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A B S T R A C T

Oleaginous microalgae of the Nannochloropsis genus are considered excellent candidates for biofuels and
value-added products owing to their high biomass productivity and lipid content. Here, we report the first
overexpression and detection of a heterologous sfCherry fluorescent protein in Nannochloropsis salina in
order to develop a transformation toolbox for future genetic improvements. Particle bombardment was
employed for transformation, and expression of Shble under the control of TUB and UEP promoters, cloned
from N. salina, was used to confer resistance to Zeocin antibiotics, resulting in 5.9 and 4.7 transformants per
108 cells, respectively. Stable integration of the markers into the genome was confirmed using a restriction
enzyme site-directed amplification (RESDA) PCR. The expression of sfCherry fluorescent protein was
confirmed by Western blot analysis and confocal microscopy. These results suggest new possibilities of
efficient genetic engineering of Nannochloropsis for the production of biofuels and other biochemicals.
ã 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Growing concerns about potential energy crises and environ-
mental problems caused by a dependence on traditional fossil fuels
has increased our interest in alternative energy sources. Micro-
algae are among the most promising feedstocks for biofuels and
natural products owing to their high lipid content and fast growth
rate compared with other biofuels feedstocks, such as crops and
other land plants. Moreover, they do not require arable land or
fresh water for cultivation, and can grow using CO2 in flue gas,
thereby reducing levels of this important greenhouse gas [1,2].

Nannochloropsis sp. are attractive industrial production strains
for biofuels and value-added products such as eicosapentaenoic
acid (EPA) by virtue of their fast growth and high lipid content [3].
Various cultivation methods have been developed as part of an
effort to efficiently produce biofuels from Nannochloropsis [4]. In
addition, genomic and transcriptomic analyses of several Nanno-
chloropsis strains have been reported [3]. These data can be used for
Abbreviations: RESDA PCR, restriction enzyme site-directed amplification
polymerase chain reaction; TAIL PCR, thermal asymmetric interlaced PCR; MARs,
matrix attachment regions; EPA, eicosapentaenoic acid.
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genetic improvements of Nannochloropsis designed to achieve
commercial production of biofuels. Recent reports have demon-
strated the transformation of Nannochloropsis, indicating that the
creation of ‘smart’ microalgae with high lipid productivity is now
conceivable [5,6]. Subsequent studies have reported improved
transformation efficiency through delivery of a PCR product instead
of an intact plasmid [7] and by using top agar for recovery [6] or
conditioned medium [8]. It also has been reported that metabolic
pathway related genes are knocked out using the homologous
recombination method [9].

Three main types of transformation methods have generally
been used for microalgae: agitation with glass beads, electropora-
tion, and particle bombardment. Agitation with glass beads and
electroporation are commonly used to transform microalgae that
lack or have weakened cell walls. For microalgae with hard cell
walls, such as diatoms, particle bombardment has been employed
as a transformation method [10]. It is also the method of choice for
organellar transformation. Notably, chloroplast transformation can
be used in a microalgal cell-factory setting for producing
heterologous protein and value-added products [11,12].

An established method for localization of the transgene
integration site within the host genome is thermal asymmetric
interlaced polymerase chain reaction (TAIL PCR). In TAIL PCR, the
insertion site can be found efficiently using nested specific primers
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and relatively short, arbitrary, degenerate primers [13]. RESDA
(restriction enzyme site-directed) PCR is an improved version of
TAIL PCR that uses degenerate primers containing restriction
enzyme sites to increase the efficiency of TAIL PCR [14].

In addition, the applications of fluorescent proteins involve
using them for selection marker, checking the expression level of
fusion protein, and exploiting for imaging of the localization and
dynamics of specific organelles [15]. However, it should be noted
that proper choice of fluorescent protein is important not only for
preventing the interference of autofluorescent signal from cells,
but also for greater brightness and photostability [16]. Fluorescent
protein has been genetically modified in order to allow them to do
efficient folding and to maintain strong fluorescence [17].

