
Citation: Aziz, T.; Naveed, M.;

Sarwar, A.; Makhdoom, S.I.; Mughal,

M.S.; Ali, U.; Yang, Z.; Shahzad, M.;

Sameeh, M.Y.; Alruways, M.W.; et al.

Functional Annotation of

Lactiplantibacillus plantarum 13-3 as a

Potential Starter Probiotic Involved

in the Food Safety of Fermented

Products. Molecules 2022, 27, 5399.

https://doi.org/10.3390/

molecules27175399

Academic Editor: Eun Kyoung Seo

Received: 16 July 2022

Accepted: 21 August 2022

Published: 24 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Functional Annotation of Lactiplantibacillus plantarum 13-3 as
a Potential Starter Probiotic Involved in the Food Safety of
Fermented Products
Tariq Aziz 1,2 , Muhammad Naveed 3 , Abid Sarwar 1, Syeda Izma Makhdoom 3, Muhammad Saad Mughal 3 ,
Urooj Ali 3 , Zhennai Yang 1,*, Muhammad Shahzad 4 , Manal Y. Sameeh 5, Mashael W. Alruways 6,
Anas S. Dablool 7 , Abdulraheem Ali Almalki 8, Abdulhakeem S. Alamri 8 and Majid Alhomrani 8

1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and
Technology Research Center of Food Additives, Beijing Technology and Business University,
Beijing 102401, China

2 Pak-Austria Fachhochschule—Institute of Applied Sciences and Technology, Mang, Haripur 22621, Pakistan
3 Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
4 Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25124, Pakistan
5 Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University,

Makkah 24831, Saudi Arabia
6 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University,

Shaqra 15273, Saudi Arabia
7 Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University,

Makkah al-Mukarramah 24382, Saudi Arabia
8 Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University,

P.O. Box 11099, Taif 21944, Saudi Arabia
* Correspondence: yangzhennai@163.com

Abstract: The important role of Lactiplantibacillus plantarum strains in improving the human mucosal
and systemic immunity, preventing non-steroidal anti-provocative drug-induced reduction in T-
regulatory cells, and as probiotic starter cultures in food processing has motivated in-depth molecular
and genomic research of these strains. The current study, building on this research concept, reveals
the importance of Lactiplantibacillus plantarum 13-3 as a potential probiotic and bacteriocin-producing
strain that helps in improving the condition of the human digestive system and thus enhances
the immunity of the living beings via various extracellular proteins and exopolysaccharides. We
have assessed the stability and quality of the L. plantarum 13-3 genome through de novo assembly
and annotation through FAST-QC and RAST, respectively. The probiotic-producing components,
secondary metabolites, phage prediction sites, pathogenicity and carbohydrate-producing enzymes
in the genome of L. plantarum 13-3 have also been analyzed computationally. This study reveals that
L. plantarum 13-3 is nonpathogenic with 218 subsystems and 32,918 qualities and five classes of sugars
with several important functions. Two phage hit sites have been identified in the strain. Cyclic lactone
autoinducer, terpenes, T3PKS, and RiPP-like gene clusters have also been identified in the strain
evidencing its role in food processing. Combined, the non-pathogenicity and the food-processing
ability of this strain have rendered this strain industrially important. The subsystem and qualities
characterization provides a starting point to investigate the strain’s healthcare-related applications
as well.

Keywords: Lactiplantibacillus plantarum 13-3; functional annotation; probiotic; starter culture; whole
genome; food safety

1. Introduction

A main component of the human diet for centuries is fermented food [1]. In addition
to the fact that those fermented foods derived from meat, milk, and plant foods have a
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longer shelf life as compared to fresh raw materials [2], this is also because of their higher
water content and nutritional value. Plant- and animal-derived fermented foods plays a
key role in the world food industry including Asia as well as Western countries and the
Americas (Western hemisphere) [3]. These fermented foods contain nutrients with great
potential in maintaining health and preventing diseases but also undergo changes in taste,
texture, toxicity, and cooking time [4]. Initially, lactic acid bacteria (LAB) were isolated from
fermented foods [5], and they are the most suitable candidate for enhancing fermentation
in terms of product safety and have the capability to spontaneously adapt well during the
fermentation process [3]. Recently, a lot of consideration has been given to assessing the
role of bacteria in human and animal health, specifically in terms of the gastrointestinal
tract (GIT) and protection against several diseases. The human stomach-related framework
contains roughly 400 different bacterial species, and its overflow varies between people.
Among them, a few probiotic Lactobacillus species in particular, Lactobacillus acidophilus
(L.) [6], L. pentosus, L. brevis, L. lactis [7], L. amylovorus, L. casei, L. bulgaricus [8], L. fermentum,
L. plantarum and L. rhamnosus, explicitly produce extracellular proteins, exopolysaccharides,
bacteriocins and lipoteichoic acids [9] which impact on the wellbeing and physiology of
the host by communicating with the epithelial cells [10] and improve the host resistant
framework [11]. LAB is known to inhibit diverse environments such as carbohydrate-rich
food plants, mucosa and intestinal environments of human and animals [12]. LAB isolated
from fermented foods have the competency to help in digestive health (gut microbiome)
are known as probiotics.

