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Simple Summary: We developed a predictive approach using different machine learning methods to
identify a number of genes that can potentially serve as novel diagnostic colon cancer biomarkers.

Abstract: Background: Colorectal cancer (CRC) is the third leading cause of cancer-related death and
the fourth most commonly diagnosed cancer worldwide. Due to a lack of diagnostic biomarkers
and understanding of the underlying molecular mechanisms, CRC’s mortality rate continues to
grow. CRC occurrence and progression are dynamic processes. The expression levels of specific
molecules vary at various stages of CRC, rendering its early detection and diagnosis challenging
and the need for identifying accurate and meaningful CRC biomarkers more pressing. The advances
in high-throughput sequencing technologies have been used to explore novel gene expression,
targeted treatments, and colon cancer pathogenesis. Such approaches are routinely being applied
and result in large datasets whose analysis is increasingly becoming dependent on machine learning
(ML) algorithms that have been demonstrated to be computationally efficient platforms for the
identification of variables across such high-dimensional datasets. Methods: We developed a novel
ML-based experimental design to study CRC gene associations. Six different machine learning
methods were employed as classifiers to identify genes that can be used as diagnostics for CRC using
gene expression and clinical datasets. The accuracy, sensitivity, specificity, F1 score, and area under
receiver operating characteristic (AUROC) curve were derived to explore the differentially expressed
genes (DEGs) for CRC diagnosis. Gene ontology enrichment analyses of these DEGs were performed
and predicted gene signatures were linked with miRNAs. Results: We evaluated six machine learning
classification methods (Adaboost, ExtraTrees, logistic regression, naïve Bayes classifier, random forest,
and XGBoost) across different combinations of training and test datasets over GEO datasets. The
accuracy and the AUROC of each combination of training and test data with different algorithms
were used as comparison metrics. Random forest (RF) models consistently performed better than
other models. In total, 34 genes were identified and used for pathway and gene set enrichment
analysis. Further mapping of the 34 genes with miRNA identified interesting miRNA hubs genes.
Conclusions: We identified 34 genes with high accuracy that can be used as a diagnostics panel
for CRC.
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1. Introduction

Colorectal cancer (CRC) is the third most common cause of death due to cancer and
the fourth most commonly diagnosed cancer worldwide [1,2]. Considering demographic
estimates, nearly 2.2 million new cases and about 1.1 million deaths are expected by 2030,
and the global burden of CRC is estimated to increase by 60% [3]. CRC cancer is a genotype
and phenotype heterogeneous disease, characterized by a display of distinct molecular
signatures [4]. Around 1.4 million new cases and nearly 700,000 deaths were recorded in
2012 due to colorectal cancer [5].

Advancements in omics technologies, such as microarrays, RNAseq [6], next-generation
sequencing (NGS) [7], and mass spectrometry [8], have enabled employing molecular mark-
ers for the diagnosis of CRC [9]. For example, recent studies have used gene microarrays, as
well as high-throughput sequencing technologies, to explore differential expressing novel
genes in colon cancer [10]. Fang-Ze et al. [11] reported that CLCA1 may be a candidate
diagnostic and prognostic differentially expressed gene or biomarker for colon cancer.
Li et al. [12] identified CDK1 and CDC20 genes as candidate targets for diagnosis of CRC.
Most studies reported individual markers such as the CEA, CK19, and CK20 genes [13].
However, the resulting specificity (89%) and sensitivity (78%) of those biomarkers have
rendered them unsuitable for the development of a noninvasive diagnostic method for the
detection of colon cancer [14]. Dasi et al. [15] and Schiedeck et al. [16] investigated TERT,
GCC, MAGEA, TS, CGM2, and L6 as biomarkers for detecting colon cancer, reporting a sen-
sitivity and specificity of around 85% and 95%. Furthermore, Liu et al. [17] identified seven
prognostic genes, namely, TIMP1, LZTS3, AXIN2, CXCL1, ITLN1, CPT2, and CLDN23,
for the application of novel diagnostic and prognostic biomarkers for the treatment of
colon cancer.