In this study, we report the first overexpression and detection of
a heterologous sfCherry fluorescent protein, a genetically modified
mCherry, as part of an effort to develop a genetic-manipulation
toolbox in Nannochloropsis salina [17]. To introduce a heterologous
protein, we used particle bombardment to transform N. salina with
plasmids containing a marker and/or a reporter. Transformants
were further analyzed by RESDA PCR to determine if the
introduced constructs were integrated into the genome [14].
Finally, in order to validate that our transformation technique
resulted in the successful production of a heterologous protein, we
expressed a construct of the sfCherry fluorescent protein in N.
salina, and confirmed its expression by Western blot analysis and
confocal fluorescence microscopy. It is expected that this work will
facilitate the genetic engineering of Nannochloropsis for the
production of biofuels and bioproducts.

2. Materials and methods

2.1. Microalgae strain and culture conditions

N. salina CCMP1776 (National Center for Marine Algae and
Microbiota) was maintained in sterile modified F2N media [9]
Fig. 1. Results of RESDA PCR for N. salina wild type and NsTShble transformants 1 throu
salina. (b) The results of Amp II using DegBamHI. The bands ‘a’ to ‘d’ in the gel from DegB
from NsTShble 2. Capital letters represent the plasmid region, and lowercase letters show
and Q0 primers, respectively. Abbreviations: M, marker; WT, wild type.
composed of the following: 15 g/L sea salt (Sigma–Aldrich, USA),
10 mM Tris–HCl (pH 7.6), 427.5 mg/L NaNO3, 30 mg/L NaH2-

PO4�2H2O, 5 mL/L trace metal mixture (4.36 g/L Na2 EDTA�2H2O,
3.15 g/L FeCl3�6H2O, 10 mg/L CoCl2�6H2O, 22 mg/L ZnSO4�7H2O,
180 mg/L MnCl2�4H2O, 9.8 mg/L CuSO4�5H2O, 6.3 mg/L
Na2MoO4�2H2O), and 2.5 mL/L vitamin stock (1 mg/L vitamin B12,
1 mg/L Biotin, 200 mg/L thiamine�HCl) [18]. Cells were cultivated in
a 200 mL working volume in 250 mL Erlenmeyer baffled flasks at
25 �C with agitation (120 rpm) under fluorescent light (120 mmol
photons/m2/s). Air mixed with 2% CO2 was directly supplied to the
culture at a rate of 0.5 vvm (volume gas per volume medium per
minute).

2.2. Vector construction

The plasmid, pNsTShble (Fig. 1a), harboring the endogenous
TUB promoter, the Shble gene, which confers resistance to Zeocin
(Invitrogen, USA), and the TUB terminator was constructed and
used for transformation. Other plasmids used in this study include
pNsUShble (UEP promoter, Shble, and UEP terminator) and
pNssfCherry (TUB promoter, the gene encoding sfCherry fluores-
cent protein, and TUB terminator). The pNssfCherry vector also
harbors the Shble gene as a selection marker flanked by the UEP
promoter and the UEP terminator (Fig. 2a). All plasmids were
constructed using the Gibson assembly technique [19].

2.3. Particle bombardment

N. salina cultivated in modified F2N media was harvested after
7 days in the mid-exponential phase (OD680 nm= 6), and cell
number was determined using a hemocytometer. A 47-mm-
diameter cellulose acetate membrane filter (Sartorius Stedim
Biotech, Germany) was placed on F2N agar media, and 108 cells
were placed on the membrane filter for a single bombardment.
Plasmids, linearized by treatment with XbaI, were coated onto
gh 8. (a) A schematic depiction of RESDA PCR for the NsTShble transformants of N.
amHI samples were recovered and sequenced. (c) Examples of sequences obtained

 the flanking genomic sequence. Black, red, and green arrows represent the S4, S5,



Fig. 2. Analyses of NssfCherry transformants. (a) The vector map of pNssfCherry.
Agarose gel electrophoresis for the verification of (b) the Shble PCR product and (c)
18S rDNA. (d) sfCherry fluorescent protein accumulation determined by western
blotting.