Lactiplantibacillus plantarum is a gastrointestinal bacterium which belongs to the family
of Lactobacillus that lives in almost every type of environment [13]. It is a Gram-positive,
anaerobic, and facultative bacteria. It can act as a food supplement for humans as well as
for starters in animals [14]. This microorganism is particularly utilized in the fermentation
of different foods [13]. Use of L. plantarum by humans has been documented from the
start of fermentation almost a thousand ago [15]. In this use it is regarded as a safe
microorganism [16]. L. plantarum is involved in balancing the microflora of the intestine of
the human body [17], increasing the absorption of nutrients to the intestine and ultimately
improving immunity [18]. This increased uptake can enhance the conversion rate of food
into solid absorption of nutrients to the body [19]. It is not only useful for humans but
also for the broilers because they maintain their normal flora [20]. It was also found that L.
plantarum can survive the acidic or gastric environment of intestinal fluid and has a strong
capacity to adhere to the walls of intestine [21]. As well as the aggregation capability of L.
plantarum in the intestinal tract, it also contains the antagonistic activity against two species
of bacteria such as Salmonella typhi and Escherichia coli [22]. This property of L. plantarum
marks it as a probiotic organism [23]. Another study has shown evidence that L. plantarum
along with Aspergillus niger can increase the weight gain of the body of the people above
the age of 56 as a replacement for soya beans and cake made up of canola seeds [23]. This
characteristic has demonstrated its potential as a probiotic in human food as well as in
animal feeding [21].

Various dairy products are transporters via which consumers receive ample counts
of probiotic lactobacilli [24,25]. Probiotic effects are determined by the number of viable
microbial cells that reach the human gut [26]. Therefore, their viability in the product is
considered vital to attain health effects. Probiotic lactobacilli are incorporated separately or
in combination with other commercial culture into specific dairy products and several foods
which have been reported, e.g., cornflakes, pomegranate juice, dough, cheese, fermented
drink, yogurt, fermented milks, grape drink, soya milk chocolate, etc. [27–29]. Furthermore,
they can also produce several useful metabolites during their growth and metabolism, for
example, production of bioactive compounds, i.e., conjugated linoleic acid and other fatty
acid metabolites [30–35].
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Recently, the growing number of available genome sequences of Lactiplantibacillus
strains has provided a better understanding of their genetic potential for probiotic prop-
erties and adaptability to environmental stresses. In our previous studies, L. plantarum
YW11 strain isolated from Tibetan Kefir grains has demonstrated modulatory effects on gut
dysbacteriosis [36], improving immune response and ameliorating inflammatory bowel
disease (IBD) [37], as well as tolerance to acid and bile stress [38]. Similarly, we have also
reported that Lp YW11 can be used as functional agent in the processing of fermented
dairy products with enhanced textural stability and cholesterol-lowering, antioxidant,
and antibiofilm bioactivities [39], and it has the capability of biotransformation of linoleic
acid (LA) to conjugated linoleic acid (CLA) [33]. In addition to that we also reported that
this strain L. plantarum 13-3 and 12-3 are also capable of converting LA to certain fatty
acid metabolites [34,35]. However, the genetic basis of its probiotic characteristics and
environmental adaptability is still mostly unknown.

