (32)

b2 =
1

2V
( ) (33)

b3 =
1

6V

(
3 +

)
(34)

Two particle interactions can be defined by the Mayer f-function:

f12 = exp(−βW12)− 1

This can be represented by:

1 2

Substituting the Mayer f-function into the cluster integrals we get:

b1 =
1
V

∫
V

d~r1 = 1 (35)

b2 =
1

2V

∫
V

d~r1d~r2 f12 = 2π
∫ ∞

0
drr2 f (r) (36)

b3 = 2b2
2 +

1
6

∫
d~r
∫

d~r′ f (r) f (r′) f (|~r−~r′|) (37)

In order to find the relationship between cluster integrals and the virial coeffcients,
we need to do several substitutions and inversions using also (28):

ρ =
N
V

= βz
(

∂Π
∂z

)
T =

∞

∑
l=1

lblzl = z + 2b2z2 + 3b3z3 + ... (38)

Inverting the series we obtain for the activity [30]:

z = ρ− 2b2ρ2 + (8b2
2 − 3b3)ρ

3 + ... (39)

This can be substituted in the equation for the pressure (Equation (28)):

βΠ = ρ− b2ρ2 + 2(2b2
2 − b3)ρ

3 + ... (40)
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Comparing this equation to Equation (22), we see that the second virial coefficient is
equivalent to −b2:

B(T, µs) = −b2 = − 1
2V

( )

= 2π
∫ ∞

0
drr2(1− exp (−βW(r)))

= −2π
∫ ∞

0
drr2 f (r) (41)

For hard spheres, we define the interaction potentials as for components with a
diameter σ:

W(r)HS =

{
0, r > σ
∞, r ≤ σ

(42)

The second virial coefficient then becomes:

B(T, µs) =
2π

3
(σ)3 (43)

2.3. Second Virial Coefficient of Solutions with Multiple Solute Compounds

When there are more distinct compounds (ν1, .., νn) in the solution with n the total
number of distinguishable compounds, or species, there are two main types of two particle
interactions that can occur:

• interactions between indistinguishable components—i.e., components of the same
species:

– , , , ,...

• interactions between distinguishable components, i.e., components of different
species:

– , , , ,...

We can write the configuration integral QN in general as:

QN =
1

Nν1 !...Nνn !
×
∫

V
d~r1ν1

, ...,~rNν1
, ...,~r1νn

, ..,~rNνn
× exp

[
−β

N

∑
i<j

Wxy(rij)

]
(44)

In which: N =
n

∑
i

Nνi or the total number of particles in the configuration and x and y

can be of any type νn in the mixture.
The general equation for the partition function in the grand canonical ensemble then

becomes:
Ξ(T, V, zν1 , ..., zνn , µs) = ∑

Nν1 ,...,Nνn>0
QN(V, T)z

Nν1
ν1 ...zNνn

νn (45)

In the case of two-particle interaction we have interaction between components of the
same species and interaction between components of different species, so we obtain for Q2
two types of configuration integrals (comparable to Equation (13)):

Q2,xx =
1
2!

∫
V

d~r1x d~r2x exp [−βWxx(r1x r2x )]

=
1
2

V2 + 2πV
∫ ∞

0
drr2 fx(r) (46)

Q2,xy =
1

1!1!

∫
V

d~r1x d~r2y exp
[
−βWxy(r1x r2y)

]
= 2

(
1
2

V2 + 2πV
∫ ∞

0
drr2 fxy(r)

)
(47)
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In which x and y can be of any type νn in the mixture and y 6= x.
Additionally, for the cluster integrals we obtain two types of integrals (comparable to

Equation (36)):

b2,xx = 2π
∫ ∞

0
drr2(exp [−βWxx]− 1)

= 2π
∫ ∞

0
drr2 fx(r) (48)

b2,xy = 4π
∫ ∞

0
drr2(exp

[
−βWxy

]
− 1
)

= 2
(

2π
∫ ∞

0
drr2 fxy(r)

)
(49)

In which x and y can be of any type νn in the mixture and y 6= x.
The general equation for the osmotic pressure then becomes (comparable to

Equation (38)):

βΠ = b1,ν1 zν1 + b1,ν2 zν2 + b1,ν3 zν3 + ... + b2,ν1ν1 z2
ν1
+ b2,ν1ν2 zν1 zν2 + b2,ν1ν3 zν1 zν3 + ...

=
n

∑
i

b1,νi zνi +
n

∑
i

b2,νiνi z
2
νi
+

n

∑
i<j

b2,νiνj zνi zνj + ... (50)

For the second virial coefficient, we obtain two types (comparable to Equation (41)):

B∗xx = 2π
∫ ∞

0
drr2(1− exp[−βWxx])

= −2π
∫ ∞

0
drr2 fx(r) = Bxx (51)

B∗xy = 4π
∫ ∞

0
drr2(1− exp

[
−βWxy

]
)

= 2
(
−2π

∫ ∞

0
drr2 fxy(r)

)
= 2Bxy (52)

In which x and y can be of any type νn in the mixture and y 6= x. Note: we define a
B∗ to have all the second virial equations of the same form: −2π

∫ ∞
0 drr2 f (r), with f (r)

dependent on the type of interaction.
For additive hard sphere interaction, the interaction potential for particles of different

species is given by:

W(r)HS =

{
0, r > σij
∞, r ≤ σij

(53)

With σij = (σi + σj)/2, the distance between the centers of the two components. When
the interaction is not additive, the distance of closest approach of the centers of the two
components becomes: σij = 1/2(σi + σj)(1+∆), in which ∆ accounts for the non-additivity
of the interaction between the particles that are different.

For the second virial coefficient we find (comparable to Equation (43)):

Bxx =
2π

3
(σx)

3 (54)

Bxy =
2π

3

((
σx + σy

2

)
(1 + ∆)

)3
(55)

(Again, for additive hard sphere interactions, ∆ = 0).
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The general equation for the osmotic pressure for a dilute mixture is then given by:

βΠ = ρ + Bν1ν1 ρ2
ν1
+ 2Bν1ν2 ρν1 ρν2 + 2Bν1ν3 ρν1 ρν3 ...

