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Abstract: The complexity of brain functions is supported by the heterogeneity of brain tissue and
millisecond-scale information processing. Understanding how complex neural circuits control animal
behavior requires the precise manipulation of specific neuronal subtypes at high spatiotemporal
resolution. In utero electroporation, when combined with optogenetics, is a powerful method
for precisely controlling the activity of specific neurons. Optogenetics allows for the control of
cellular membrane potentials through light-sensitive ion channels artificially expressed in the plasma
membrane of neurons. Here, we first review the basic mechanisms and characteristics of in utero
electroporation. Then, we discuss recent applications of in utero electroporation combined with
optogenetics to investigate the functions and characteristics of specific regions, layers, and cell types.
These techniques will pave the way for further advances in understanding the complex neuronal and
circuit mechanisms that underlie behavioral outputs.

Keywords: in utero electroporation; channelrhodopsin; optogenetics

1. Introduction

Optogenetics has become a powerful tool in neuroscience for understanding the
complex functions of neural networks [1,2]. In the past decade, the contribution of specific
neuronal populations to complex neuronal dynamics and their effect on behavior have been
revealed using optogenetic approaches [3–5]. By expressing light-gated ion channels and
pumps in distinct neuronal populations, researchers can precisely control the activity of
specific neurons [2,5–7]. Optogenetic approaches have enabled the exploration of a variety
of neuronal populations, revealing a series of neuronal circuits associated with sensory
processing, memory, and learning [8–13].

Neurons, like all other cells, have a plasma membrane. The plasma membrane serves
as a barrier between the neuron and its surroundings, controlling the movement of sub-
stances into and out of the cell. This movement is controlled by transmembrane proteins
(embedded in the plasma membrane), which act as ion channels or pumps that control
the transport of specific molecules across the membrane. Electrically charged ions are
one of the substances transported by ion channels and pumps. Ion channels and pumps
transport specific ions and generate voltage gradients across the membrane, which are
referred to as membrane potentials. In particular, a rapid influx of sodium ions generates
action potentials, which contribute to neuron-to-neuron communication in the following
manner. in neurons, action potentials are conducted along axons toward synaptic boutons
at presynaptic axon terminals, where the electric signals are converted into chemical signals
(e.g., Glu (glutamic acid) and GABA (gamma-aminobutyric acid) in most cases). The
neurotransmitters (i.e., Glu or GABA) bind to ion channel-coupled receptors on postsy-
naptic terminals at chemical synapses, which transform these chemical signals back into
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electric signals known as postsynaptic excitatory or inhibitory potentials. Collectively, the
generation of ac-tion potentials and the subsequent activa-tion of postsynaptic neurons are
achieved by a number of ion channels.

In the field of optogenetics, researchers often genetically modify neurons to manipulate
their activity by inducing their expression of light-gated ion channels or pumps known
as opsins [3,14–16]. Opsins, which are often used in optogenetics, are channels or pumps
that transport specific ions upon absorbing specific light frequencies [3,14,17–23]. When
opsin-expressing neurons are stimulated with light, light-gated channels are activated,
which either promote or inhibit the generation of action potentials [17,18,20,21,23].

Among the various methods for promoting the expression of opsins in a specific
neuronal population, we focus on in utero electroporation, which allows researchers to
study the diversity of the neuronal populations composing neural circuits [24–26]. This
review aims to improve the understanding of in utero electroporation and consider how to
exploit its potential in combination with optogenetics.

First, we introduce the unique features of the technique by comparing it with similar
techniques. Then, we precisely illustrate the basic function and characteristics of in utero
electroporation. Finally, we discuss future perspectives by showing examples of previous
studies that have combined in utero electroporation with optogenetics to reveal important
features of neural circuits.