Torres et al. [18] investigated the proteome profiling of human and mouse tissue
which revealed a novel association of cancer-associated fibroblasts with cancer progression.
This study further unveiled the role of the LTBP2, CDH11, OLFML3, CALU, CDH11, and
FSTL1 proteins in migration and invasion of CRC and, hence, their use as a biomarker.
Moreover, Kim et al. (2019) [19] identified abnormal concentrations of the taurine, alanine,
3-aminoisobutyrate, and citrate metabolites from urine samples in CRC patients.

Although the various molecular characteristics, biological markers, and therapeutic tar-
gets of colon cancer previously discovered have contributed significantly to its diagnosis and
treatment, the biological complexity, outcome severity, and high metastasis of this complex
disease necessitate further predictive and prognostic biomarker identification [20,21]. Cur-
rently, CRC prognosis is based on a classification of clinicopathological features, including,
tumor, node, metastasis (TNM) stage, cancer numbers, histologic type (mucinous carci-
noma or signet ring-cell carcinoma), histology type, tumor grade, tumor size, number of
lymph nodes, and tumor location [22]. Furthermore, the right and left localization and the
excision of lymph nodes are included in the histological type and grading in the prognosis
of colorectal cancer [23].

This study aimed to design and develop novel ML-based, computationally efficient
platforms to study CRC gene associations and identify signature genes used as diagnostics
markers across transcriptomics datasets.

2. Methods

In this study, we used three gene expression datasets (GSE44861, GSE20916, GSE113513),
available from the GEO database [24], and applied six different machine learning methods
(Adaboost, ExtraTrees, logistic regression, naïve Bayes, random forest, and XGBoost) to
identify genes that can be used as diagnostics markers. We used different combinations
of the GSE44861, GSE20916, and GSE113513 datasets for training and validation. We
then performed an enrichment analysis and associated the resulting gene signatures with
miRNA. Lastly, we estimated the number of samples required for the markers selected for
the future validation experiments.
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2.1. Data

The gene expression matrixes and clinical data were downloaded from the GEO
database repository (https://www.ncbi.nlm.nih.gov/geo/) accessed on 1 October 2020.
The details of the datasets used in this study are summarized in Table 1. The detailed
workflow of the methods and process used in this study is presented in Figure 1.

Table 1. List of the datasets and platforms used in this study.

GEO Dataset
No. of Samples

Platform ID References
Normal CRC Total

GSE44861 55 56 111 GPL3921 [25]

GSE20916 44 46 90 GPL570 [26]

GSE113513 14 14 28 GPL15207 [27]
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Differentially Expressed Genes (DEGs) Identified by GEO2R

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r, accessed on 5 January 2021), an
online data analysis tool, was used to identify differentially expressed genes (DEGs) be-
tween colon cancer patients and healthy controls. We used three GEO series, namely
GSE20916, GSE44861, and GSE113513, and identified differential expressed genes. Genes
without a corresponding gene symbol and genes with more than one probe set were re-
moved. Adjusted p-values ≤ 0.0001 were considered statistically significant. Subsequently,
the top 500 most statistically significant DEG genes from each dataset were selected for
further analysis.

https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r
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2.2. Machine Learning Algorithms and Predictive Analytics

Six different machine learning algorithms, namely, Adaboost [28], ExtraTrees [29],
logistic regression [30,31], naïve Bayes (NB) classifier [32], random forest [33], and XG-
Boost [34], were employed to develop models using the selected GEO datasets (GSE44861,
GSE20916, and GSE113513). These datasets were employed to generate different combina-
tions of training and test data to assess the derived models’ performance.

The python Scikit-learn libraries [35] were employed for the implementation of the
different classifiers and feature selection methods.

2.2.1. Hyperparameter Optimization

We used the GridSearchCV [35] function to find the optimal values for each model
hyperparameter. GridSearchCV is a function, available as part of the Scikit-learn’s library,
that caters the looping through predefined hyperparameters and the fitting of the model
on the training set. GridSearchCV uses all the combinations of the predefined parameter
values and evaluates a model’s performance for each combination using cross-validation.
The accuracy results obtained for every hyperparameter combination can then be used to
identify the best-performing model.