= ρ +
n

∑
i

n

∑
j

Bνiνj ρνi ρνj + ... (56)

The second virial coefficients can be represented in matrix form:

B =

B11 · · · B1n
...

. . .
...

B1n · · · Bnn

 (57)

In which we abbreviate the notation Bνiνj to Bij, and similarly, the densities ρνi by ρi.

2.4. Stability of a Mixture

The stability of a mixture is dependent on the second derivative of the free energy.
If the second derivative of the mixture becomes zero, the mixture is at the boundary of
becoming unstable. Unstable mixtures have a negative second derivative [31,32].

The free energy of a mixture is given by [26]:

A(T, V, Nν1 , ..., Nνn , µs) = −kT ln(Z(T, V, Nν1 , ..., Nνn , µs)) (58)

The differential is given by:

dA = −SdT − pdV +
n

∑
i

µidNi (59)

In which the chemical potential (the first partial derivative of the free energy with
respect to number of particles (Ni)) for component i is given by:

µi = µ0
i + kT ln(ρi) + 2kT

(
n

∑
j

Bijρj

)
(60)

For a mixture with n distinguishable components, this second partial derivatives can
be represented by a n× n matrix of the first partial derivatives of the chemical potential of
each component.

This results in the following general stability matrix:

M1 =


∂µ1

∂N1
· · · ∂µ1

∂Nn
...

. . .
...

∂µn

∂N1
· · · ∂µn

∂Nn



=


2B11 +

1
ρ1
· · · 2B1n

...
. . .

...

2B1n · · · 2Bnn +
1
ρn

 (61)

When this matrix is positive definite, the mixture is stable [33]. Based on this criterion,
when one of the eigenvalues is not positive, the mixture becomes unstable. When the
matrix has one zero eigenvalue and is otherwise positive definite, the mixture is on the
spinodal and is at the limit of stability [34].
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In the case of a binary mixture (n = 2), the spinodal is also equal to the determinant
of matrix M1. For mixtures with more components, this is not always the case anymore,
as with an increasing number of components, there are an increasing number of eigenvalues
for matrix M1 that can become zero [33]. This can be resolved by checking if the stability
matrix is positive definite for small changes of in the concentrations of the components
near the concentration where the det(M1) is zero.

The determinant of matrix M1 for a monodisperse binary mixture is given by:

det(M1) = 4(B11B22 − B2
12)ρ1ρ2 + 2B11ρ1 + 2B22ρ2 + 1 (62)

Often, however, components are not a 100% monodisperse. Let’s now investigate how
the equation for the spinodal of the mixture changes when we introduce polydispersity in
one of the components. We define a binary mixture in which one component (component 2)
is polydisperse. The concentration of each of the particles in the polydisperse component
can be represented by:

ρ2 =
[
x1 · · · xm

]
× ρ2tot

With:

ρ2tot =
m

∑
i

ρ2i

Then:
x = x1 + · · ·+ xm = 1

Each of the components in this mixture has a corresponding virial coefficient and cross
virial coefficient.

B =

B11 · · · B1m
...

. . .
...

B1m · · · Bmm

 (63)

Let us investigate the equations for a simple polydisperse mixture, in which the
polydisperse component consists out of two sub-components (a and b, n = 3) (Figure 1).
For the density and for the virial coefficient matrix we obtain:

ρ2 =
[
xa xb

]
× ρ2tot

With:
x = xa + xb

B =

 B11 B12a B12b
B12a B2a2a B2a2b
B12b B2a2b B2b2b

 (64)

The stability matrix becomes:

M1 =



2B11 +
1
ρ1

2B12a 2B12b

2B12a 2B2a2a +
1

ρ2a

2B2a2b

2B12b 2B2a2b 2B2b2b +
1

ρ2b


(65)
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Figure 1. Graphical representation of a simple polydisperse mixture, in which the polydisperse
component consists of two sub-components (a and b, n = 3), second virial coefficients are indicated.
The mixture demixes into two phases: one phase enriched in the small component and one phase
enriched in the large polydipserse component.

This results in the following determinant for the stability matrix:

det(M1) = 2B11ρ1 + 2xaB2a2a ρ2 + 2xbB2b2b ρ2 − 4xaB2
12a

ρ1ρ2 − 4xbB2
12b

ρ1ρ2

− 4xaxbB2
2a2b

ρ2
2 + 4xaB11B2a2a ρ1ρ2 + 4xbB11B2b2b ρ1ρ2

+ 4xaxbB2a2a B2b2b ρ2
2 − 8xaxbB11B2

2a2b
ρ1ρ2

2

− 8xaxbB2
12b

B2a2a ρ1ρ2
2 − 8xaxbB2

12a
B2b2b ρ1ρ2

2

+ 16xaxbB12a B12b B2a2b ρ1ρ2
2 + 8xaxbB11B2a2a B2b2b ρ1ρ2

2 + 1 (66)

By increasing the number of sub-components, the number of terms in this determinant
increases rapidly. This forms an incentive to try and treat the polydisperse component as if
it is effectively one component. A natural and convenient choice for this route is coupled
to the experimental determination of virial coefficients using membrane osmometry [35].
Namely, membrane osmometry yields values that are number averaged. Thus, we choose
number-averaged virial coefficients.

The number averaged virial coefficient of a mixture can be written as:

Bmix = B11x2
1 + 2B12x1x2 + 2B13x1x3...

=
m

∑
i

m

∑
j

Bijxixj
(67)

In which Bii is the second virial coefficient of the ith particle, Bij is the second cross
virial coefficient of the ith particle and the jth particle, and xi is the fraction of the ith
particle, ∑ xi = 1.
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Using this definition, we can map the polydisperse mixture by a 2× 2 matrix of virial
coefficients. We will refer to this 2× 2 matrix of effective virial coefficients.