2. Materials and Methods
2.1. Bacterial Strain and Culture Condition

The strain Lactiplantibacillus plantarum 13-3 (L. plantarum 13-3) was previously isolated
from Tibetan Kefir grains in 2015 and was maintained as frozen (−9 ◦C) stocks in MRS
broth supplemented with 20% (v/v) glycerol. Primarily, these strains were identified based
on Gram reaction, catalase tests and cell morphology. Strains level identification was
performed using API 50 CHL test (bio-Merieux, Marcy-l’Étoile, France) and 16S rDNA
sequencing analysis as previously described by (Aziz, T., et al., 2022; 2021; 2020a; 2020b
and 2020c; Jian et al.; 2017 and 2020; Zhang et al., 2022 and 2020; Yunyun et al. 2018; Wang
et al., 2015) [32–41].

2.2. DNA Extraction and Whole Genome Sequencing

The genomic DNA was extracted using Wizard® Genomic DNA Purification Kit
(Promega, Madison, WI, USA) and quantified by TBS-380 fluorometer (Turner Bio Systems
Inc., Sunnyvale, CA, USA) with an insert size of 15 kb. High quality DNA
(OD260/280 = 1.8~2.0, >20 ug) was used for further analysis. Illumina sequencing li-
braries were prepared from the sheared fragments using the NEXTflex™ Rapid DNA-Seq
Kit. Illumina sequencing libraries were prepared from the sheared fragments using the
NEXTflex™ Rapid DNA-Seq Kit. Briefly, 5′ prime ends were first end-repaired and phos-
phorylated. Next, the 3′ ends were A-tailed and ligated to sequencing adapters. The third
step was to enrich the adapters-ligated products using PCR. The prepared libraries then
were used for paired-end Illumina sequencing (2 × 150 bp) on an Illumina HiSeq X Ten
platform. The whole genome sequence with the accession number (GCA_004028315.1)
of the selected strain (L. plantarum 13-3) was performed using single molecule real-time
(SMRT) technology and Illumina sequencing platforms [42]. The Illumina data was used
to evaluate the complexity of the genome. According to the manufacturer’s protocol, the
genomic DNA was isolated by using the Qiagen DNA extraction kit and the process was
completed between March–May 2019.

2.3. Genomic Investigation

The assembled genome was analyzed for the quality assessments of read via FASTQC,
accessed on 15 May 2022. The sequenced entire genome of L. plantarum 13-3 was explained
computationally by investigating different parts of genome. The utilitarian comment
of qualities associated with different cell and metabolic pathways were anticipated by
rapid annotation of utilizing subsystem technology (RAST) (https://rast.nmpdr.org/, ac-
cessed on 19 May 2022). The prophage areas inside the genome of L. plantarum 13-3 were
anticipated by PHASTER web server (https://phaster.ca/, accessed on 20 May 2022). Clus-
tered Regularly Interspaced Short Palindromic Repeats were recognized by CRISPRFinder
(https://bioinformaticshome.com/devices/DNA-succession investigation/portrayals/
CRISPRFinder.html, accessed on 22 May 2022).

https://rast.nmpdr.org/
https://phaster.ca/
https://bioinformaticshome.com/devices/DNA-succession


Molecules 2022, 27, 5399 4 of 18

Further, the arrangement comparability search was performed by NCBI BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 24 May 2022). The Transporter Clas-
sification Database (TCDB) was utilized on 20 May 2022 to examine possible carriers from
L. plantarum 13-3 (https://tcdb.org/) which were oppressed for their flagging abilities by
Signal Peptide (SignalP 5.0) (https://services.healthtech.dtu.dk/service.php?SignalP-5.0,
accessed on 21 May 2022).

2.4. Functional Annotation

Sugar dynamic chemicals (CAZy), basically glycoside hydrolases (GHs), were an-
ticipated by CAZy data set (http://www.cazy.org/, accessed on 26 May 2022) and were
additionally clarified by DbCAN meta server (https://bcb.unl.edu/dbCAN2/, accessed
on 26 May 2022). Identification of antibiotic resistance factors CARD (Comprehensive
Antibiotic Resistance Database) (http://arpcard.mcmaster.ca/) were also performed on 27
May 2022 to predict any antibiotic resistant gene in the L. plantarum 13-3 genome. Virulence
factors using VFDB, on 29 May 2022 (a virulence factor database, http://www.mgc.ac.
cn/VFs/main.Htm), were also predicted in the genome of L. plantarum 13-3. The circular
diagram was predicted using CGView on 1 June 2022 that shows the predicted antibiotic
resistant and virulent genes. The cryptoscopic protein–protein associations of annotated
gene-creating qualities were anticipated by STRING on 3 June 2022.