2. Pros and Cons of Several Methods for Expressing Opsin in Neurons In Vivo

Neural networks comprise a myriad of cells, each receiving and sending projections
to various brain regions. Thus, cellular- and projection-specific optogenetic control of
neural activity is required to understand the complex network structure of neurons. Several
methods, including (i) genetically modified animals (Figure 1a), (ii) viral vectors (Figure 1b),
and (iii) in utero electroporation (Figure 1c), have been used to promote the expression of
opsins in the neurons of living animals [27].
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Figure 1. Overview of methods that introduce foreign genes into neurons. (a) Schematic of creating
genetically modified animals that express opsins. The DNA sequence of the target animal is modified
and injected into embryos. The embryos are then transferred to the host animal, where they mature
into offspring. (b) Schematic of transduction enabling the expression of opsins using viral vectors.
DNA segments with foreign genes are encapsulated into a viral vector. After injecting the viral
vectors into a specific target region of the brain, the virus transfects neurons in that region, inducing
opsin expression. (c) Schematic of in utero electroporation. Using laparotomy, the uterus of the
pregnant animal is exposed. Then, DNA plasmid vectors with the target genes are injected into the
ventricle of the fetus. Electroporation is then used to transfer the DNA plasmids into the cell.
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2.1. Genetically Modified Animals

Genetically modified animals can be created by altering their genetic materials (i.e., DNA
in most cases) with genetic engineering techniques. Conventional genetic engineering methods
allow researchers to insert ‘foreign’ genes at a random location in the genome of a host animal
to create transgenic animals. However, conventional genetic engineering methods do not
necessarily yield the desired outcomes because foreign genes are inserted at unpredictable
loci in the host animal’s genome. In this light, this approach has recently been described as
‘ham-fisted’ or clumsy [28].

In addition to the conventional methods described above, gene editing technologies
based on the zinc finger nuclease (ZFN) [29–34], transcription activator-like effector nucle-
ase (TALEN) [30,35–41], and clustered regular interspaced short palindromic repeats-Cas9
(CRISPR–Cas9) [30,35,42–45] systems have recently been developed, allowing researchers
to precisely modify the DNA sequence of host animals. These systems allowed for gene
targeting by inactivating specific genes (known as a knockout) or inserting a foreign DNA
sequence into a gene of interest (known as knock-in). Among the various knockout and
knock-in animals, mice that express Cre recombinase under a specific promoter are widely
used. Crossing a Cre mouse line with another strain carrying Cre-dependent opsins limits
the expression of opsins to Cre-expressing cells.

Another method uses a viral vector with opsin genes (see the next section). There are
numerous Cre lines for specific neurons in mice, but the number of opsin-expressing mouse
models is limited. Moreover, the drawback of this system is that genetically modified
animals for species other than mice are meager and scarce. Theoretically, one could design
and create novel transgenic or knock-in animal lines for various species, but this would be
a time-consuming and costly process.

2.2. Viral Vectors

Using viral vectors for gene expression is an alternative to producing transgenic
animals. Gene expression with viral vectors (e.g., adeno-associated virus (AAV) and
lentivirus) is achieved by replacing the viral genome with a custom-designed construct
containing a target opsin [46]. This technique enables precise spatial control as well as
cell-type specificity through the use of specific promoters and enhancers. For example,
universal promoters drive gene expression in a wide variety of neurons, while cell-type-
specific promoters limit the expression of genes to specific types of neurons. Further
cell-type specificity can be achieved by using trans-synaptic viral vectors to target specific
projections. Retrograde- and anterograde-transporting viral vectors (e.g., rAAV2-retro [47],
rabies virus (RV) [48], herpes simplex virus 1 (HSV-1) [49] and vesicular stomatitis virus
(VSV) [50]) can be used to deliver target genes in a projection-specific manner. This strategy,
combined with conditional expression machinery, enables the circuit-specific expression
of opsins in various animal models. The disadvantage of this approach is the limited
packaging capacity of viral vectors. AAV and lentivirus vectors can accommodate genomes
with up to 5 kb and 10 kb of packaged transgene constructs, respectively. Due to this
bottleneck, viral vectors can only be used to deliver relatively small promoters.

2.3. In Utero Electroporation

In utero electroporation is used to induce the expression of target genes in neural
precursors to control the activities of neurons. This method is less invasive and more
convenient than postnatal injections of viral vectors [51–56]. In most cases, the plasmid
vector (to be expressed) is injected into the ventricles of the embryonic brain. Then,
electrical pulses are used to transfer the DNA into cells in the adjacent ventricular zone
or subventricular zone [55,56]. The target gene can be expressed in a specific neuronal
population by controlling the embryonic day when the method is applied. The area of
expression can also be controlled by placing bipolar electrodes at specific angles and
positions [53,57–60]. Electroporation can be used in various animals, including mice, rats,
ferrets, and cats [53,54,57,61,62]. Furthermore, electroporated cells contain multiple copies
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of the transgenes, resulting in a reliable and robust expression of the target genes. However,
the drawback of in utero electroporation is the uncertainty in how long the transgenes
are expressed. This is because electroporated plasmid vectors are likely to be episomal,
and the expression of foreign genes depends on the total amount of the plasmid vectors.
If nonviral vectors are introduced into proliferating cells and inherited in daughter cells,
the number of vectors in each daughter cell is less than that in the mother cell because the
total number of vectors (remaining episomally in the mother cell) is constant [63]. Due to
this issue, without combining it with other techniques, such as transposon-mediated gene
expression systems [64–68], in utero electroporation is not suitable for studying constantly
proliferating cells, such as apical progenitors, basal progenitors, and outer subventricular
zone (OSVZ) radial glia-like cells, all of which contribute to the generation of glutamatergic
neurons as neural progenitor cells.