B11e f f = B11

B12e f f =
m

∑
i

B[1; 1, · · · , m](i)xi

B22e f f =
m

∑
i

m

∑
j

xiB[1, · · · , m; 1, · · · , m](ij)xj

Be f f =

[
B11e f f B12e f f

B12e f f B22e f f

]
(68)

For the mixture we considered in Equation (64), the effective virial coefficients become:

B11e f f = B11

B12e f f = xaB12a + xbB12b

B22e f f = x2
a B2a2a + 2xaxbB2a2b + x2

b B2b2b (69)

The effective stability matrix for this mixture then becomes:

M1e f f =


2B11e f f +

1
ρ1

2B12e f f

2B12e f f 2B22e f f +
1
ρ2

 (70)

The determinant then becomes:

det(M1e f f ) = 4(B11e f f B22e f f − B2
12e f f

)ρ1ρ2 + 2B11e f f ρ1 + 2B22e f f ρ2 + 1

= 4
(

B11(x2
a B2a2a + 2xaxbB2a2b + x2

b B2b2b) −(xaB12a + xbB12b)
2
)

ρ1ρ2

+ 2B11ρ1 + 2
(

x2
a B2a2a + 2xaxbB2a2b +x2

b B2b2b

)
ρ2 + 1

= 2B11ρ1 + 2x2
a B2a2a ρ2 + 2x2

b B2b2b ρ2 − 4x2
a B2

12a
ρ1ρ2 − 4x2

b B2
12b

ρ1ρ2

+ 4x2
a B11B2a2a ρ1ρ2 + 4x2

b B11B2b2b ρ1ρ2 + 4xaxbB2a2b ρ2

+ 8xaxbB11B2a2b ρ1ρ2 − 8xaxbB12b B12a ρ1ρ2 + 1 (71)

It is clear that Equations (66) and (71) are different. Using the effective virial coefficients
to determine stability of the mixture possibly results in deviations.

2.5. Critical Points

In a binary mixture, the critical point is a stable point which lies on the stability limit
(spinodal) [34] and where the phase boundary and spinodal coincide. In mixtures of more
components these become plait points. Critical points and plait points are in general
concentrations at which two phases in equilibrium become indistinguishable [36].

There are two criteria that have to be used to find critical points. The first one is
det(M1) = 0, which is the equation for the spinodal. The other criterion is based on the fact
that at the critical point, the third derivative of the free energy should also be zero. For a
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multicomponent system, this criterion can be reformulated using Legendre transforms as
det(M2) = 0 [31,37], where:

M2 =


∂µ1

∂N1
· · · ∂µn

∂Nn
...

. . .
...

∂M1

∂N1
· · · ∂M1

∂Nn

 (72)

Matrix M2 is matrix M1 with one of the rows replaced by the partial derivatives of the
determinant of matrix M1. Note: it does not matter which row of the matrix is replaced.

For a monodisperse binary mixture, this results in the following two matrices for the
critical point:

M1 =


2B11 +

1
ρ1

2B12

2B12 2B22 +
1
ρ2


In addition:

M2 =


2B11 +

1
ρ1

2B12

−2B22ρ2 + 1
ρ2

1ρ2
−2B11ρ1 + 1

ρ1ρ2
2


The set of equations that needs be solved for the critical point is:{

det(M1) = 1 + 2B11ρ1 + 2B22ρ2 − 4B2
12ρ1ρ2 + 4B11B22ρ1ρ2 = 0

det(M2) = (2B12ρ2)(1 + 2B22ρ2)− (1 + 2B11ρ1)
2 = 0

(73)

For the earlier considered polydisperse mixture containing the two sub-components
(a and b, n = 3), we obtain:

M2 =


2B11 +

1
ρ1

2B12a 2B12b

2B12a 2B2a2a +
1

ρ2a

2B2a2b

P1 P2 P3

 (74)

With:

P1 = −

(
−4xaxbB2

2a2b
ρ2

2 + 2xaB2a2a ρ2

+ 2xbB2b2b ρ2 + 4xaxbB2a2a B2b2b ρ2
2 + 1

)
xaxbρ2

1ρ2
2

P2 = −

(
−4xbB2

12b
ρ1ρ2 + 2B11ρ1 + 2xbB2b2b ρ2

+ 4xbB11B2b2b ρ1ρ2 + 1

)
x2

a xbρ1ρ3
2)

P3 = −

(
−4xaB2

12a
ρ1ρ2 + 2B11ρ1 + 2xaB2a2a ρ2

+ 4xaB11B2a2a ρ1ρ2 + 1

)
xax2

bρ1ρ3
2
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In general, Pi can be found using the following equation:

Pi = −
1
ρ2

i
M1,(ii) (75)

In which M1,(ii) is the minor of matrix M1 at the ith-row and ith-column.
Combining det(M1) and det(M2) results in the following set of equations:

det(M1) = 2B11ρ1 + 2xaB2a2a ρ2 + 2xbB2b2b ρ2 − 4xaB2
12a

ρ1ρ2 − 4xbB2
12b

ρ1ρ2

−4xaxbB2
2a2b

ρ2
2 + 4xaB11B2a2a ρ1ρ2 + 4xbB11B2b2b ρ1ρ2 + 4xaxbB2a2a B2b2b ρ2

2
−8xaxbB11B2

2a2b
ρ1ρ2

2 − 8xaxbB2
12b

B2a2a ρ1ρ2
2 − 8xaxbB2

12a
B2b2b ρ1ρ2

2
+16xaxbB12a B12b B2a2b ρ1ρ2

2 + 8xaxbB11B2a2a B2b2b ρ1ρ2
2 + 1 = 0

det(M2) = 16x2
a B2a2a B2

11B2a2b ρ2
1ρ2

2 + 8xaB2
11B2a2b ρ2

1ρ2 − 16x2
b B2

11B2
2b2b

ρ2
1ρ2

2
−16xbB2

11B2b2b ρ2
1ρ2 + 16xbB11B2

12b
ρ2

1ρ2 − 4B2
11ρ2

1 − 16x2
a B11B2

12a
B2a2b ρ2

1ρ2
2

−16x2
a B2a2a B11B12a B12b ρ2

1ρ2
2 − 8xaB11B12a B12b ρ2

1ρ2
+32x2

b B11B2
12b

B2b2b ρ2
1ρ2

2 + 16x2
a B2a2a B11B2a2b ρ1ρ2

2
+8xaB11B2a2b ρ1ρ2 − 16x2

b B11B2
2b2b

ρ1ρ2
2 − 16xbB11B2b2b ρ1ρ2

−4B11ρ1 + 16x2
a B3

12a
B12b ρ2

1ρ2
2 − 8x2

a B2a2a B12a B12b ρ1ρ2
2

−4xaB12a B12b ρ1ρ2 − 8x2
a B2

12a
B2a2b ρ1ρ2

2 − 16x2
a x2

b B12a B2
2a2b

B2b2b ρ4
2

−8x2
a xbB12a B2

2a2b
ρ3

2 + 8xax2
b B12a B2

2b2b
ρ3

2 + 16x2
a x2

b B2a2a B12a B2
2b2b

ρ4
2

+16x2
aρbB2a2a B12a B2b2b ρ3

2 + 8xaxbB12a B2b2b ρ2
2 + 4x2

a B2a2a B12a ρ2
2

+2xaB12a ρ2 − 16x2
b B4

12b
ρ2

1ρ2 + 16x2
b B2

12b
B2b2b ρ1ρ2

2 + 8xbB2
12b

ρ1ρ2

+16x2
a x2

b B12b B3
2a2b

ρ4
2 − 16x2

a x2
b B2a2a B12b B2a2b B2b2b ρ4

2
−8xax2

b B12b B2a2b B2b2b ρ3
2 − 8x2

a xbB2a2a B12b B2a2b ρ3
2 − 4xaxbB12b B2a2b ρ2

2
+4x2

a B2a2a B2a2b ρ2
2 + 2xaB2a2b ρ2 − 4x2

b B2
2b2b

ρ2
2 − 4xbB2b2b ρ2 − 1 = 0

Since, in this set of equations, there are more higher-order terms present, it is possible
that this results in multiple plait points, depending on the concentration of each of the
components in the mixture. Care should be taken that the solutions of the set of equations
have concentrations at the limit of stability; this can be done by checking the eigenvalues
of the stability matrix.

If we use the effective virial coefficients for this mixture as defined in Equation (69),
we obtain:

M2e f f =


2B11e f f +

1
ρ1

2B12e f f

−
2B22e f f ρ2 + 1

ρ2
1ρ2

−
2B11e f f ρ1 + 1

ρ1ρ2
2


The determinant of this matrix becomes:

det(M2e f f ) = −4B2
11e f f ρ2

1 − 4B11e f f ρ1 + 4B12e f f B22e f f ρ2
2 + 2B12e f f ρ2 − 1

= −4B2
11ρ2

1 − 4B11ρ1 + 4(xaB12a + xbB12b)× (x2
a B2a2b + 2xaxbB2a2b

+ x2
b B2b2b)ρ

2
2 + 2(xaB12a + xbB12b)ρ2 − 1

= −4B2
11ρ2

1 − 4B11ρ1 + 4x3
a B12a B2a2a ρ2

2 + 8x2
a xbB12a B2a2b ρ2

2

+ 4xax2
b B12a B2b2b ρ2

2 + 4x2
a xbB12b B2a2a ρ2

2 + 8xax2
b B12b B2a2b ρ2

2

+ 4x3
b B12b B2b2b ρ2

2 + 2xaB12a ρ2 + 2xbB12b ρ2 − 1
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This results in the following system of equations for the critical point:

det(M1e f f ) = 2B11ρ1 + 2x2
a B2a2a ρ2 + 2x2

b B2b2b ρ2 − 4x2
a B2

12a
ρ1ρ2 − 4x2

b B2
12b

ρ1ρ2

+4x2
a B11B2a2a ρ1ρ2 + 4x2

b B11B2b2b ρ1ρ2 + 4xaxbB2a2b ρ2 + 8xaxbB11B2a2b ρ1ρ2
−8xaxbB12b B12a ρ1ρ2 + 1 = 0

det(M2e f f ) = −4B2
11ρ2

1 − 4B11ρ1 + 4x3
a B12a B2a2a ρ2

2 + 8x2
a xbB12a B2a2b ρ2

2
+4xax2

b B12a B2b2b ρ2
2 + 4x2

a xbB12b B2a2a ρ2
2 + 8xax2

b B12b B2a2b ρ2
2

+4x3
b B12b B2b2b ρ2

2 + 2xaB12a ρ2 + 2xbB12b ρ2 − 1 = 0

Additionally, for the third derivative of the Helmholtz free energy, we see that reducing
the polydispersity by using the effective virial coefficients, results in fewer terms in the
equation and possible deviations in determining the critical point.

2.6. Phase Boundary

When a mixture becomes unstable and phase separates into two or more phases,
the chemical potential of each component and the osmotic pressure is the same in all
phases [26]. 

βΠI = βΠI I = · · ·
βµI

1 = βµI I
1 = · · ·

...

βµI
n = βµI I

n = · · ·

(76)

where the phases are denoted by I, I I, ....
For a system that separates into two phases, we obtain, using Equations (56) and (60),

the following set of equations for the general case of n components:

ρI
1 + · · ·+ ρI

n+
n

∑
i

n

∑
j

Bijρ
I
i ρI

j

=

ρI I
1 + · · ·+ ρI I

n +
n

∑
i

n

∑
j

Bijρ
I I
i ρI I

j

ln(ρI
1) + 2

(
n

∑
j

B1jρ
I
j

)
= ln(ρI I

1 ) + 2

(
n

∑
j

B1jρ
I I
j

)
...

ln(ρI
n) + 2

(
n

∑
j

Bnjρ
I
j

)
= ln(ρI I

n ) + 2

(
n

∑
j

Bnjρ
I I
j

)

This set of equations has 2× n unknowns and n + 1 equations. The set of equations
can be solved by fixing one of the concentrations for one phase and the ratio of the
concentrations of the other components for the same phase. To solve this set of equations
in order to find the concentration of each component in each phase, without fixing any of
the concentrations, we need therefore an extra set of equations.

