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Abstract: Graphene oxide (GO), modified with anti-aging agent p-phenylenediamine (PPD),
was added into nitrile rubber (NBR) in order to improve the thermo-oxidative stability of NBR.
The modification of GO and the transformation of functional groups were characterized by
Fourier transform infrared spectroscopy (FTIR), Raman, and X-ray diffraction (XRD). Mechanical
performances of NBR composites before and after the thermo-oxidative aging were recorded.
The results of dynamic mechanical analysis (DMA) show an increased storage modulus (G’) and
a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that
filler particles show positive interaction with molecular chains. The thermo-oxidative stability
of composites was investigated by thermogravimetric analysis (TG) and differential scanning
calorimetry (DSC). Then, the thermo-oxidative aging kinetic parameters were obtained by the
Flynn–Wall–Ozawa (FWO) equation. The results of aging tests show that the thermo-oxidative
stability of rubber matrix increases obviously after introducing GO–PPD. In addition, mechanical
properties (tensile strength and elongation at break) of both before and after aged NBR/GO–PPD
composites were superior to that of NBR. This work provides meaningful guidance for achieving
multifunction thermo-oxidative aging resistance rubber composites.

Keywords: graphene oxide (GO); p-phenylenediamine (PPD); nitrile rubber (NBR); thermo-
oxidative stability

1. Introduction

The ability of an elastomeric composition to apply at elevated temperature for a long time is
a paramount requirement in many fields, such as tire [1], sealing [2], viscoelastic damping materials [3],
etc. Due to its superior oil resistivity, nitrile rubber (NBR) has been widely applied for production
of oil seal devices. Generally, in real conditions, NBR elastomer components are exposed to various
fluids, such as crude oil, various petroleum products, gas condensates, natural gas, CO2 and H2S.
Furthermore, NBR elastomer products usually work at an elevated temperature (up to 120 ◦C) and
high pressure, at the same time [4–6]. However, the existence of unsaturated isolated double bonds
makes it easy for NBR to be decomposed by oxygen, especially under conditions of high heat and
pressure [4]. For this case, many nanofillers have been applied to improve thermal stability of NBR,
including silica [7], carbon nanotube [8], Fe3O4 [9], graphene, etc. [10].

However, nanofillers also change the mechanical properties of NBR during enhancing thermal
stability. Graphene, a single-atom-thick sheet of carbon atoms densely packed in a honeycomb
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crystal lattice, has been the subject of considerable interest and study, because of its intriguing and
outstanding physical properties [10]. As expected, graphene holds promising applications in rubber
composites, since it could endow rubber with reinforcement and functional properties at very low
loading [11]. Moreover, it is believed that the superior properties of the graphene nanocomposites
are not only because of the nanoscale dispersion of graphene within the rubber matrix, but are also
the result of a strong interaction between rubber molecular chains and graphene [11–13]. Graphene
oxide (GO), because of its laminated structure with the function of oxygen barrier, is popularly
used in flame-retardant materials [14,15]. In addition, GO has been reported that it could improve
the thermostability of polymers, including epoxy resin [16], natural rubber [17], cellulose [18], etc.
Meanwhile, graphene oxide could construct complex networks in polymers, which leads to an increase
in physical crosslink points. In conclusion, the mechanical properties and thermostability could be
improved by incorporating GO in NBR at the same time [15–17]. Unlike the ideal graphene, GO was
easily further modified for wider utilization [18–20].

It has been reported that PPD could effectively improve the performance of supercapacitors [21,22].
Due to the existence of antiaging amino group, PPD has been widely applied to improve the
thermostability and anti-aging property of polymers, including natural rubber [23], polyisoprene
rubber [24], etc. The anti-aging effect of PPD could be seen as a chemical anti-aging effect. The surface of
GO has plenty of oxygen-containing groups [16]. By chemical grafting, PPD could be grafted onto the
surface of GO, and reduce GO to graphene. As a result of the reduction process, PPD could improve
the interaction between GO and polymer by reducing hydrophilic groups. In this study, GO modified
with p-phenylenediamine (GO–PPD) was incorporated into NBR to improve the thermostability and
mechanical properties of NBR.