Table 1
Primers used in this study.

Primer Sequence 50–30 Purpose

SR6 GTCAGAGGTGAAATTCTTGG 18S rDNA
SR9 AACTAAGAACGGCATGCAC
S1 AAGTTGACCAGTGCCGTTCCGGTG Shble
S2 CTCGGCCACGAAGTGCACGCAGTT
S3 ATGACCGAGATCGGCGAGCA RESDA PCR
S4 GGAGTGTTCTTAAAGAACGCGAGG
S5 ATGCACGACTACTAGAGGGGACGTGGAGAA
DegPstI CCAGTGAGCAGAGTGACG IIIIINNS CTGCAG W
DegXhoI CCAGTGAGCAGAGTGACG IIIIINNS CTCGAG W
DegBamHI CCAGTGAGCAGAGTGACG IIIIINNS CCTAGG W
Q0 CCAGTGAGCAGAGTGACG
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microcarrier gold particles (Bio-Rad, USA) for transformation. A
mixture of plasmid, 2.5 M CaCl2, and 0.1 M spermidine was
prepared in 25% glycerol containing gold particles and vigorously
mixed for 3 min, after which the coated particles were allowed to
settle by gravity at room temperature for 10 min. After discarding
the supernatant, the coated particles were washed with 70%
ethanol and then resuspended in 100% ethanol. Particle bombard-
ment was performed using a low-pressure gene delivery system
(GDS-80; Wealtec, USA) under the following conditions: 625 mg
gold particles coated with 1 mg of linearized plasmid per shot by
700 psi of helium and 3 cm target distance [20]. After transforma-
tion, the cells were recovered in modified F2N media and
incubated at 25 �C under fluorescent light (5 mmol photons/m2/
s) without agitation for 1 day. All cells were plated onto selective
F2N agar media containing 2.5 mg/mL Zeocin. After 3–4 weeks,
colonies that appeared on the selective media were selected for
further analyses.

2.4. Analytical procedures

2.4.1. PCR analysis of N. salina transformants
Zeocin-resistant N. salina colonies were harvested and washed

with distilled water, and crude DNA was isolated using Instagene
Matrix (Bio-Rad, USA) according to the manufacturer’s instruc-
tions. Briefly, 200 mL of Instagene Matrix was added to the cells and
mixed. The mixtures were first incubated at 56 �C for 20 min and
then at 100 �C for 8 min. After centrifugation, the supernatant was
used for PCR. S1 (forward) and S2 (reverse) primers were used to
detect the Shble gene in N. salina transformants (Table 1).18S rDNA,
used as a positive control, was detected using SR6 (forward) and
SR9 (reverse) primers (Table 1) [21]. PCR amplification was carried
out using Ex-taq polymerase (Takara, Japan) with 30 cycles of 95 �C
for 1 min, 60 �C for 1 min, and 72 �C for 1 min. The expected sizes of
Shble and 18S rDNA PCR fragments were 357 and 380 bp,
respectively.