This extra set of equations stems from the fact that during phase separation no particles
are lost and no new particles are created. The total number of components in the system is
therefore given by:

N =
n

∑
i

N I
i +

n

∑
i

N I I
i (77)
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Additionally, the total volume, V, of the system does not change. The total volume of
the system is given by:

V = V I + V I I (78)

The concentrations of each component in each phase are thus given by:

ρI
1 =

N I
1

V I · · · ρI
n =

N I
n

V I

ρI I
1 =

N I I
1

V I I · · · ρI I
n =

N I I
n

V I I

(79)

The total number of compounds in the system can be found using:

ρ =
n

∑
i

ρi =

n
∑
i

Ni

V
=

n
∑
i

N I
i +

n
∑
i

N I I
i

V I + V I I

This can be rewritten to:

ρ =
n

∑
i

N I
i

V I + V I I +
n

∑
i

N I I
i

V I + V I I

=
V I

V I + V I I

n

∑
i

N I
i

V I +
V I I

V I + V I I

n

∑
i

N I I
i

V I + V I I

= α
n

∑
i

ρI
i + (1− α)

n

∑
i

ρI I
i =

n

∑
i

ρi

With:

α =
V I

V I + V I I (80)

This results in an extra set of n equations and one more unknown (α). The complete
set of equations to solve for the binodal then becomes:

ρI
1 + · · ·+ ρI

n+
n

∑
i

n

∑
j

Bijρ
I
i ρI

j

=

ρI I
1 + · · ·+ ρI I

n +
n

∑
i

n

∑
j

Bijρ
I I
i ρI I

j

ln(ρI
1) + 2

(
n

∑
j

B1jρ
I
j

)
= ln(ρI I

1 ) + 2

(
n

∑
j

B1jρ
I I
j

)
...

ln(ρI
n) + 2

(
n

∑
j

Bnjρ
I
j

)
= ln(ρI I

n ) + 2

(
n

∑
j

Bnjρ
I I
j

)
ρ1 = αρI

1 + (1− α)ρI I
1

...

ρn = αρI
n + (1− α)ρI I

n

Systems for which there are more than two distinguishable components (n > 2)
can theoretically have more than two coexisting phases, according to the Gibbs phase
rule. With an increasing number of phases, the set of equations to solve increases as
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well. The number of equations needed to solve for an arbitrary number of f phases is:
f × n + f − 1. The set of equations then becomes:

ρI
1 + · · ·+ ρI

n +
n

∑
i

n

∑
j

Bijρ
I
i ρI

j = ρI I
1 + · · ·+ ρI I

n +
n

∑
i

n

∑
j

Bijρ
I I
i ρI I

j

...

ρ
f−1
1 + · · ·+ ρ

f−1
n +

n

∑
i

n

∑
j

Bijρ
f−1
i ρ

f−1
j = ρ

f
1 + · · ·+ ρ

f
n +

n

∑
i

n

∑
j

Bijρ
f
i ρ

f
j

ln(ρI
1) + 2

(
n

∑
j

B1jρ
I
j

)
= ln(ρI I

1 ) + 2

(
n

∑
j

B1jρ
I I
j

)
...

ln(ρ f−1
1 ) + 2

(
n

∑
j

B1jρ
f−1
j

)
= ln(ρ f

1) + 2

(
n

∑
j

B1jρ
f
j

)
...

ln(ρI
n) + 2

(
n

∑
j

Bnjρ
I
j

)
= ln(ρI I

n ) + 2

(
n

∑
j

Bnjρ
I I
j

)
...

ln(ρ f−1
n ) + 2

(
n

∑
j

Bnjρ
f−1
j

)
= ln(ρ f

n) + 2

(
n

∑
j

Bnjρ
f
j

)

ρ1 = α1ρI
1 + α2ρI I

1 + · · ·+
(

1−
f−1

∑
i

αi

)
ρ

f
1

...

ρn = α1ρI
n + α2ρI I

n + · · ·+
(

1−
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∑
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)
ρ

f
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With:

α1 =
V I

f
∑
i

Vi

· · · α f−1 =
V f−1

f
∑
i

Vi

Now that we have the general equations for the phase boundary, let us investigate the
set of equations we need to solve for the mixtures we defined earlier. For a monodisperse
binary mixture the set of equations to solve for the phase boundary is given by:

ρI
1 + ρI

2 + B11ρI2

1 + 2B12ρI
1ρI

2 + B22ρI2

2 = ρI I
1 + ρI I

2 + B11ρI I2

1 + 2B12ρI I
1 ρI I

2 + B22ρI I2

2

ln(ρI
1) + 2B11ρI

1 + 2B12ρI
2 = ln(ρI I

1 ) + 2B11ρI I
1 + 2B12ρI I

2

ln(ρI
2) + 2B12ρI

1 + 2B22ρI
2 = ln(ρI I

2 ) + 2B12ρI I
1 + 2B22ρI I

2

ρ1 = αρI
1 + (1− α)ρI I

1

ρ2 = αρI
2 + (1− α)ρI I

2
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For the polydisperse binary mixture we considered earlier (with two sub-components
a and b, n = 3) this set of equations becomes:

ρI
1 + ρI

2a
+ ρI

2b
+ B11ρI2

1 + 2B12a ρI
1ρI

2a
+ 2B12b ρI

1ρI
2b

+B2a2a ρI2

2a
+ 2B2a2b ρI

2a
ρI

2a
+ B2b2b ρI2

2b
= ρI I

1 + ρI I
2a
+ ρI I

2b

+B11ρI I2

1 + 2B12a ρI I
1 ρI I

2a
+ 2B12b ρI I

1 ρI I
2b
+ B2a2a ρI I2

2a
+ 2B2a2b ρI I

2a
ρI I

2b
+ B2b2b ρI I2

2b

ln(ρI
1) + 2B11ρI

1 + 2B12a ρI
2a
+ 2B12b ρI

2b

= ln(ρI I
1 ) + 2B11ρI I

1 + 2B12a ρI I
2a
+ 2B12b ρI I

2b

ln(ρI
2a
) + 2B12a ρI

1 + 2B2a2a ρI
2a
+ 2B2a2b ρI

2b

= ln(ρI I
2a
) + 2B12a ρI I

1 + 2B2a2a ρI I
2a
+ 2B2a2b ρI I

2b

ln(ρI
2b
) + 2B12b ρI

1 + 2B2a2b ρI
2a
+ 2B2b2b ρI

2b

= ln(ρI I
2b
) + 2B12b ρI I

1 + 2B2a2b ρI I
2a
+ 2B2b2b ρI I

2b

ρ1 = αρI
1 + (1− α)ρI I

1

ρ2a = αρI
2a
+ (1− α)ρI I

2a

ρ2b = αρI
2b
+ (1− α)ρI I

2b

Note that the ratio between ρI
2a

and ρI
2b

is not necessarily the same as the ratio between
ρI I

2a
and ρI I

2b
, since fractionation between the components can occur.

Using the effective virial coefficients, we obtain:

ρI
1 + ρI

2 + B11e f f ρI2

1 + 2B12e f f ρI
1ρI

2 + B22e f f ρI2

2

= ρI I
1 + ρI I

2 + B11e f f ρI I2

1 + 2B12e f f ρI I
1 ρI I

2 + B22e f f ρI I2

2

ln(ρI
1) + 2B11e f f ρI

1 + 2B12e f f ρI
2 = ln(ρI I

1 ) + 2B11e f f ρI I
1 + 2B12e f f ρI I

2

ln(ρI
2) + 2B12e f f ρI

1 + 2B22e f f ρI
2 = ln(ρI I

2 ) + 2B12e f f ρI I
1 + 2B22e f f ρI I

2

ρ1 = αρI
1 + (1− α)ρI I

1

ρ2 = αρI
2 + (1− α)ρI I

2

It is clear from the equations that when using the effective virial coefficients for
calculating the phase boundary, all information about the (changes in) distribution of the
polydisperse component becomes untraceable.

We are calculating the transition from one-phase to two-phase systems and approach
this point from the one-phase lower-concentration regime.

3. Results and Discussion

In this work, we calculated the liquid-liquid phase diagram for a variety of binary
additive mixtures of a small hard sphere A and a larger hard sphere B with a size ratio
q = σA/σB = 1/10. We started by calculating the phase diagram of this monodisperse
mixture (Figure 2) and gradually introduced polydispersity into the composition of compo-
nent B (Figures 3–6). Component B is characterized by a degree of polydispersity (PD),
defined by:

PD =

√
∑ (σBi − σB)2 × NBi /NB

σB
× 100

For all particles, the concentrations are expressed as a dimensionless parameter accord-

ing to η =
πρσ3

6
. We calculated the critical point, the phase separation boundary, and the

spinodal of the various mixtures. Next to that, we also investigated the composition of the
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child phases, volume ratio between the phases (α), and the fractionation of the polydisperse
component B for a specific parent mixture.

In order to be able to compare our results with the monodisperse case, we first refer to
Figure 2, where we see that the binary mixture phase separates at very low volume fractions
of component A (ηAcrit = 0.007) and significantly higher concentrations of component B
(ηBcrit = 0.267). This high asymmetry in the position of the critical point and phase
boundary has also previously been reported by [38]. Note that even though the volume
fraction of the smaller spheres are very low, their number concentration is significantly
higher than the large spheres.

Figure 2. Phase diagram for monodisperse binary (component A and B) additive hard sphere mixture
with size ratio q = σA/σB = 1/10, plotted as a function of the partial packing fractions, ηA and ηB.
The spinodal (solid line) and binodal (dashed line) meet each other at the critical point (diamond).

3.1. Polydisperse Mixtures with 2 Sub-Components

In Figure 3, we show the phase diagram for the case of a slight polydispersity in
component B. Component B consists of two sub-components and has a PD = 4.00. These
components are additive spheres in two sizes (both present in the same amount), with the
number average size of the mixture equal to that of the size of the monodisperse mixture
of Figure 2. The mixture therefore consists of three components. We calculated the phase
diagram using both the simplified 2× 2 effective virial coefficient matrix described in
the theory (we refer to this as the effective mixture) and the full 3× 3 virial coefficient
matrix (to which we refer as the polydisperse mixture). The difference between the phase
boundary, spinodal and critical point of the monodisperse mixture and the effective mixture
is negligible. We see however that the introduction of the polydispersity causes the critical
point to shift to a higher volume fraction of component B (ηAcrit = 0.007, ηBcrit = 0.280) and
that especially at lower volume fraction of component B the phase separation boundary
shifts towards slightly lower packing fractions.
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Figure 3. Phase diagram for binary (component A and B) additive hard sphere mixture with size
ratio q = σA/σB = 1/10, component A is monodisperse, component B is polydisperse (see size
distribution, (PD = 4.00)), with a number average size 10 times the size of component A, plotted as a
function of the partial packing fractions, ηA and ηB. The spinodal (solid line) and binodal (dashed
line) meet each other at the critical point (diamond).

Figure 4. Phase diagram for binary (component A and B) additive hard sphere mixture with size
ratio q = σA/σB = 1/10, component A is monodisperse, component B is polydisperse (see size
distribution, SD twice of mixture in Figure 3), with a number average size 10 times the size of
component A, plotted as a function of the partial packing fractions, ηA and ηB. The spinodal (solid
line) and binodal (dashed line) meet each other at the critical point (diamond).
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For Figure 4, we increased the size difference between the smaller and the larger
spheres for component B, with the standard deviation twice the standard deviation of the
spheres in Figure 3 and PD = 8.00. The patterns we saw in Figure 3 are more pronounced
for this mixture: the increase in size difference causes the critical point to shift to higher
packing fractions for component B and lower packing fractions for component A (ηAcrit =
0.006, ηBcrit = 0.315). The phase boundary, i.e., the binodal, shifts to significantly lower
packing fractions, especially at lower volume concentrations of component B. For this
mixture we see also that the spinodal of the polydisperse mixture shifts towards lower
packing fractions of A. There is a slight difference between the positions of the binodal,
spinodal, and critical point of the monodisperse mixture and effective mixture.

