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Abstract: Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene ex-
pression in a responsive organism by exogenous RNA. While exogenous RNA transfer between
organisms of different kingdoms of life have been unambiguously identified in nature, our under-
standing of the biological significance of this phenomenon remains obscure, particularly within
an evolutionary context. During the last decade multiple reports utilizing various mechanisms of
natural eRNAi phenomena have been attempted to develop new agricultural traits and products
including weed, disease and insect control. Although these attempts yielded mixed results, this
concept remains extremely attractive for many agricultural applications. To better utilize eRNAi
for practical applications, we would like to emphasize the necessity of understanding the biological
significance of this phenomenon within an evolutionary context and learn from nature by developing
advanced tools to identify and study new cases of exogeneous RNA transfer and eRNAi. In this
opinion article we would like to look at the exogeneous RNA transfer from an evolutionary perspec-
tive, propose that new cases of exogeneous RNA transfer still remain to be identified in nature, and
address a knowledge gap in understanding the biological function and significance of RNA transfer.
We believe such approach may eventually result in a more successful use of this phenomenon for
practical applications in agriculture.
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Regulatory RNAs (RegRNA) form a diverse class of non-coding RNA molecules in
eukaryotic and prokaryotic organisms that regulate gene expression through a sequence-
specific interaction with RNA or DNA. The significance of many classes of regRNAs in
regulating the expression of complex networks of genes in organisms during development
or in response to stresses has been described in numerous publications and reviewed else-
where [1]. The most well-known classes of regRNAs found in most eukaryotic organisms
include small RNA (sRNA) (miRNA, siRNA, and other subclasses, reviewed elsewhere)
and long non-coding RNAs (lncRNA) that regulate gene expression on transcriptional,
post-transcriptional and translational levels [2,3]. In prokaryotes, an expanding list of
regRNAs include multiple cis- and trans-encoded sRNAs involved in regulation of gene
expression by complementary base pairing with target RNAs or sequestration of regula-
tory proteins, and more recently discovered CRISPR RNAs (crRNAs) that play a role in
defense against foreign DNA [4–6]. It should be noted that the prokaryote and eukaryotic
regRNA systems follow separate rules and evolutionary paths and are not functionally
interchangeable. Overall, the regulatory role of RNAs in organisms of all kingdoms of life
is abundant and their functions are diverse.

In addition to regulation of endogenous gene networks within an organism, another
phenomenon that draws the attention of many biologists can be described as the regulation
of gene expression in a receptive organism by exogenous RNA. Such sequence-specific
regulation in a responsive organism by exogenous RNA is usually referred to as inter-
kingdom or cross-kingdom RNA and/or environmental RNAi (eRNAi). The eRNAi term
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that in our opinion reflects a broader scope of this phenomenon and will be used in this
publication to describe any cases of exogenous regRNA transfer in nature or designed
and engineered in a laboratory. The first reported case of eRNAi was a regulation of
gene expression by ingestion of exogenous dsRNA or bacterially-expressed dsRNA by C.
elegans [7]. It was also shown that a non-coding RNA naturally expressed in E. coli is taken
up by C. elegans and loaded into the RNAi machinery and down-regulates the che-2 gene
thus impairing the nematodes’ ability to find food [8].

A growing number of reported examples of eRNAi describing RNA transfer between
plants and microorganisms, plants of different species, and between plants and herbivorous
insects can be found in several reviews [9,10]. The evolutionary aspect of establishing
RNA-based signaling between different organisms as well as the possibility of utilizing
the eRNAi knowledge for practical applications make this phenomenon intriguing and
worthy of detailed investigation. Recently reported cases of natural eRNAi, as well as
examples of engineered eRNAi suggest that exogenous cross-kingdom RNA regulation
may be widespread in nature; however, the overall picture of the eRNAi role in living
organisms remains fragmented and the significance of this phenomenon in nature on a
global scale is yet to be fully understood.

Plants occupy a unique place in the Earth’s ecosystem by continuously interacting
with numerous pathogenic or symbiotic microbes and herbivorous invertebrates, and thus
forming the base of the food chain pyramid. This constant interaction creates numerous
opportunities for an RNA transfer mechanism as a communication or regulatory signal
between plants and biotic environment to evolve. Regulation of gene expression by
exogenous RNA delivered to plant cells by gray mold during this plant–microbe interaction
is one of several compelling examples of eRNAi [11]. Plants transporting sRNAs into
microbes was identified in another plant-fungal pathogen interaction. In this example,
where Botrytis cinerea delivered small RNAs into plant cells silencing host immunity genes,
while the host plant delivered sRNAs to Botrytis to target fungal genes and attenuate
fungal pathogenicity [12]. A practical technological application of this type of regulatory
RNA transfer was demonstrated when lettuce plants were engineered to produce siRNAs
targeting vital genes of the oomycete pathogen Bremia lactuca resulting in significant
reduction in fungal growth and sporulation [13]. However, in spite of the growing number
of reported cases of exogenous RNA signaling between plants and fungi, RNA exchange
between plant and fungal pathogen is not always detected [14]. The lack of consistent
demonstration/detection of transferred RNA raises questions as to the level of conservation
existing for exogenous RNA-base signaling mechanisms in plant–fungal interactions.