2.4.2. RESDA PCR
RESDA PCR was used to identify the insertion sites of the

plasmid in the genomic DNA as described previously [14] and
depicted schematically in Fig.1a. Each PCR reaction was carried out
in a final volume of 50 mL using Ex-taq polymerase (Takara, Japan).
REDSA PCR consists of three stages: amplification I (Amp I),
amplification II (Amp II), and re-amplification (Re-Amp). For Amp I,
PCR was performed with the S3 primer and three degenerate
primers (Table 1) using genomic DNA as the template. The PCR
conditions for Amp I were 5 min at 96 �C followed by 20 cycles of
1 min at 95 �C, 1 min at 60 �C and 3 min at 72 �C, then 10 cycles of
1 min at 95 �C, 1 min at 40 �C, 3 min at 72 �C, and a final step of
10 min at 72 �C. For the Amp II step, PCR was conducted with S4 and
Q10 primers using 1 mL of the PCR product from the Amp I step as
the template. The PCR conditions for Amp II were 5 min at 96 �C
followed by 35 cycles of 1 min at 95 �C, 1 min at 60 �C, 3 min at
72 �C, and a final step of 10 min at 72 �C. Insertion sites in genomic
DNA were identified by sequencing the specific PCR bands between
approximately 300 bp and 2 kb after purification with a gel
extraction kit (Qiagen, USA). A Re-Amp step was performed to
confirm that the PCR bands selected from the Amp II step were
correct. The template for Re-Amp PCR was obtained from the PCR
product in the Amp II analytical agarose gel by directly inserting a
200-mL pipette tip into the corresponding band and shaking the tip
in 50 mL of distilled water. Re-Amp PCR was performed with S4 and
S5 primers using the water containing the extracted Amp II PCR
product as a template. The PCR conditions for the Re-Amp step
were 5 min at 96 �C followed by 35 cycles of 30 s at 95 �C, 30 s at
60 �C, 3 min at 72 �C, and a final step of 10 min at 72 �C.

2.4.3. Western blot analysis
The expression of sfCherry in transformed cells was examined

by extracting proteins with 1.5� Laemmli sample buffer, which is
composed of the following components: 62.5 mM Tris–HCl (pH
7.6), 7% sodium dodecyl sulfate (SDS), 25% glycerol 5% b-mercap-
toethanol, and 0.02% bromophenol blue. Cells obtained at mid-
exponential phase were washed with distilled water, suspended in
1.5� Laemmli sample buffer, and then heated at 100 �C for 5 min.
After centrifugation at 13,000 rpm for 5 min, the supernatants
were separated by SDS-PAGE (polyacrylamide gel electrophoresis)
on 4–15% gradient gels and transferred to a PVDF (polyvinylidene
difluoride) membrane using a Trans-Blot Turbo system (Bio-Rad).
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After blocking with 5% skim milk in phosphate buffered saline
(PBS), the membranes were probed with a rabbit anti-mCherry
antibody (Abcam, UK). Membranes were then washed three times
in 5% skim milk and then incubated with horseradish peroxidase
(HRP)-conjugated anti-rabbit secondary antibody (Cell Signaling
Technology, USA). After washing membranes three times with PBS,
immunoreactive proteins were detected using enhanced chemilu-
minescence (ECL) reagents and the ChemiDoc system (Bio-Rad).

2.4.4. Visualization of sfCherry fluorescence
Fluorescence was visualized using an A1 Plus confocal

microscope (Nikon, USA). sfCherry fluorescence of the NssfCherry
transformant was detected using an mCherry filter (excitation,
561 nm; emission, 595/50 nm), and N. salina auto-fluorescence was
detected using a FITC (fluorescein isothiocyanate) filter (excitation,
488 nm; emission, 525/50 nm).

3. Results and discussion

3.1. Transformation by particle bombardment and confirmation of
stable integration

One major problem associated with microalgal transformation
is that transgene expression is lost over time due to transgene
silencing [22]. This phenomenon has hampered the development
of microalgal genetic engineering techniques. The long-term
stability of transformed microalgal cells without selection is one
of the main issues in microalgal transformation. Compared to glass
bead agitation and electroporation, bombardment appears to
provide more stable transformation in the absence of selection
[10]. Unfortunately, the exact mechanism how the gene delivery
method affects the stability of the heterologous expression is
unknown. However, there are some reports describing the long-
term stability of transformants according to transformation
methods. Based on statistical analysis, the long term stability of
phenotype has been reported in 90.6% of papers whose authors
used the bombardment method, and in 66.6% and 33.3% of those
that used glass beads and electroporation, respectively [10]. This
statistical analysis implies that after bombardment, the presence
of exogenous DNA in the genome of the transformants correlates
positively with long term survival compared to the glass bead and
electroporation methods.