In Figure 5, we introduced skewness in the size distribution of component B. For the
first two mixtures (Figure 5a,b), the ratio between the bigger and the smaller sub-component
was 25/75. The polydispersity for both mixtures is the same, PD = 6.93. For the other two
mixtures (Figure 5c,d), the ratio between the bigger and the smaller sub-component was
more extreme, namely 90/10, with PD = 4.80. For all these mixtures, we find that the criti-
cal point shifts towards higher packing fraction of component B ((ηAcrit = 0.006, ηBcrit 0.290)
for Figure 5a, (ηAcrit = 0.006, ηBcrit 0.326) for Figure 5b, (ηAcrit = 0.007, ηBcrit 0.276) for
Figure 5b, and (ηAcrit = 0.007, ηBcrit 0.304) for Figure 5d).

Next to this shift in critical point, we also see that the spinodal shifts towards lower
packing fractions of component A, and that the binodal shifts towards lower packing
fraction for lower concentrations of component B, although there is a difference in the
amount of shift. We kept the number average size of the spheres for component B the same
for all mixtures, meaning that the largest spheres in the mixture in Figures 5b,d are larger
than the largest spheres in the mixture in Figures 5a,c. From this we can conclude that
the larger spheres, even though they are smaller in number, have a higher impact on the
concentration of the critical point and the position of the phase boundary.

Looking at the different mixtures (Figures 3–5), we can conclude that polydispersity
shifts the critical point to higher packing fraction for component B and lower packing
fractions of component A compared to a monodisperse mixture with the same average
sizes. The phase boundary shifts to lower packing fractions at lower concentrations of
component B. The shift is dependent on the size distribution and then in a large part on
the size and the concentration of the largest particle in the mixture.

3.2. Polydispersity with 9 Sub-Components

Now that we have a bit of an understanding of how polydispersity influences the
critical point and the phase boundary, we increase the number of sub-components of B.
The mixtures in Figure 6 thus consist of ten components (one component A and nine
components B in varying amounts and sizes, with different degrees of polydispersity,
dependent on the considered distribution). We again calculated the phase diagram using
both the simplified effective 2× 2 virial coefficient matrix (the effective mixture) and the
full 10× 10 virial coefficient matrix (the polydisperse mixture). Table 1 gives the critical
points for the polydisperse mixtures and Table 2 allows for an easy comparison of the
different distributions.

From the figure and table, we can conclude that the standard deviation of the polydis-
perse component plays a big role in moving the critical point and phase boundary. The stan-
dard deviation for B in Figure 6b is twice the standard deviation for B in Figure 6a. It is also
clear that the type of distribution plays a significant role in the concentration of the critical
point and position of the phase boundary. The sizes in B for Figure 6b,e are the same, however,
each size is present with a different frequency. The distribution in Figure 6b is Gaussian and
the sizes in Figure 6e are bimodal, which means that the particles with sizes just larger and just
smaller than the mean are present in a larger number. This causes to shift the critical point to
slightly lower packing fraction of B in Figure 6e compared to Figure 6b. The distribution of B
in mixture Figure 3 is comparable to the mixture in Figure 6a, just with fewer sub-components.
The position of the critical point is for both mixtures very comparable. In the same way is the
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distribution of B in Figure 4 comparable to the mixture in Figure 6b,e. However, the increased
number of sub-components results in a slightly higher and lower concentration of the B
component at the critical point respectively.

The distributions of B in mixtures in Figure 6c,d are skewed. In this regard they are
comparable to the mixtures in Figure 5. For these mixtures we see that the right skewed
distribution also causes the critical point to move to higher concentrations of B compared
to the mixture with the left skewed distribution.

(a) Large amount of larger spheres. (b) Small amount of larger spheres.

(c) Large amount of larger spheres. (d) Small amount of larger spheres.

Figure 5. Phase diagram for binary (component A and B) additive hard sphere mixture with size ratio q = σA/σB = 1/10,
component A is monodisperse, component B is polydisperse (see size distribution), with a number average size 10 times
the size of component A, plotted as a function of the partial packing fractions, ηA and ηB. The spinodal (solid line) and
binodal (dashed line) meet each other at the critical point (diamond).
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(a) Narrow Gaussian distribution. (b) Broad Gaussian distribution.

(c) Left-skewed distribution. (d) Right-skewed distribution.

(e) Bimodal distribution.

Figure 6. Phase diagram for binary (component A and B) additive hard sphere mixture with size ratio q = σA/σB = 1/10,
component A is monodisperse, component B is polydisperse (see size distributions for the different distribution), with a
number average size 10 times the size of component A, plotted as a function of the partial packing fractions, ηA and ηB.
The spinodal (solid line) and binodal (dashed line) meet each other at the critical point (diamond).
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Table 1. Critical points for the different binary mixtures depending on the distribution of component B, see also
Figures 2–6 and phase-separated concentrations and volume fraction α of the different mixtures for specific parent concen-
tration (ηAparent = 0.010, ηBparent = 0.200), depending on the distribution of component B; see Table 2 for the distribution of
component B in each phase.