2.2.2. Machine Learning Model Evaluation

The analysis was carried out using three different GEO datasets (GSE44861, GSE20916,
and GSE113513) as training and testing data for performance comparison in a combina-
torial way with six different machine learning models including logistic regression [36],
naïve Bayes [37], random forest [38], ExtraTrees [39], Adaboost [40], and XGBoost [41].
Each model was evaluated with different evaluation metrics such as precision, recall [42],
specificity, sensitivity [43], F1 score, AUROC [44], and accuracy.

We also included multiple validation strategies to validate the performance of the
model. The most commonly used k-fold cross-validation technique was applied in our
experimental work. In the k-fold (here, k = 5) cross-validation technique, the dataset
is randomly split into k subsets, whereby k − 1 subsets are used for training, and the
remaining subset is used for testing; the is process repeated k times. In addition to this, we
used resampling with the bootstrap method and leave-one-out cross-validation (LOOCV)
in our experimental work for validation of the model performance. The model performance
was evaluated for the mean value of performance metrics over 100 iterations. In the LOOCV
method, the dataset is split into training data considering all data samples, excluding one
data sample used as the test dataset. The model developed with training data finally
measures the mean performance value for the repeated process. The experimental results
in this method for different models are also provided in Supplementary Table S1.

2.2.3. Feature Selection

We performed feature selection using two methods, mean decrease in impurity
(MDI) [45] and Boruta [46], for the selection of important genes. MDI or Gini impor-
tance [47] computes the total reduction in loss or impurity contributed by all splits for a
given feature. This method evaluates the importance of a variable Xm for predicting Y by
adding up the weighted impurity decreases p(t) ∆i(st,t) for all nodes t where Xm is used,
averaged over all NT trees in the forest as shown in the equation below.

Imp(Xm) =
1

NT
∑
T

∑
t∈Tiv(st)=Xm

p(t)∆i(st, t),

where p(t) is the proportion Nt/N of samples reaching t, and v(st) is the variable used in
split st. When using the Gini index as an impurity function, this measure is known as the
Gini importance or mean decrease Gini. MDI is computationally very efficient and has
been widely used in a variety of applications. Gini importance represents the total decrease
in node impurity, i.e., how much the model fit or accuracy decreases when dropping a
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variable. A larger decrease in node impurity results in a more significant variable. The top
15 genes across 10 iterations were selected with the MDI technique.

In addition to MDI, we also used Boruta which is a feature selection algorithm and
works as a wrapper algorithm around random forest [48]. It attempts to capture all the
important, interesting features from a dataset with respect to an outcome variable and can
be used in combination with tree-based ensemble learning algorithms.

2.3. Gene Enrichment Analysis

Gene ontology (GO) enrichment analysis of DEGs was carried out using the FunRich
(functional enrichment analysis tool) (http://www.funrich.org/, accessed on 25 January 2021).
DEGs were classified according to the biological process and cellular component GO
collections. Biological terms with an FDR p-value lower than 0.05 were considered sig-
nificantly enriched. Correction for multiple hypothesis testing was carried out by the
Benjamini–Hochberg method.

2.3.1. Association of the Gene Markers with miRNA

We used the NetworkAnalyst (www.networkanalyst.ca, accessed on 28 January 2021) [49]
tool and more specifically the gene–miRNA module that employs the miRTarBase v8 database
to calculate the number of the connections or links for each gene, also termed degrees.

2.3.2. Sample Size Estimates for Future Validation Experiments

We then used PowerTools (https://joelarkman.shinyapps.io/PowerTools/, accessed on
10 February 2021) [50] to estimate the number of samples required for future experiments.

3. Results
3.1. Differential Expressed Genes (DEGs)

We identified the top 500 DEGS across each of the GEO datasets examined. For the
GSE44861 dataset, 324 genes were found to be upregulated and 176 genes were down-
regulated, while, for the GSE20916 and the GSE113513 datasets, 171 and 223 genes were
upregulated and 329 and 277 genes were downregulated, respectively. The identified
differentially expressed genes and their respective p-values, as well as the fold changes, are
listed in Supplementary Table S2.