3. Principle of Electroporation

Electroporation consists of two major steps: (1) electropermeabilization of the cellular
membrane and (2) electrotransfer of a DNA plasmid. Both steps in the electroporation
process require a train of electric pulses to drive the DNA into target cells. The efficient
transfer of plasmid DNA into the cells depends on (1) the permeability of the cell mem-
brane and (2) the probability (i.e., success rate) of DNA transfer across the cell membrane
toward the nuclear membrane. These can be controlled by optimizing the frequency and
intensity of the electrical pulses. In the following section, we discuss the basic mechanisms
of electroporation.

3.1. Electropermeabilization of the Cell Membrane

In the first step of electroporation, a series of electric pulses are used to disrupt the cell
membrane, resulting in the formation of temporary pores in the membrane [69,70]. The
formation of these pores is dependent on the increased transmembrane voltage caused
by the applied electric field. The transmembrane potentials are temporarily elevated by
multiple electric pulses, generating ion flow. This ion flow charges the membrane and
causes a rapid rearrangement of the molecular structures in a confined space, forming
pores in the membrane. Owing to this transient pore formation, hydrophilic molecules,
including DNA, can be transported into and out of the cell. Upon removal of the external
electric field, these pores rapidly close. Depending on the target tissues and the model
animal, the voltage can range from 10 V to 1000 V [71]. However, a voltage of 20–50 V is
typically used for in utero electroporation of the rat or mouse brain [58,72].

3.2. Electrotransfer of Plasmid DNA

In the second step, the negatively charged DNA migrates toward the positive elec-
trode [73,74]. The process of transferring DNA into cells is equivalent to the process of
using DNA electrophoresis in an external electric field. As previous studies have suggested,
transfection efficiency is significantly higher in cathode-facing cell monolayers than in
cells exposed to electric field pulses in the opposite direction (i.e., the anode-facing di-
rection) [75,76]. This is because negatively charged plasmid DNA migrates through the
electrically permeable cell membrane via electrophoresis. Therefore, as described in a later
section, it is possible to physically control the transfection site by changing the position and
polarity of the electric field.

4. Region-Specific Expression Using In Utero Electroporation

The brain comprises multiple functionally distinct regions, and proper neural circuits
between these regions are required for higher brain functions. Various genetic modification
techniques, such as the use of transgenic Cre lines and viral vectors, have been developed
to induce the conditional expression of transgenes in specific neural populations.