2.5. Annotation of Genes Involved in Food Safety

The bacterial pathogenicity was analyzed via PathogenFinder web server (http://cge.
cbs.dtu.dk/services/PathogenFinder/, accessed on 5 June 2022), which predicted whether
the L. plantarum 13-3 was a pathogen or not. Prediction of putative gene cluster coding
bacteriocins and other bioactive compounds, the location of biosynthetic quality groups and
stress-related genes was researched utilizing the BAGEL4 (http://bagel.molgenrug.nl/)
between 7 and 9 June 2022. The qualities connected with the flexibility to pH, bile salt
hydrolase, temperature, and assimilation were recovered from EggNOG comment results
on 10 June 2022. The exopolysaccharide biosynthesis quality bunches were examined by
antiSMASH, accessed on 12 June 2022, bacterial variant in the entire genome of L. plantarum
13-3 (https://antismash.secondarymetabolites.org/#!/begin).

3. Results
3.1. Quality Assessment of 13-3 Genome

The overall reads of the L. plantarum 13-3 genome were predicted to be of good quality.
The total sequence was of 5277,378 Base Pairs with a CG-Content of 46% (Figure 1).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://tcdb.org/
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
http://www.cazy.org/
https://bcb.unl.edu/dbCAN2/
http://arpcard.mcmaster.ca/
http://www.mgc.ac.cn/VFs/main.Htm
http://www.mgc.ac.cn/VFs/main.Htm
http://cge.cbs.dtu.dk/services/PathogenFinder/
http://cge.cbs.dtu.dk/services/PathogenFinder/
http://bagel.molgenrug.nl/
https://antismash.secondarymetabolites.org/#!/begin
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Figure 1. Quality assessment of reads. (A) Per base sequence quality. (B) Per base quality score.
(C) Per sequence CG-Content. (D) Sequence length distribution.

3.2. Genomic Annotation

The genome size is 2,991,504 base sets, with 44.9% GC content, 228 subsystems and
32,918 qualities present in the genome of L. plantarum 13-3. The qualities present in the
genome of L. plantarum 13-3 were contained on 26% sub-framework and 74% non-subsystem
inclusion qualities. The subsystem inclusion contained 751 qualities altogether, of which
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715 qualities were portrayed and 36 were speculative. Likewise, a non-subsystem inclusion
contained 2167 altogether, of which 1247 qualities were anticipated, and 920 qualities
were speculative. The complete classifications of the subsystem were 1060, of which 223
were starches, 99 cofactors, vitamins, prosthetic groups, pigments, 48 cell dividers and
containers, 38 harmfulness, infection and guard, 5 potassium digestion, 14 random, 5
phage and plasmid parts, 34 film transport frameworks, 5 iron securing and digestion
frameworks, 39 RNA digestion, 87 nucleosides and nucleotide frameworks, 133 protein
digestion, 4 cell division and cell cycle, 15 guideline and cell flagging, 4 optional digestion,
48 DNA digestion, 32 unsaturated fat biosynthesis, 6 torpidity and sporulation, 16 breath, 21
pressure reaction, 168 amino corrosive subsidiaries, 3 Sulfur digestion, and 12 phosphorus
digestion (Figure 2). The highlights of subsystem alongside their capacities are portrayed
in the Table S1.
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Figure 2. Subsystem coverage and distribution of L. plantarum 13-3 genome by RAST.

The KEGG pathways of entire genome for the blend of fundamental biomolecules and
optional metabolites particularly exopolysaccharides (EPS) are displayed in Figure 3.
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3.3. Phage Site Prediction

PHASTER recognized two significant phage hits that will upgrade the hereditary vari-
ety and access the genomic variety during the bacterial development. The two significant
hits were against infection and other bacterial species that were recently recognized for
phage locales (Table S2).
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The graphical portrayal of the phage districts distinguished by PHASTER in the entire
genome of L. plantarum 13-3 against two significant hits is displayed in Figure 4. No
clustered routinely interspaced short palindromic rehashes (CRISPRs) were found in the L.
plantarum 13-3 genome by CRISPRFinder.
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3.4. Understanding of Transporter Proteins

The L. plantarum 13-3 genome was dissected for carrier proteins of which 39 proteins
were distinguished as potential carriers that might be useful in different flagging pathways
(Table S3). The motioning of carrier proteins was examined by observation of sign peptides.
The commonness of sign peptides was anticipated by TAT, LIPO and CS signals given by
unambiguous amino corrosive at a specific cleavage site (Table S3).
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3.5. Carbohydrate Enzyme Prediction