Performance Evaluation

For each of the three GEO datasets examined, their respective DEGs were used as
features across six different classification models, namely, Adaboost, ExtraTrees, logistic
regression, naïve Bayes classifier, random forest, and XGBoost. The performance of these
models was evaluated against different combination of training and test datasets.

The results of the different performance metrics for each classifier are presented in
Supplementary Table S1. With GSE44861 as training data and GSE20916 as test data, the
random forest model achieved better performance with an accuracy of 98.2% and 90%
using the bootstrap and LOOCV methods, respectively. With GSE44861 as training and
GSE113513 as testing data, the logistic regression model achieved an accuracy of 96.4%
and 84% using bootstrap and LOOCV, respectively. When we used GSE20916 as training
data and GSE44861 as testing data, the naïve Bayes classifier achieved an accuracy of
90.1% and 96% using bootstrap and LOOCV, respectively. With GSE20916 as training
data and GSE113513 as testing data, logistic regression resulted in better performance.
With GSE113513 as training and GSE44861 as testing data, the ExtraTree classifier model
achieved better performance. With GSE113513 as training data and GSE20916 as testing
data, none of the models achieved good performance.

A comparison of the accuracy and AUROC results for each model evaluations is
presented in Figure 2. When using GSE44861 as training data and GSE20916 as test data,
the random forest classifier achieved the best performance across all classifiers with an
accuracy of 98.2% and an AUROC of 99.9% (Figure 2A). With GSE44861 as training data

http://www.funrich.org/
www.networkanalyst.ca
https://joelarkman.shinyapps.io/PowerTools/
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and GSE113513 as test data, a logistic regression model achieved an accuracy of 96.4% and
an AUROC of 99% (Figure 2B). When using GSE20916 as training data and GSE44861 as
test data, the naïve Bayes classifier exhibited the best performance with an accuracy of
90.1% and AUROC of 90%, as shown in Figure 2C. Using GSE20916 as the training data and
GSE113513 as the test data, the logistic regression model achieved the best performance
(Figure 2D). Lastly, with GSE113513 as the training data and GSE44861 as the test data, as
well as with GSE113513 as the training data and GSE20916 as the test data, all classifiers
achieved an accuracy of 50% to 51% and an AUROC of 50% to 51%, apart from logistic
regression, which resulted in an AUROC of 99% (Figure 2E,F).
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The AUROC plots for the models that had the best performance across the different
training and test data combinations are presented in Figure 3. Across the three datasets
tested, random forest and logistic regression achieved the best performance when we
combined GSE44861 and GSE20916 datasets as training and test data. However, none of
the classifiers assessed achieved a good performance using the GSE113513 dataset. The
best performances of each classification model are represented as AUROC plots. Overall,
the random forest models exhibited consistently better performance across all classification
models tested.
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Figure 3. ROC curves for the different classifiers. (A) Performance of logistic regression model with
GSE44861 as training and GSE20916, GSE113513 as test data; (B) performance of random forest model
with GSE20916 as training and GSE44861, GSE113513 as test data; (C) performance of ExtraTrees
model with GSE20916 as training and GSE44861, GSE113513 as test data; (D) performance of naïve
Bayes model with GSE20916 as training and GSE44861, GSE113513 as test data; (E) performance of
XGBoost model with GSE44861 as training and GSE20916, GSE113513 as test data; (F) performance of
Adaboost model with GSE44861 as training and GSE20916, GSE113513 as test data.
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3.2. Gene Selection

Random forest classification, on the basis of the performance previously reported, was
applied in combination with MDI to select the top 15 genes with the highest importance
score in 10 different iterations. We then identified the union of all the genes selected from
all 10 iterations. Figure 4 shows the important genes selected using the mean decrease
in impurity (MDI) technique in combination with the random forest classifier. Figure 4A
depicts the important genes selected using the GSE44861 dataset, while Figure 4B presents
the important genes selected using the GSE20916 dataset.
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importance score values across the GSE44861 (A), GSE20916 (B), and GSE113513 datasets (C). The
common genes from all three datasets (D).