While the bidirectional eRNAi between plants and fungi relies on intimate cellular
contact [15], the active exchange of regRNAs and other effectors via highly specialized
extracellular vesicles and an extensive similarity in silencing machinery [9,16], the transfer
of regRNA between plants and insects likely relies on different mechanisms. In plant–
insect interactions, strong eRNAi responses have been found in some insect orders such
a Coleoptera, but many lepidopteran species seem to be totally or partially refractory to
eRNAi [17] suggesting different evolutionary paths to evolve responsiveness to exogenous
RNA. Ingestion of corn tissue engineered to express long double-stranded RNAs (dsRNAs)
with a sequence complimentary to essential insect genes in corn rootworm (CRW, Diabrotica
virgifera virgifera LeConte) resulted in systemic down regulation of target genes and insect
death [18]. This was the first clear demonstration of eRNAi between plants and insects.
Interestingly, CRW is capable of dietary uptake of not only transgenically-expressed dsRNA
but also numerous naturally-produced plant long dsRNA (40 bp and longer) but not small
RNAs [19]. Plant-derived long dsRNAs were processed into functional insect siRNAs by
the insect RNAi machinery and could account for a significant portion (up to 12%) of the
overall siRNA pool in CRW cells [19]. At the same time, lepidopteran insects fed under
the same conditions did not have any detectable plant-derived siRNAs suggesting a lack
of plant dsRNA uptake [19]. Even within the same insect species, non-responsiveness
to eRNAi has been observed. For example, a CRW population that was non-responsive
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to eRNAi was generated that lacked the ability to uptake long dsRNA from plant-based
food sources [20]. This insect line had no obvious detrimental developmental effects under
laboratory conditions, although we cannot exclude that eRNAi ability may have played a
role in the organism in a more complex natural environment. While engineered eRNAi
in the form of topically applied or transgenically expressed regRNA with a sequence
complementary to insect target genes can help protect plants from insect pests, it is not
clear what role eRNAi plays in plant defense against insect pests in nature. Thus, plants
can be both donors and recipients of exogenous regRNA, actively or passively transferring
regRNA into interacting organisms.

Inspired by examples of eRNAi found in nature and several cases of engineered
eRNAi, there is increasing interest in leveraging the eRNAi for a broader range of practical
applications in agriculture utilizing either plant incorporated or topical approaches. Plants
have endogenous mechanisms to amplify regRNA signals and, in some cases, spread it
systemically to distant cells or tissues [4] and this attribute may enhance the potential to
exploit engineered eRNAi for crop protection applications. Exogenous regRNA-based
strategies conceived to control herbicide resistant weeds [21] relied not only on the efficient
uptake of topically applied regRNA but also on the systemic movement of the silencing
effectors. In spite of recent advances in our understanding of factors limiting the practical
application of topical eRNAi for weed control, technical solutions still need to be identified
to overcome significant physicochemical and molecular barriers limiting the widespread
activity of exogenously applied regRNAs [22]. For example, current technologies limit
efficient delivery of siRNAs to cells in developing or mature leaves, leaving meristematic
regions out of reach [23,24]. Additional cases of exogenous regRNA application to leaf
surface of model plants have been reported and demonstrated the suppression of transgene
or endogenous genes [25–27]. Systemic gene silencing initiated from localized topical
delivery of sRNAs has been reported in Nicotiana benthamiana plants overexpressing GFP, a
process that seems to be dependent, at least in part, on the size and abundance of the siRNA
effector as well as on the relatively high expression of the target gene [22,23,28,29]. Our
current understanding of the mechanisms restricting systemic RNAi-mediated silencing of
endogenous genes after topical dsRNA application is limited.