In utero electroporation can be used to induce gene expression in certain brain regions
by targeting progenitor cells that migrate and develop into neurons in specific brain regions
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(Figure 2). This is achieved by orienting the position and angle of the electrode while
administering electrical pulses. Specific brain region targets include the motor cortex,
prefrontal cortex, visual cortex, hippocampus, cerebellum, lateral septal nucleus, striatum,
thalamus, and hypothalamus [53,57,62,77–79]. In particular, directed electroporation of the
mouse or rat neocortex (i.e., the motor cortex, somatosensory cortex, visual cortex, and
prefrontal cortex) is achieved by placing the positive electrode at dorsolateral positions,
thereby promoting the transfer of the plasmid to cells in the dorsolateral region of the
lateral ventricle [53,57]. Similarly, plasmids can be transferred to neural precursor cells
in the hippocampus by placing the positive electrode on the medial region of the lateral
ventricle [53,57,78]. Placing the positive electrode ventrolaterally promotes the transfection
of the plasmid DNA into pyramidal neurons in the piriform cortex and amygdala [80].
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The bipolar in utero electroporation technique was first developed in 2001 [55,81]
(Figure 3a). Initially, it was developed as a quick and simple method for genetically ma-
nipulating pyramidal neurons in the mouse somatosensory cortex in vivo. Over the next
decade, more studies used the standard in utero electroporation technique in the somatosen-
sory cortex. This technique was also used to transfect other brain regions, including the
hippocampus and prefrontal cortex. However, since the in utero electroporation technique
in those days mainly made use of double-electrode probes with two poles (i.e., bipolar),
it was extremely difficult to perform transfection in areas other than the somatosensory
cortex [58,72]. However, in 2012, dal Maschio et al. developed triple-electrode (i.e., tripolar)
probes for in utero electroporation, which enabled the efficient transfection of regions other
than the somatosensory cortex, including the hippocampus, prefrontal cortex, motor cortex,
visual cortex, and cerebellum [58] (Figure 3b). In addition, triple-electrode probes enable
researchers to create a symmetrical electric field, allowing gene transfer on both sides of
the brain. Notably, prior to the development of triple-electrode probes, gene transfers
were only possible on the contralateral side of the brain; if two-electrode probes were used,
undesired transfection of the other ventricle could occur in the case of the plasmid loading
of both ventricles. Moreover, portable electroporators for in utero electroporation have
recently been developed [59].

Confinement of the transgene-expressing region is also a benefit of using in utero
electroporation. As is often the case with viral vectors, simple diffusion after injection
causes surrounding regions to also be transfected. However, since transfection of plasmids
in in utero electroporation is also affected by the direction and intensity of the electric field,
controlling these parameters will enable researchers to confine the region of transgene-
expressing tissues. Although region-specific expression of transgenes is possible with
double-electrode probes, the diffused electric field may cause the transfection of surround-
ing tissues, and an asymmetrical electric field results in an undesired transfection of the
other ventricle when loading both ventricles with plasmid vectors. Undesired expression
in other regions can be overcome by using triple-electrode probes to precisely regulate the
direction and strength of the electric field [58]. Using a triple-electrode probe (Figure 3c),
researchers can confine the transgene-expressing region to a very narrow area even if there
are no specific genetic markers for the region.
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5. Layer- and Cell Type-Specific Manipulation of Neurons

In utero electroporation is an effective method for revealing the function of specific cell
populations by selectively inducing the expression of target genes. The opsin-expressing
construct is injected into the ventricles of the embryonic brain and electroporated into
adjacent cells. Since the cellular lineage of the progenitor cells lining the lateral ventricle
varies depending on the embryonic day of the animal, the electroporated cells can be
characterized based on the developmental stage [82]. For example, in a developing mouse
embryo, electroporation at embryonic day 12.5 (i.e., E12.5), 13.5, or 14.5 results in the
expression of target genes in pyramidal neurons at cortical layers V/VI, IV, or II/III,
respectively [53,57,60]. Embryonic day-specific in utero electroporation has also been
performed in the hippocampus [83]. This targeted cortical layer-specific expression can
be explained by the ‘inside-out’ migration pattern of neural precursor cells [84,85]; cells
that migrate early in development become neurons in deep layers (closer to cortical layers
V/VI), while cells that migrate later in development become neurons in superficial layers
(closer to cortical layers II/III) (Figure 4a).

The same technique can be applied to promote the expression of transgenes in in-
terneurons. Interneurons originate in the ganglionic eminence and migrate to the cerebral
cortex (Figure 4b). Borrell et al. demonstrated that by targeting the ganglionic eminence,
in utero electroporation enabled the selective induction of gene expression in interneu-
rons [86]. In the electroporated adult brain, labeled interneurons can be found in various
brain regions, including the neocortex, olfactory bulb, and hippocampus. Borrell et al. also
showed that electroporated interneurons were properly integrated into neural networks
and exhibited normal electrophysiological properties [86]. Although transgenic animals are
normally used to study the role of interneurons, in utero electroporation is an alternative
technique for characterizing the developmental and functional properties of interneurons
in various regions.