Composition of Component B ηcrit Top Phase Bottom Phase α

Figure 2: Monodisperse (PD: 0.00) (0.007, 0.267) η (0.012,0.030) η (0.004,0.849) 0.793
PD: 0.00, Size: 1.00 PD: 0.00, Size: 1.00

Figure 3: Narrow 2 peaks (PD: 4.00) (0.007, 0.280) η (0.011,0.034) η (0.004,0.881) 0.804
PD: 3.45, Size: 0.98 PD: 3.97, Size: 1.00

Figure 4: Broad 2 peaks (PD: 8.00) (0.006, 0.315) η (0.011,0.045) η (0.003,0.994) 0.837
PD: 4.86, Size: 0.93 PD: 7.58, Size: 1.02

Figure 5a: Left skewed 2 peaks (PD: 6.93) (0.006, 0.290) η (0.011,0.037) η (0.004,0.952) 0.822
PD: 7.92, Size: 0.93 PD: 5.57, Size: 1.02

Figure 5b: Right skewed 2 peaks (PD: 6.93) (0.006, 0.326) η (0.011,0.044) η (0.004,0.941) 0.826
PD: 2.36, Size: 0.96 PD: 7.33, Size: 1.01

Figure 5d: Left skewed 2 peaks extreme (PD: 4.80) (0.007, 0.276) η (0.011,0.032) η (0.004,0.895) 0.805
PD: 8.12, Size: 0.96 PD: 3.53, Size: 1.01

Figure 5c: Right skewed 2 peaks extreme (PD: 4.80) (0.007, 0.304) η (0.011,0.036) η (0.004,0.885) 0.807
PD: 1.20, Size: 0.98 PD: 5.13, Size: 1.00

Figure 6a: Narrow Gaussian (PD: 4.05) (0.007, 0.281) η (0.011,0.034) η (0.004,0.881) 0.804
PD: 3.90, Size: 0.98 PD: 3.96, Size: 1.00

Figure 6b: Broad Gaussian (PD: 8.11) (0.006, 0.325) η (0.011,0.042) η (0.003,0.980) 0.832
PD: 7.14, Size: 0.93 PD: 7.36, Size: 1.02

Figure 6c: Left skewed (PD: 6.02) (0.007, 0.291) η (0.011,0.039) η (0.004,0.918) 0.817
PD: 4.33, Size: 0.96 PD: 6.03, Size: 1.01

Figure 6d: Right skewed (PD: 6.02) (0.006, 0.308) η (0.011,0.036) η (0.004,0.921) 0.815
PD: 7.02, Size: 0.95 PD: 5.29, Size: 1.01

Figure 6e: Bimodal (PD: 7.44) (0.006, 0.313) η (0.011,0.042) η (0.004,0.969) 0.830
PD: 6.08, Size: 0.94 PD: 6.94, Size: 1.02

3.3. Fractionation of Polydisperse Component

Upon phase separation, particles will move to a preferential phase in order to minimize
the Helmholtz free energy. One phase is enriched in component A, whilst the other is
enriched in component B. Even though each phase is enriched in one component, the other
component is still present in lower concentrations. We investigated the phase separation of
a specific parent mixture (ηAparent = 0.010, ηBparent = 0.200) for the different distributions of
component B, in terms of volume fraction of both components in each phase, degree of
polydispersity of component B, average size of component B in child phase compared to
the average size of component B in the parent phase and the volume fraction of the phases
(α), see Table 2.
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Table 2. Phase separation of different mixtures and fractionation of component B for specific parent distribution (ηAparent =

0.010, ηBparent = 0.200), depending on distribution of component B, see also Figures 2–6.

Component B Parent Distribution Top Phase Bottom Phase

Figure 2: Monodisperse

Figure 3: Narrow 2 peak distribution

Figure 4: Broad 2 peak distribution

Figure 5a: Left skewed 2 peak distribution

Figure 5b: Right skewed 2 peak distribution

Figure 5d: Left skewed 2 peak distribution ex.

Figure 5c: Right skewed 2 peak distribution ext.

Figure 6a: Narrow Gaussian distribution

Figure 6b: Broad Gaussian distribution

Figure 6c: Left skewed distribution

Figure 6d: Right skewed distribution

Figure 6e: Bimodal distribution

The polydispersity in the sizes of component B in the parent phase causes the significant
fractionation of component B in the child phases. The phase enriched in component A,
the smaller component, contains also relatively more of the smaller components of B than the
phase enriched in component B. The size ratio of the average size of component B compared
to the average size of component B in the parent phase is smaller than 1. The polydispersity of
component B influences also both the composition of each phase as well as the volume fraction
of the phases. The volume fraction of the top phase, the phase enriched in component A (phase
with lowest volume fraction in components) increases with polydipsersity. The bottom phase
has a higher volume fraction of component B with higher polydispersity. In general, but most
pronounced for the mixture in Figure 5a, we observe that the smaller sub-components favor
the top phase (the phase enriched in the small particles A), while the larger sub-components
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favor the bottom phase (the phase enriched in the larger particles B). We like to note that these
observations as obtained from the virial approach are in line with previous theoretical work
using the UNIQUAC model by Kang and Sandler [22] and the Florry Huggins theory [39]
and also experimental work [7,40,41]. Ref. [42] also note that the skewness of the polydisperse
parent distribution plays an important role in the fractionation. Additionally, ref. [23] found
that the largest polydipserse particle favored the phase poor in the smallest particle. This
follows from the relatively increased size incompatibility between the smallest particle and
the largest particle in the system.

Depending on the type of distribution, phase separation causes the degree of polydis-
persity to decrease. This is in both phases for all mixtures with a symmetric distribution of
B in the parent phase. For these mixtures, the degree of polydispersity is at its lowest for
the phase enriched in A.

4. Conclusions

We find that the largest species in the polydisperse component causes the largest shift
in the position of the phase boundary, critical point, and spinodal compared to the binary
monodisperse binary mixtures. Upon phase separation, the polydisperse component
fractionates. The smaller species of the polydisperse component favor the phase enriched
in the small component, while the larger species remain in the phase enriched in the larger
component. The top phase, the phase enriched in the small component, has a larger volume
and this volume increases with polydispersity. The virial approach we used yields results
in line with those of previous theoretical and experimental work on polydisperse mixtures,
and at the same time allows for direct experimental testing using the virial coefficients
obtained from membrane osmometry.
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