Therefore, in order to express heterologous protein in N. salina,
we first tested transformation efficiency when using particle
bombardment. N. salina was transformed with plasmid expression
constructs for the Shble marker gene under the control of the TUB
or UEP promoter. The transformants were selected on agar plates
containing Zeocin, and their transformation efficiencies were
determined, as summarized in Table 2. These analyses showed that
5.9 and 4.7 transformants per 108 cells were obtained using TUB
and UEP promoter constructs, respectively. These results are
consistent with a previous report that used electroporation
method for transformation of Nannochloropsis gaditana [5]. Here,
it is worth to note that transformation efficiency can be improved
Table 2
Transformation efficiency of N. salina achieved by particle bombardment.

Promoter Colonies/108 cells Colonies/mg DNA

TUB 5.9 � 1.6 5.9 � 1.6
UEP 4.7 � 2.0 4.7 � 2.0
No plasmida 0 0

Data are means � SD (n = 3).
a No plasmid indicates a control bombardment transformation carried out

without DNA.
by modification of transformation conditions, and that size and
concentration of DNA fragment, which will be transferred into
cells, affect the transformation efficiency. For instance, Li et al.
suggested that transformation efficiency significantly increased,
when using short DNA fragment for Nannochloropsis sp. transfor-
mation [7]. This is likely due to the fact that short DNA fragments
improve their chances of integration. Therefore, an integrated
development of bombardment based transformation is necessary
to increase transformation efficiency.

To validate stable integration of the transgene in the genomic
DNA and to identify the integration site, we employed RESDA PCR.
The overall strategy and a vector map are shown in Fig. 1a. Fig. 1b
shows the results of the second round of PCR (Amp II) using
DegBamHI during RESDA PCR. The results obtained are consistent
with a previous report that, in general, the average band size after
Amp II ranges from 300 bp to 2 kb [14]. There were unique bands in
many NsTShble transformant lines, denoted as ‘a’ through ‘d’. DNA
from each band was then purified and sequenced to identify
integration patterns because different band patterns represent
different insertion sites of transgenes. Sequencing of one example
transformant, NsTShble 2, revealed sequences of the transformed
vector flanked by the genomic sequence of N. salina CCMP1776, in
addition to the landmark primer sequences of S4, S5, and Q0
(Fig. 1c). Other identified sequences are shown in Fig. S1.
Importantly, the size of each band and the length of the
corresponding sequence coincided, indicating that the amplifica-
tion and sequencing of the integration sites were correct. It has
been recently reported that the organellar genomes of N. salina are
more than 97% identical to genomes of N. gaditana [23]. Therefore,
the flanking regions of each transformant were identified based on
N. gaditana genome information [24], then we could indirectly
estimate where transgenes were integrated as shown in Table S1.

The expression of heterologous protein is primarily influenced
by the genomic environment in which the transgene is integrated.
This is known as the position effect of transgenes [25]. Transgene
silencing is the most devastating problem in genetic engineering;
it can be caused by the position effect and/or by transcriptional and
post-transcriptional silencing complexes identified in algae and
plants [26,27]. Such silencing effects can be counteracted using
boundary elements called matrix attachment regions (MARs) to
enhance transgene expression [28], as shown in Dunaliella salina
[29]. Identification of the transgene integration sites in N. salina
will help to clarify the integration patterns and could assist in the
design of better strategies for achieving the stable expression of
heterologous protein. For instance, we are able to find specific
flanking sites resulting in better and stable expression of target
protein through statistical analysis with lots of integration patterns
of transformants.

Taken together, strategies combined with identification of
stable integration sites and bombardment transformation is likely
very useful for the production of stable transformants.