The synthesis of GO–PPD hybrid particles, and the preparation of NBR/GO–PPD composites,
are presented in the first two parts. The structure of GO–PPD hybrid particles were researched by
X-ray diffraction (XRD), Raman spectroscopy, and Fourier Transform infrared spectroscopy (FTIR).
The morphology of NBR/GO–PPD composites was observed by scanning electron microscope (SEM).
At last, mechanical properties of NBR/GO–PPD composites were investigated through tensile testing,
dynamic mechanical analysis (DMA). The Flynn–Wall–Ozawa (FWO) method was used to study
thermo-oxidative aging kinetics of NBR/GO–PPD composites.

2. Materials and Methods

2.1. Materials

Graphite oxide was supplied by The Sixth Element Materials Technology Co, Ltd. (Changzhou,
China). The NBR used was nitrile rubber 2907E with acrylonitrile content 29%, supplied by CNPC
Lanzhou Petrochemical Company (Lanzhou, China). Sulfur, zinc oxide, stearic acid, dioctyl phthalate
(DOP), and ammonium hydroxide were purchased from Chengdu Kelong Chemical Reagent co. LTD
(Chengdu, China). 2,2′-Dithiobis (benzothiazole) were purchased from China Aladdin Industrial
Corporation. The reagents used in this study were all analytical grade.

2.2. Preparation of GO–PPD

Graphite oxide was exfoliated in 1000 mL deionized water under sonication to form a 10 mg/mL
GO aqueous dispersion. Then, 2 mL ammonium hydroxide and 1 g p-phenylenediamine were added
into the GO dispersion, and stirred for 4 h at 95 ◦C. Product was filtrated under reduced pressure and
then washed by ethyl alcohol at least six times. Finally, the product was dried in a vacuum oven at
80 ◦C for 48 h.

2.3. Preparation of NBR/GO–PPD Composites

The basic formulations of the NBR composites were described as in Table 1. The above ingredients
were mixed on a two-roll mill (Guangdong Zhanjiang Rubber and Plastic Machinery Factory, Zhanjiang,
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China). The curing characteristics were determined by a disc oscillating rheometer (Beijing Huanfeng
Mechanical Factory, Beijing, China). Then, the compounds were cured in a press vulcanizer (Shanghai
Rubber Machinery Factory, Shanghai, China) under a pressure 10 MPa at 150 ◦C for 30 min.

Table 1. Compounding formulation of the nitrile rubber (NBR) composites.

Material phr/NBR phr/NBR/GO-PPD phr/NBR/GO

NBR 100 100 100
graphene oxide–p-phenylenediamine

(GO–PPD)
0 1/2/3/4 0

GO 0 0 3
zinc oxide 5 5 5
stearic acid 1 1 1

carbon black 234 20 20 20
sulfur 1.5 1.5 1.5

accelerator 2,2′-dithiobis (benzothiazole) 1.5 1.5 1.5
dioctyl phthalate (DOP) 1.5 1.5 1.5

2.4. NBR and NBR/GO–PPD Composites Aging Experiment

The NBR samples were cut into a dumbbell shape with thickness of 2 mm, width of 6 mm,
and a middle standard length of 25 mm. Thermo-oxidative aging experiments were carried out in a
Mingzhu 401-A aging test chamber at 90 ◦C for 18 days.

2.5. Instrumentation

Tensile tests were carried out using an MTS CMT6104 universal tester by following a Chinese
national test standard of GB/T528-1998. The finial value of the test was taken as the average of at least
5 results.

FTIR spectra of GO and GO–PPD in transmission mode on compressed KBr pellets were recorded
using a Thermal Scientific spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Attenuated
total reflectance-Fourier transform infrared (ATR-FTIR) spectra of the NBR composites were recorded
using a Thermal Fisher Scientific Nicolet iS50 attenuated total reflectance-IR spectrometer over
a wavenumber range of 4000–500 cm−1, with 32 scanning times at a resolution of 4 cm−1.

XRD (PANalytical Co. X′Pert PRO, Almelo, Netherlands) was used to test the structure change of
GO after modifying with PPD. During the experiment, a Cu target was selected, and Kα ray, whose
wavelength was 0.154 nm, was chosen to sweep continuously at step length of 4◦/min. The scanning
angle was 5~70◦.

Raman spectroscopy was carried out on a DXR (Thermo Fisher Scientific, Waltham, MA, USA)
with a laser wavelength of 532 nm.

The morphology of the hybrid particles and NBR composites were observed using a JSM-7500F
field-emission (SEM) (Japan Electronics Co., Tokyo, Japan).