In order for exogenous regRNA to achieve a noticeable regulatory effect in heterolo-
gous organisms, the regRNA not only needs to be efficiently taken up by recipient cells in a
biologically relevant concentration in the host, but also must be protected from intracellular
degradation and be compatible with host RNA regulatory biogenesis pathways and silenc-
ing machinery. Therefore, in addition to exogenous regRNA bioavailability, the differences
in compatibility with host machinery, including efficient loading into the host silencing
complex along with systemic spread, can also be factors contributing to the variability
in response to eRNAi. Several published examples of bidirectional plant fungal eRNAi
demonstrated the importance of exosome-based active delivery of fungal sRNAs [15].
Learning from these naturally-occurring examples of eRNAi can help to develop a strategy
for effective engineered eRNAi for specific practical applications.

In nature, plants co-exist with a diverse set of microbes such as archaea, bacteria, fungi,
protists and viruses forming a complex consortia called the “holobiont”. In such consortia
where holobiont members cohabitate in close proximity for millions of years, co-evolution
likely results in developing mutualistic, commensalistic or pathogenic interactions [30,31].
Unlike plant-fungus interactions where exogenous regRNA exchange and eRNAi have been
clearly demonstrated, to our knowledge there is no reported cases of eRNAi between plants
and prokaryotic microorganisms. However, as found with fungal pathogens, prokaryote
pathogen-plant interactions have been shown to involve effectors (e.g., type-III secretion
system effectors) [32]; and some of these effectors have the ability to bind RNA. Many
bacteria are also able to form extracellular vesicles that can carry regRNA that could be a
universal mechanism for RNA signaling in the holobiont and it has been proposed that
sRNA may play a role in eRNAi between prokaryotic microbes and eukaryotic holobiont
hosts [33,34]. The difference in RNA regulatory mechanisms between prokaryotes and
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eukaryotes may suggest that it is unlikely prokaryotic microbial exogenous RNA can
be decoded using the eukaryotic silencing complex but other opportunities may exist
where exogeneous regRNA acts not as a mediator of canonical gene silencing but rather
binds to host receptors and activates signal transduction cascades [33]. Some symbiotic
and pathogenic bacteria have also evolved the ability to colonize and live inside plant
cells [35], therefore potentially creating a possibility for regRNA and effector proteins
transfer between bacteria and cytoplasm of the plant cell. We propose that native exogenous
regRNA exchange may exist between prokaryotic microorganisms and plant cells, although
specific examples are not easily discoverable and future practical applications are yet to
be invented.

Several reported examples mentioned above and reviewed elsewhere suggest a diver-
sity of forms and mechanisms of exogenous regRNA transfer as outlined in Figure 1. Our
current understanding of mechanisms of RNA secretion, transport and uptake by plant
cells is still very limited. Different types of RNAs such as small regRNAs as well as long
non-coding RNAs and messenger RNAs have been reported to move intercellularly and
involved in cell-to-cell and long-distance signaling during plant development and response
to environmental cues [36,37]. Plant plasmodesmata (PD) has been shown to play a critical
role in intercellular trafficking of macromolecules, both RNA and proteins, across the cell
wall [38]. It is still unclear if such intercellular trafficking is driven primarily by specific
intrinsic properties of RNA or it is a non-selective diffusion-based process or combination
of both. At least some mobile RNAs are associated with RNA binding proteins [36] that
may facilitate selective secretion of certain RNAs through PD, although RNA binding
proteins may also play a role in RNA stability. Interestingly, both endoplasmic reticulum
and PD are involved in RNA virus movement in plants [39] suggesting that at least some
eRNAi cases can be explained by RNA-protein complex trafficking similar to processes
occurring during virus intercellular movement.
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Figure 1. Multiple forms of exogenous RNA transfer between plant cell and biotic environment.
Potential mechanisms, proposed biological roles and possible practical applications: red color font
—pathogenic/defense interaction; green color font—symbiotic/beneficial interactions. Dashed line
arrows and “?”—proposed (hypothetical) cases that are currently not fully supported by published
reports; lncRNA—long non-coding RNA, endoRNAP—plant endogenous RNA/protein complex,
exoRNAP—engineered RNA/protein complex, AGO—argonaute protein, DCL—dicer-like protein.
dsRNA—double stranded RNA.

In C. elegans and some insect species, long dsRNA uptake is driven by specific mecha-
nisms such as SID2 and clathrin-mediated respectively [40,41]. While similar mechanisms
have not yet been found to be involved in RNA uptake in plants, the clathrin-mediated en-
docytosis pathway has been shown to be responsible for uptake of exogenous dsRNA in the
white mold phytopathogen Sclerotinia sclerotiorum [42]. Recent findings detailing new types
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of extracellular RNAs and mechanisms of RNA secretion in non-plant organisms [43,44]
also suggest that we cannot exclude the possibility of discovering new mechanisms of
naked regRNA or ribonucleoprotein complexes transfer, both by secretion and uptake, in
plant cells in addition to the reported extracellular vesicles-mediated transfer of sRNAs.