Moreover, changing the time of electroporation enables the transfection of not only
neural progenitor cells but also astrocytes. For instance, when rat embryos were electropo-
rated at E18, transfection of astrocytes in the neocortex was observed [87].
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Figure 4. Region- and cell type-specific in utero electroporation by targeting precursor cells. (a) Inside-
out scheme of neuronal migration (indicated by arrows) in the developing neocortical layers. The
pyramidal neurons in deep layers of the cortex form earlier than pyramidal neurons in superficial
layers. Pyramidal neurons in cortical layers II, III, IV, V, and VI and the subplate (SP) are indicated
in blue, pink, yellow, green, light blue, and red, respectively. Radial glial cells in the ventricular
zone are indicated in gray. Newborn neurons migrate into the cortex using radial glia spanning
from the ventricular to the pial surface. Expression of foreign genes in a specific cortical layer can
be achieved by in utero electroporation targeting newly born neurons that mature into pyramidal
neurons in the target layer. (b) Origins of pyramidal neurons and interneurons. Pyramidal neurons
generated in the ventricular surface (middle, green) migrate radially (in the direction of arrows),
while interneurons originating from the ganglionic eminence (right, green) migrate tangentially (in
the direction of a curved arrow). Thus, ganglionic eminence-targeting in utero electroporation allows
for the interneuron-selective expression of foreign genes.

6. Combining In Utero Electroporation and Optogenetics

In utero electroporation allows target genes to be expressed in the region- and cell
type-specific manners. Including opsin-coding genes in the vector plasmids allows the
expression of opsins in specific neurons. This technique enables optical control of neuronal
activity [88,89] and imaging of neuronal populations [90–92]. Here, we describe how in
utero electroporation has been used to scrutinize neural circuitry, neural pathways, and
animal behavior.

6.1. Neural Circuitry

In neural circuits, information is exchanged between different neurons through local
and long-distance connections. One way to elucidate the complexity of this neural circuitry
is to express opsins in cell- and region-specific manners and manipulate these opsins with
optical stimulation. By taking advantage of the cell type- and region-specificity of in utero
electroporation, a variety of connections in neural circuits have been scrutinized.

Combining whole-cell recording of synaptic currents with the photostimulation of
electroporated channelrhodopsin-2 (ChR2)-positive neurons has allowed mapping of
the circuits between presynaptic and postsynaptic neurons. This technique, known as
ChR2-assisted circuit mapping (CRACM) [91,93], can be used to identify presynaptic and
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postsynaptic neurons based on ChR2 expression and whole-cell recordings, respectively.
Petreanu et al. used this technique to map long-range callosal projections from layers II/III
in the somatosensory cortex and revealed that axons in layers II/III projected to neurons
in layers V, II/III, and VI, but not layer IV, in the ipsilateral and contralateral cortices [91].
Furthermore, in both hemispheres, projections from layers II/III to layer V were found to be
stronger than those from layers II/III to layers II/III, suggesting that layer specificity may
be the same for local and long-range cortical projections. In another study, Petreanu et al.
used CRACM to investigate subcellular local connectivity, analyzing projections from
thalamic nuclei, the motor cortex, and local excitatory neurons to pyramidal neurons in
the mouse somatosensory cortex [93]. They discovered that individual inputs to dendritic
arborizations of layer III pyramidal neurons were aligned in a monotonic pattern, while
different inputs to layer V pyramidal neurons separately targeted the apical and basal
domains of dendrites.

In a similar manner, Adesnik et al. analyzed horizontal projections in cortical do-
mains [94]. In utero electroporation was used to express ChR2 in layers II/III of the
somatosensory cortex. The selective activation of horizontally projecting neurons revealed
that horizontal projection suppressed activity in the superficial layers and conversely
activated deeper output layers.

Bitzenhofer et al. used in utero electroporation to promote ChR2 expression in pyra-
midal neurons in layers II/III or layers V/VI. They photoactivated ChR2-transfected pyra-
midal cells with blue light and observed the resulting changes in network oscillations [95].
They showed that the activation of layer II/III pyramidal cells drove frequency-specific
spikes and enhanced network oscillations in the β-γ frequency range. On the other hand,
the activation of layer V/VI pyramidal cells did not lead to any specificity in activating
network oscillations in either frequency range. These results indicate that the entrainment
of prefrontal network oscillations to fast rhythms depends on the activation of layer II/III
pyramidal cells.