The carb dynamic proteins (CAZy) informational collection is used to look at the
genomic, essential, and biochemical information on CAZy that degrade, modify, or make
glycosidic bonds. The CAZy data set has anticipated five significant classes of sugars in
the genome of L. plantarum 13-3, i.e., Glycoside hydrolases, glycosyl transferases, carb
esterase, assistant chemicals and starch restricting modulars (Figure 5). The genome of
L. plantarum 13-3 contains 90 CAZy qualities, of which the glycoside hydrolase family
and glycosyltransferase group of catalysts contributes significantly with around 42 and
38 qualities separately, which shows that L. plantarum 13-3 assumes a significant role in
areas of strength due to its movement and guideline of the resistant framework against
different microorganisms (Table S4). The recognized qualities for the coding of starch
coding compound were additionally commented on by dbCAN which examined HMMER,
DIAMOND and CGC districts in the entire genome of L. plantarum 13-3 (Table S5).
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3.6. Functional Annotation of Genome

The functional characters of the genome were found to be involved in various food
safety processes (Table S6). The visualization of the genome was performed using CG-
Viewer showing all the functional components of the genome in a graphical representation
(Figure 6).
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3.7. Protein–Protein Interaction Network

The distinguished genes engaged in the creation of functional genes were examined
for their working regarding food safety and upgraded improvement in probiotic activity in
people (Table S7). The gene ontology components of genome L. plantarum 13-3 are described
in Table S8. The string organization of distinguished genes in the creation of functional
components of the genome is displayed in Figure 7.
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genome.

3.8. Pathogenicity of L. plantarum 13-3 Strain

The results of Pathogen Finder showed that L. plantarum 13-3 has 0.19 probability of
being a human pathogen, with a pathogenic coverage of 0.43%. This percentage shows that
L. plantarum 13-3 is a non-pathogenic bacterium for the human body (Figure 8). The overall
13 nearest matches of L. plantarum 13-3 strain to non-pathogenic bacteria are described in
Table S9.
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3.9. Prediction of Secondary Metabolites

The antiSMASH system anticipated four fundamental areas that produce bacteriocins
involved in food safety in the genome of L. plantarum 13-3, i.e., locale 1 (cyclic lactone au-
toinducer) (Figure 9a), district 2 (terpene) (Figure 9b), district 3 (T3PKS) (Figure 9c), and area
4 (RiPP-like) (Figure 9d). The Table S10 shows the near bacteriocins and other secondary
metabolites creating locales of L. plantarum 13-3 with different genomes of L. plantarum.
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(D) RiPP-like.
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4. Discussion

For many years, LAB have been employed in agricultural and food processing. They
are typically absorbed during the processing of milk, fish, vegetables, meat, and fruits,
and are used for enhancing the texture and taste of bread, sausage rolls, and alcohol,
inhibiting microbe-dependent food degradation and extending its lifespan. Several LAB
species colonize the mouth and intestinal tract of humans, making them potential mucosal
vaccinations. L. plantarum is perhaps the most ubiquitous Lactobacillus species/strain with
beneficial characteristics and is often found in various cultured food items. In addition, L.
plantarum is frequently used in fermentation technology and the preparation of fresh foods
is “generally regarded as safe” (GRAS) and has QPS certification [17]. FAO and WHO
stipulate that L. plantarum isolates must have a high capacity to live in the intestinal system
and be a safe strain for human beings.

This study was focused on the functional annotation on the L. plantarum 13-3 strain
of Lb. plantarum as the strain which has the potential of being used as a potential starter
probiotic as shown in [34]. Several other strains of the specie have been examined for the
same potential. For instance, Ba et al. [43], exploited the capacity of L. plantarum strain
KACC 92189 as a starter culture for fermented, safe foods. Similarly, Yilmaz et al. [44]
reviewed other strains of the bacteria with functional applications in the industrial fermen-
tation processes. These included strains 423 (fermentation of rice and wheat bran), QZ227
(fermented wheat silage), 299v, Heal 19, 299, and Lp900 (white beans and cauliflower),
BX62 (fresh-cut apples, P-8 (fermented milk), PL62 (kimchi) [45]. In one of our previous
studies, L. plantarum YW11 was investigated as a potential candidate in exopolysaccharide
production with the aim of looking for opportunities to modify or engineer this strain to
refocus its capacities in the human body as well as steer similar strains as viable probiotics
in food and its complex mechanisms of CLA conversion [34].