3.2. Heterologous overexpression of sfCherry fluorescent protein

In order to assess the expression of a heterologous protein, we
transformed N. salina with an expression construct for the gene
encoding sfCherry fluorescent protein (Fig. 2a) and analyzed its
expression by Western blot analysis and confocal microscopy.
Transformant candidates were initially analyzed by PCR using
S1 and S2 primers (Table 1) to amplify part of the Shble gene as well
as the positive control, 18S rDNA (Fig. 2b and c). PCR-positive
candidates were subsequently analyzed for expression of the
sfCherry fluorescent protein by western blotting. These analyses
showed the expression of a proteinwith a molecular weightof about
27 kD, consistent with the expected size of 27.39 kD based on the
mCherry amino acid sequence (Fig. 2d). To further validate the



Fig. 3. Confocal microscopic images of NssfCherry 2 and 4 compared with wild-type control. First column: bright field (BF) images; second column: FITC filter images showing
autofluorescence; third column: images obtained with the sfCherry filter. Merged images of the three channels are shown in the last column.
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expression of functional sfCherry fluorescent protein, we analyzed
transformants NssfCherry 2 and 4, which Western blot analyses
showed were strongly positive for sfCherry, using confocal
fluorescence microscopy (Fig. 3). FITC fluorescence (auto-fluores-
cence) was detected in both wild-type controls and transformants,
but only transformants expressed sfCherry-specific fluorescence
(excitation: 561 nm, emission: 595/50 nm). The intensity of
sfCherry fluorescence in NssfCherry 4 was stronger than that of
NssfCherry 2. This is likely due to the position effect, which can
affect the expression level of fluorescent protein [25,28]. These
results indicate that particle bombardment can stably deliver DNA
into N. salina cells, and produce correctly folded functional proteins.

Fluorescence proteins have been used for structural and
functional studies in various cell lines [30]. In addition, there is
an increasing trend toward the application of flow cytometry and
fluorescent markers, which have been available for use with other
organisms as well as microalgae [31]. We previously transformed
N. salina with expression constructs for cyan fluorescence protein
(CFP), but were unable to detect CFP fluorescence signal owing to
the high background (Fig. S2), most likely reflecting the cellular
pigments present in Nannochloropsis. In contrast, N. salina cells
were successfully transformed and confirmed to express function-
al sfCherry fluorescent protein without interference from endoge-
nous pigments. sfCherry was developed by directed mutagenesis
for efficient folding and strong fluorescence [17,32]; thus, this
protein has great potential for the structural and functional
analyses necessary for the genetic engineering of Nannochloropsis.
In particular, sfCherry fluorescent protein can be applied for
development of selection marker, monitoring the real time
expression level of fusion protein, and imaging of the localization
and dynamics of specific organelles [15].

Furthermore, because microalgal chloroplasts can correctly fold
complex proteins, microalgae, especially Chlamydomonas
reinhardtii, represent an emerging source for the production of
various bioproducts, such as nutraceuticals and therapeutics
[11,33]. Another attractive feature of C. reinhardtii as a heterologous
protein factory is that a relatively short time is required to yield
bioproducts [12]. Although Nannochloropsis will still require
genetic improvements to be used as a strain for the production
of biofuels and bioproducts such as EPA, our demonstration of
heterologous protein expression in Nannochloropsis suggests the
possibility of this strain as a cell factory for biofuels and
bioproducts.

4. Conclusions

Heterologous protein, sfCherry fluorescent protein, was over-
expressed and visualized in N. salina for the first time. To do
transformation, particle bombardment was employed, and TUB
and UEP promoters were used to express the Shble gene, yielding
5.9 and 4.7 transformants per 108 cells, respectively. Genomic
integration, confirmed by RESDA PCR, ensured the stable expres-
sion of the transgenes. Furthermore, transgenic expression and
correct function of the sfCherry fluorescent protein were
confirmed by western blotting and confocal microscopy. These
results provide techniques for the genetic manipulation of
Nannochloropsis that may be useful for the stable transformation
and production of bioproducts.
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