In utero electroporation has also been used to analyze network plasticity in the neo-
cortex. Lourenço et al. found that layer V pyramidal neurons in the mouse barrel cortex
modulate information processing in the cortex via perisomatic inhibitory synaptic plas-
ticity [25]. In utero electroporation was used to express ChR2 in layer II/III pyramidal
neurons in the mouse barrel cortex. The activation of layer II/III neurons resulted in robust
feed-forward inhibition (FFI) of layer V pyramidal neurons via parvalbumin-expressing
basket cells. Furthermore, after inducing long-term potentiation of inhibition (LTPi), the fa-
cilitation of the excitability of layer V pyramidal neurons triggered by layer II/III activation
was greatly reduced. They also found that bursts inducing LTPi-FFI enhanced the temporal
relationship between pyramidal neuron spikes and γ-oscillations. These results indicated
that the plasticity of parvalbumin-expressing basket cell-dependent periinhibition enabled
the strong regulation of single pyramidal neurons at the single-cell and network levels.

Layer specificity in the neocortex has also been used to identify the source of spon-
taneous low-frequency oscillatory dynamics in the mammalian cortex [96]. Beltramo
et al. used viral vectors and in utero electroporation to promote the expression of archaer-
hodopsin/halorhodopsin and ChR2 in layers V and II/III pyramidal neurons; note that
archaerhodopsin-expressing or halorhodopsin-expressing neurons are transiently hyperpo-
larized by photostimulation. The activation and suppression of specific layers revealed that
the activation of layer V pyramidal neurons was sufficient and necessary for generating
recurrent low-frequency network oscillations [96].

6.2. Developmental and Neonatal Neural Pathways

Wide patterning of brain regions occurs in the early days of embryonic development.
Therefore, electroporation into embryos performed as early as at E9.5 allows researchers to
study the development of region-wide interactions from early embryonic stages.

Ahlbeck et al. applied in utero electroporation to study the interaction between the
hippocampus and neocortex in neonatal mice [97]. They specifically transfected ChR2
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into pyramidal neurons in the CA1 area of either the dorsal or intermediate/ventral hip-
pocampus and performed region-specific activation of the hippocampal pyramidal neurons.
Photoactivation of CA1 pyramidal neurons, combined with simultaneous recording of local
field potentials in the prelimbic subdivision of the prefrontal cortex, revealed that pyrami-
dal neurons in the intermediate/ventral hippocampus, but not the dorsal hippocampus,
brought about broad activation of local prefrontal circuits in the neonatal brain [97].

The development of extracellular oscillations in the cerebral cortex has been studied by
exploiting the advantages of in utero electroporation, allowing neuronal populations to be
manipulated in a layer-specific manner. For example, Bitzenhofer et al. analyzed the origin
of gamma oscillations in the developing mouse brain [98]; gamma oscillations are a promi-
nent activity pattern in the cerebral cortex [99]. Using extracellular recordings from early
postnatal mice and photostimulation of transfected pyramidal neurons, Bitzenhofer et al.
investigated how gamma rhythms were generated during postnatal development [98].
First, fast rhythmic activity in the prefrontal cortex became prominent during the second
week after birth. Subsequently, gamma oscillatory activity, approximately 15 Hz at birth,
accelerated (in frequency) with age and stabilized in the generally recognized gamma
frequency range (i.e., 30–80 Hz) by the postnatal fourth week. This finding was confirmed
by photostimulation of pyramidal cells in layers II/III. They also showed similar temporal
dynamics in the maturation of fast-spiking interneurons. These findings shed light upon
the developmental process of gamma activity in the prefrontal cortex.

In addition, in utero electroporation can be used to study neuropsychiatric pathologies
that emerge during development. Bitzenhofer et al. analyzed the effect of disturbed neu-
ronal activity during various developmental stages by transiently increasing the network
activity of layer II/III pyramidal neurons in developing mouse brains [100]. In this study,
ChR2 was expressed in layer II/III pyramidal neurons in the medial prefrontal cortex
using in utero electroporation. Evoking the network activity of postnatal 7- to 11-day-
old mice increased the number of prematurely grown dendrites in layer II/III pyramidal
neurons. In addition, the gamma power and network synchrony were reduced in the
brains of transiently stimulated adult mice. Transient photostimulation also disrupted the
excitation-to-inhibition balance, resulting in stronger network inhibition.

6.3. Animal Behavior

To reveal a causal relationship between the activation of specific groups of neurons
and animal behavior, either excitation or inhibition of the target population of neurons in
a specific region can be used. To accomplish this, electrical microstimulation via locally
placed electrodes is widely used [101–103]. However, this method does not allow the cell
types activated by this stimulation to be distinguished. This issue can be overcome by the
use of optical stimulation, which acts only on opsin-expressing neurons.