This study, focusing on L. plantarum 13-3, looks for the same opportunities by anno-
tating the strain. We found that the genome size of 13_3 2,991,504 base sets, with 44.9%
GC content, 228 subsystems and 32918 qualities. No CRISPR-Cas site was found in this
genome, however, two unique phage hit sites were identified for genome modulation.
The CAZy data set has anticipated five significant classes of sugars in the genome of L.
plantarum 13-3, i.e., Glycoside hydrolases, glycosyl transferases, carb esterase, assistant
chemicals and starch restricting modulars. One of the most important findings of this study
was the non-pathogenicity of the strain to the host with a 0.19 probability of being a human
pathogen, with a pathogenic coverage of 0.43%. Four regions in the L. plantarum 13-3
genome were identified to produce bacteriocins involved in food safety. These included
the cyclic lactone autoinducer, terpenes, T3PKS, and RiPP-like.

The identification of these four categories of compounds led to the agreement that the
L. plantarum 13-3 does indeed have the potential for being used as a food safety agent in
terms of regulating quorum sensing, having a beneficial influence on host nervous and
tissue repair systems, and the general healing process of the host. Our findings were in line
with previous studies such as Mull et al. [46], who discussed that cyclic peptides, similarly
to the cyclic lactone autoinducer peptide, govern critical pathways of signal transduction,
further targeting the polysaccharide biosynthesis and sugar utilization enzymes. In another
study, terpenes and the T3PKS gene cluster were identified in Pseudovibrio genus with
encouraging potential toward producing novel bioactive compounds, playing a significant
role in food processing along with other industrial applications [47].

In the present study, in accordance with the findings discussed and the works of Aziz
et al., [31] on bio-molecular analysis of food derived Lb. strains, Aziz et al., on the production
of linolenic acid analogues from L. plantarum 13-3 [35], and Devi and Halami [48] on the
genetic modulation of L. plantarum strains, holds that the L. plantarum 13-3 of L. plantarum
can be used as a starter culture for probiotic, yet safe food processes. Furthermore, its
non-pathogenicity opens roads for a wide spectrum of human health-related research and
applications requiring the services of bacteria.
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5. Conclusions

The current study reveals the importance of L. plantarum 13-3 as a potential probiotic
and bacteriocin-producing strain that helps in improving the condition of the human
digestive system and thus enhances the immunity of living beings via various extracellular
proteins and exopolysaccharides. In the present study, the stability and quality assessment
of the L. plantarum 13-3 genome is performed by de novo assembly and annotation through
FAST-QC and RAST, respectively. Further, the eminent probiotic-producing components,
secondary metabolites, phage prediction sites, pathogenicity and carbohydrate-producing
enzymes in the genome of L. plantarum 13-3 are analyzed computationally. This study
demonstrated that L. plantarum 13-3 is nonpathogenic bacterium with 218 subsystems and
32,918 qualities and five classes of sugars with several important functions. Two phage
hit sites have been identified in the strain. Cyclic lactone autoinducer, terpenes, T3PKS,
and RiPP-like gene clusters have also been identified in the strain, evidencing its role in
food processing. Combined, the non-pathogenicity and the food-processing ability of L.
plantarum 13-3 have rendered this strain industrially important. The subsystem and quality
characterization provides a starting point to investigating the strain’s healthcare-related
applications, which may also help researchers to discuss the potential health beneficial
properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175399/s1, Table S1: Genome wide annotation of L.
plantarum 13-3 by RAST; Table S2: Phage Site Prediction; Table S3: Predicted Transporter Proteins
and interpretation of their signal peptide; Table S4: Interpretation of Carbohydrate Active Enzymes;
Table S5: Annotation of Carbohydrate Active Enzymes previously predicted by CAZy; Table S6:
Functional Annotation of L. plantarum 13-3 via BAGEL; Table S7: STRING Functional Annotations
showing components of 13-3 involved in probiotic activity and food safety; Table S8: Gene Ontology
components showing enrichment analysis analyzed via string; Table S9: 13 nearest matches of L.
plantarum 13-3 strain to non-pathogenic bacteria vis PathogenFinder; Table S10: antiSMASH predicted
near bacteriocins and other secondary metabolites creating locales of L. plantarum 13-3 with different
genomes of L. plantarum.
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