Gene Ontology (GO) Enrichment Analysis

MDI in combination with the random forest classifier for feature selection resulted
in the selection of 34 genes that were used for the pathway and gene set enrichment
analysis. These genes were found to be associated with a number of molecular functions
including cell adhesion molecule activity (CDH3 and CLDN), transporter activity (ABCG2,
SLC22A18AS, and SLC26A2), catalytic activity (CA7, DHRS9, and HSD11B2) and oxidore-
ductase activity (ACADS and DHRS11). The pathways for which 34 genes were found to
be enriched are presented in Figure 5A.
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largest effect size. The effect size of each assessed variable is shown along the y-axis, with a series of
sample sizes along the x-axis.
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3.3. Associating Selected Genes with miRNA Using NetworkAnalyst

We mapped the 34 identified genes using the NetworkAnalyst tool and found that
19 genes out of 34 genes formed hub genes (Figure 5B). For example, IL6R had the highest
number of miRNA interactions (degree, 94). A list of the identified genes and their miRNA
associations is provided in the Supplementary Table S3.

Lastly, we also performed a power analysis over the GSE44861 dataset. For this
purpose, we used the 34 genes that were identified and ranked by the random forest
algorithm. We then applied hierarchical clustering over these 34 genes and identified two
clusters. We selected the genes that presented the highest correlation across normal vs.
cancer samples.

CA7 and TEAD4 were selected as representative genes across the two clusters as they
had the highest correlation with the normal vs. CRC samples (i.e., lowest p-values). For
both clusters of genes including CA7 and TEAD4, we estimated N = 5 samples, required for
both control and CRC samples. Figure 5C represents the number of the estimated samples
required for genes from each cluster.

4. Discussion

The three GEO datasets used in our experimental work with six different machine
learning methods were validated across different combinations of training and test datasets.
The performance of each model was reported and compared using a number of performance
metrics, such as accuracy, sensitivity, specificity, AUC, etc. The random forest method
showed the best performance against the GSE44861 and GSE20916 datasets when used as a
combination of training and test data. It was less prone to overfitting when compared to
the other methods used. This method has also been applied successfully in other diseases
such as NAFLD [51], obesity [52], and IBD [53]; therefore, we applied the random forest
method to select the important features from these two datasets.

The GSE113513 dataset had a lower number of samples or observations compared to
the GSE44861 and GSE20916 datasets, which resulted in lower performance compared to
the other datasets, thus indicating an overfitting problem. We used multiple approaches to
protect against the overfitting problem, such as the widely used fivefold cross-validation,
LOOCV, and bootstrapping. Compared with k-fold cross validation and LOOCV, the
bootstrap method could use the entire sample in model development and validation, thus
helping to estimate optimism and measure overfitting. The optimism-corrected estimated
performance by the bootstrap method is relatively stable because it uses the full sample size
and the bootstrap samples vary in composition [54]. We incorporated 100 iterations with
the bootstrap method for the experimental work, and each of these evaluation metrics were
averaged over these 100 iterations. Datasets GSE44861 and GSE20961 were observed to
perform better, and the random forest method was chosen for the feature selection process.