Since in utero electroporation can be used to confine the expression of opsins to specific
layers of the cortex, it is possible to control the number and type of neurons excited by
photostimulation with optogenetics. Therefore, in utero electroporation is a useful method
for analyzing the number of neurons required for perception [89].

7. Possible Future Directions
7.1. Dual in Utero Electroporation

As described above, in utero electroporation is advantageous in terms of the region-,
layer-, and cell type-specific manipulation of neurons. To further dissect the establishment
and functions of neuronal networks, it is essential to understand the connectivity and inter-
actions between multiple subsets of neuronal populations. A recent method called dual
in utero electroporation serves as an effective tool to target multiple populations of neu-
rons within the same circuit in a spatially and temporally specific manner [104–106]. This
method has been developed to label or genetically manipulate different subtypes of neurons
in different locations. For example, electroporating a plasmid vector containing different
fluorescent proteins on different embryonic days will enable researchers to separately label
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specific subtypes of neurons with distinct spatial and temporal origins [104,105]. Combined
with emerging opsins that have a nonoverlapping range of spectral sensitivities [107–109],
it is possible to separately manipulate multiple subtypes of neurons by expressing opsins
with different spectral sensitivities [110,111]. In utero electroporation enables the transfec-
tion of DNA into neurons at various developmental stages, in which interventions with
viral techniques are difficult. Thus, in utero electroporation may reveal how the activities
of different subpopulations of neurons affect the development of cortical networks. Fur-
thermore, region-selective transfection, without the need for genetic markers, can reveal
interactions between the same type of neurons with different temporal or spatial origins.

7.2. Mosaic and Sparse Labeling of Neurons Using Inducible Gene Targeting

In utero electroporation enables researchers to transfect DNA into a minor subpopula-
tion of neurons [56,112,113]. This approach should be beneficial from electrophysiological
and optical standpoints because it is possible to separately stimulate transfected and neigh-
boring nontransfected neurons as a target and control, respectively. In addition, combining
an inducible gene targeting system with in utero electroporation enables more precise
control of sparse expression of the target transgene. One example is to electroporate Cre-
encoding vectors into neurons containing loxP-flanked genes [114]. As another option, the
coelectroporation of inducible plasmid-containing genes flanked with loxP sites, and vector-
encoding Cre recombinase enables researchers to control the sparseness of expression of
transgenes by adjusting the ratio of inducible plasmid and Cre recombinase-encoding vec-
tor [114–116]. The advantage of this method over simply electroporating low concentrations
of plasmid vectors is that electroporated neurons have enough transgene-encoding vectors
to induce normal gene expression. This method would enable researchers to sparsely
label the target neurons and would further allow the manipulation of sparsely distributed
neurons if implemented to express opsins [117]. Furthermore, even single neurons have an
impact on sensory perception [118], and single neuronal activities are (partially) influenced
by ion channels and ion flow. Sparse in utero electroporation can also be used to label
single neurons for live imaging [115]. The expression of opsins or other ion channels
using in utero electroporation and spatiotemporally restricted photostimulation can reveal
which types of ion channels are required and sufficient for sensory perception even at the
single-cell level.

7.3. Targeting Astrocytes and Oligodendrocytes

The drawback of standard in utero electroporation is that electroporated transgenes
remain episomal and thus are lost during cell division, suggesting that transgenes are not
expressed in proliferating cells, such as cells in a neural lineage. However, combining
the binary piggyBac transposon system with in utero electroporation enables the stable
expression of transgenes in cells in the neural lineage, such as radial glia [119–122]. Using
this technique, researchers can induce the expression of transgenes even in proliferating
cells such as astrocytes and oligodendrocytes [120,121]. Researchers in these previous
studies using the transposon system adopted this method to knockdown or overexpress
target genes. In recent years, optogenetics has been applied to elucidate physiological
and pathological functions of astrocytes [123–126]. We believe that the combination of the
piggyBac transposon system with in utero electroporation can also be used to promote the
expression of opsins to photostimulate astrocytes and oligodendrocytes.

In this light, the combination of a variety of in utero electroporation-based techniques
(i.e., 1. the multiexpression of transgenes in different regions, 2. the sparse expression
of transgenes with inducible methods, and 3. techniques to target the neural lineage by
the transposon system) with optogenetics will open new avenues for the theoretical and
experimental investigations to answer fundamental questions in neuroscience.
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