Apart from downregulation of target genes, exogenous RNA may trigger receptor
mediated regulatory signaling, as in case of dsRNAs inducing pattern-triggered immune
signaling [45], which is an even less explored opportunity of the topical RNA strategy for
practical applications. We also would like to note what while the systemic spread of the
exogenous regRNA signal in organisms seems to be one of the most desirable characteristics
for many practical eRNAi applications, the local regulation or signal initiation in specific
cell types may have valuable practical applications in some cases as well. We have no doubt
that leveraging natural mechanisms of RNA secretion, uptake and stabilization would
allow for more efficient use of eRNAi for practical applications. The biological function
of exogenous regRNA transfer is often difficult to elucidate due to technical challenges.
We think it is likely that many new cases and forms of eRNAi will be identified and our
understanding of the significance of this phenomenon on a global scale and direction of
evolutionary processes is very far from complete. From an evolutionary point of view,
eRNAi could be beneficial for plants during interactions with symbiotic microorganisms
or as a plant defense against pathogenic microorganisms or herbivorous pests. At the
same time, however, eRNAi may provide a way for pathogenic invaders to regulate gene
expression in host cells. Interacting organisms can acquire the ability to uptake or deliver
regRNA, but we cannot exclude the possibility that many cases of RNA transfer are an
ancient relic process and may have a neutral effect.

The more we understand the evolutionary trajectory of eRNAi cases the more we
will understand the mechanisms and biological function of this process in different or-
ganisms. This knowledge of native mechanisms can be leveraged to develop practical
applications, including crop protection from insect pests, microbial pathogens and weeds,
plant adaptation to abiotic stresses, promoting plant-microbe symbiotic interactions, and
other possibilities aimed at improving agriculture.

Significant technical challenges remain to demonstrate unambiguously the functional
role of exogenous RNA in heterologous organisms, especially when the recipient/host
has limited exogenous RNA uptake capacity and lacks amplification and/or systemic
spread of the RNA regulatory signal. In such cases, a phenotypic effect or impact on the
host is difficult to measure due to the temporal and localized nature of the response and
challenges in identifying target cells and gene products or affected pathways. Elucidating
knowledge that regRNA transfer occurs but does not result in a biologically meaningful
effects could still add value to the understanding of the evolution of regRNA, exogenous
RNA mobility, uptake and eRNAi. Expanding our knowledge of regRNA biogenesis and
function in donor and recipient organisms, increasing the amount of available genomic
and transcriptomic data and onboarding advanced detection techniques would allow us
to identify currently undetected cases of eRNAi by specific signature marks of exogenous
regRNA processing or association with host RNA regulatory machinery. These approaches
also require caution in the interpretation of results since because of the high sensitivity
of next-generation sequencing technologies and the possibility of cross contamination.
Careful evaluation of the most appropriate techniques or combination of methods and
unbiased interpretation of results are critical steps to distinguish between false positives
and true eRNAi as well as to minimize false negatives and missing true cases of eRNAi.
Advanced sRNA sequencing approaches such as degradome sequencing, cross-linking
immunoprecipitation and single cell RNA sequencing in combination with laser captured
microdissection, microfluidic-based cell sorting, extracellular vesicle purification and new
bioinformatic tools relying on extensive databases could help to identify new true cases of
eRNAi and better understand the evolution of eRNAi in plants and interacting organisms.
Significant progress has been made studying extracellular RNA as cell-to-cell and long
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distance signaling in various organisms [46,47] and some methods/approaches including
computational ones should be adopted for studying eRNAi [48].

As the aforementioned techniques have become more broadly available and affordable
in recent years, their application to eRNAi studies may help us to conduct large-scale
surveys of eRNAi events not only in the laboratory but also under natural environmental
conditions. One example of such a survey could be a sampling of herbivorous insects
from a natural feeding environment and conducting sRNA sequencing analysis for the
presence of exogenous plant-derived RNA within insects and confirmed to be processed
by insect RNAi machinery into insect siRNAs. Mapping the data to appropriate plant and
insect genomes and transcriptomes (Figure 2) similar to what was previously conducted
on a smaller scale [19] would allow us to identify insect species and populations that are
capable of exogenous RNA uptake under natural environmental conditions and potentially
learn more about eRNAi evolution. A better comprehension of the eRNAi phenomenon
on a global scale would not only help shed light on evolutionary aspects of this biological
process but would also let nature guide us on better designs, broader ranges and more
efficient uses and applications of eRNAi.
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