The gene ontology enrichment analysis identified several genes and their associated
pathways, most notably, cell adhesion molecule activity, transporter activity, catalytic activity,
and oxidoreductase activity. CDH3, a gene encoding P-cadherin that forms a major component
of the adherens junctions that are essential for cell adhesion, has been identified as being
upregulated in CRC in multiple studies and as a diagnostic or prognostic marker [55,56]. Con-
versely, CLDN, encoding for the claudin protein forming tight junctions, has been found to
be a potential diagnostic marker with downregulation in CRC patients [56,57]. Furthermore,
previous research has postulated that the HDS11B2 gene, involved in catalytic activity
pathways, plays a vital role in migration, invasion, and metastasis of CRC [58]. Other
genes identified to be involved in catalytic activity (CA7 and DHRS9) have been found to
be downregulated in CRC cells, and have been proposed as promising diagnostic and/or
prognostic markers [59,60]. Genes associated with transporter activity have also been iden-
tified in existing studies. Of particular note is the upregulation of the ABCG2 gene, which
has been postulated to play a protective role against oxidative stress through cell signaling
pathways, which may explain why it has been found to be upregulated in CRC [61–63]. Sim-
ilarly, genes involved in oxidoreductase activity (ACADS and DHRS11) have been found
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to be downregulated in previous studies [64,65]. These genes are involved in fatty-acid
metabolism and energy production within mitochondria; thus, their downregulation may
partially explain the changes in metabolism often observed in cancer cells [66]. Many of the
identified genes have been previously associated with colon cancer via miRNA interactions.
Multiple studies, including Bian et al., Hua et al., and Xu et al., have reported that serum
IL-6 may be a potential biomarker for CRC diagnosis and a miR-34a target [67]. IL6R has
also been implicated in other cancer types, including prostate cancer [68]. Another gene,
SLC4A4, was found to be significantly correlated with shorter survival of CRC patients and
a marker of poorer progression for patients with breast cancer, lung cancer, gastric cancer,
and ovarian cancer. This suggests a potential role of SLC4A4 in tumor suppression, as well
as in prognostic prediction in multiple malignancies, including CRC, thus representing
a potential novel therapeutic CRC target [69]. Yang et al. (2019) [70] identified a similar
SLC4A4 expression association and proposed the expression of six further genes, namely,
SGCG, CLDN23, CCDC78, SLC17A7, OTOP3, and SMPDL3A, as novel colon cancer prog-
nostic biomarkers. Zhang et al. (2020) [71] reported that hsa_circRNA_001587 upregulates
SLC4A4 expression to inhibit migration, invasion, and angiogenesis of pancreatic cancer
cells via binding to microRNA-223. Furthermore, Mencia et al. (2011) reported miR-224 to
be one of the most differentially expressed miRNAs associated with SLC4A4 [72]. Andersen
et al. (2015) [73] reported changes in gene expression levels (high ABCC2 and low ABCG2)
as early events in the colon adenoma–carcinoma sequence. Moreover, miR-132 has been
reported to regulate the SIRT1/CREB/ABCG2 signaling pathway, contributing to cisplatin
resistance and serving as a novel therapeutic target against gastric cancer [74]. Cherradi
et al. found CLDN1 to be significantly overexpressed (p < 0.001) in CRC samples, and
they proposed it as a new potential therapeutic target of miR-7-2 [75]. Lastly, Miwa et al.
(2011) [76] reported CLDN1 as a target of TCF/LEF signaling, while Singh et al. (2011) [77]
suggested the involvement of CLDN1 in the regulation of the WNT signaling pathway.

Our approach utilized a limited number of public datasets, and the potential causal re-
lationships identified necessitate experimental validation. We did not consider the effect of
multiple factors, such as age, gender, ethnicity, and tumor grade and stage, on gene expres-
sion patterns since we focused only on genes that have been previously reported as having
significant variation between control and cancer samples. In the context of translational
medicine [78], further research is required to investigate the selected prognostic/diagnostic
signature’s clinical utility in predicting clinical outcomes in various tumor types.

In CRC diagnostics, colonoscopy is the current gold-standard screening method.
However, this approach has some limitations that include internal hemorrhage, colonic
perforation, and cardiorespiratory problems [79].

Another approach is the guaiac fecal occult blood test (gFOBT) [80], which detects
hemoglobin peroxidase activity in the feces, and it is the most often used noninvasive
screening procedure. Although FOBT is a simple and inexpensive way to screen for CRC,
it has a high percentage of false positives and false negatives.

As a result, alternative CRC screening approaches that are cost-effective, noninvasive,
easily quantifiable, and accurate are urgently needed. Thus, gene signature-based biomark-
ers in the clinical applications in CRC are required for early cancer detection, prognostic
stratification, and surveillance [80]. Genes identified in this study will need to go through
targeted validation experiments using qPCR. A new trial needs to be set up to replicate the
gene signature’s effect. This step will ensure the clinical efficacy of those markers identified
and will allow a better clinical decision on CRC [81].

5. Conclusions

This study aimed to identify novel genes associations with CRC that can potentially
be used as diagnostic markers in translational research. To achieve this, we applied a
predictive analytics approach that employed a variety of machine learning methods. In
addition, we estimated the required number of samples for future validation experiments.
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