The thermal analysis was carried out on a Thermogravimetric Analyzer /Differential Scanning
Calorimetry (TGA-DSC) calorimeter (MettlerToledo Co., Zurich, Switzerland). Each sample weighing
about 7–10 mg was heated from 50 to 800 ◦C at different heating rates (5 K/min, 10 K/min, 15 K/min,
and 20 K/min) under an air flow of 50 mL/min.

DMA was performed on a TA Q800 apparatus (TA Instruments, New Castle, DE, USA) equipped
with liquid nitrogen cooling instrument. DMA was in double cantilever beam mode from −60 to 20 ◦C
at a heating rate of 3 ◦C/min and frequency of 1 Hz.

The equilibrium swelling method was used to calculate the crosslink density of the NBR
composites. Samples were swollen in toluene at room temperature for 72 h and then removed
from toluene and the surface toluene of samples was cleaned. The samples were quickly weighed
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and then dried in a vacuum at 80 ◦C for 36 h to remove the solvent, and then reweighed. The volume
fraction of NBR in the swollen gel, V0, was calculated by equation:

V0 = m1×ϕ×(1−α)/ρr
m1×(1−α)/ρr+(m2−m3)/ρs

(1)

where m1 is the sample mass before swelling, m2 and m3 are sample masses before and after drying,
respectively, ϕ is the mass fraction of rubber in the NBR composites, α is the mass loss of the NBR
composites during swelling, and ρr and ρs are the nitrile rubber and solvent density, respectively.

The elastically active network chain density, Vr, which was used to represent the whole crosslink
density, was then calculated by the well-known Flory–Rehner equation [25]:

Vr = −
ln(1−V0)+V0+χV2

0
Vs(V1/3

0 −V0/2)
(2)

where V0 is the volume fraction of NBR in the swollen gel and Vs is the solvent molar volume
(107 cm3/mol for toluene). χ is the interaction parameter between NBR and toluene.

3. Results and Discussion

3.1. Characterization of Filler Particles

The reduction and functionalization of GO are confirmed by FTIR spectroscopy (Figure 1).
As presented by the curve of GO, the broad peak at 3442 cm−1 can be attributed to the stretching
vibration of hydroxyl groups (–OH). The characteristic adsorption peaks at 1731, 1629, and 1060 cm−1

correspond to the carbonyl stretching vibrations of –COOH groups, aromatic C=C stretching vibrations,
and C–O stretching vibrations of epoxide group, respectively [26,27]. After the reaction with PPD,
the characteristic absorption bands of –COOH, and epoxide groups of GO were weakened or disappeared,
implying the reduction of GO by PPD. Furthermore, a new peak at 1173 cm−1 (C–N stretching vibration)
appeared, indicating the formation of C–NH–C bands due to the chemical grafting of PPD onto GO
surface via nucleophilic substitution reaction between the amine group of PPD and the epoxide group of
GO [23]. This conclusion is also supported by the presence of new peaks at 819 and 1515 cm−1 which is
attributed to the deformation and stretching of N–H in –C–NH2 groups, respectively [28].
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The Raman spectra of GO and GO-PPD contain two bands: D at 1312 cm−1 and G at 1582 cm−1

(as shown in Figure 2). The position and intensity of D bands and G bands provide information of
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the type of defects appear in the graphitic material [22,26,27]. The peak intensity ratio of D band to G
band (I(D)/I(G)) indicates the amount of in-plane defects. I(D)/I(G) ratio (2.13) of GO was higher than
that of GO–PPD (1.93), suggesting GO–PPD had less defects [26]. This was due to the reduction of GO
after adding PPD. The amine group of PPD reacted with the oxygen-containing functional groups of
GO, decreasing the in-plane defects of GO.
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The morphologies of GO–PPD and GO were analyzed for better understanding the influence of
p-phenylenediamine on GO in Figure 3. Both GO and GO–PPD sheets show a multilayer overlapping
structure. GO showed a smooth surface and crimped margin structure, while the GO–PPD exhibited
a ridged structure and displayed wrinkles on surface. The ridged structure was proposed to improve
the mechanical properties of rubber. In the preparation of hybrid particle, the volume of GO–PPD was
noted to be obviously larger than that of GO. As a result, GO–PPD might enhance the tensile strength
of rubber more effectively than GO [29,30].
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3.2. Tensile Properties before and after Aging

Tensile tests were performed on NBR composites (as shown in Figure 4). After adding GO–PPD,
NBR composites showed a significant improvement in tensile strength, when the results of tensile
strength were compared to the unfilled NBR. When the content of GO–PPD was 3 phr, the mechanical
properties of sample were the best optimum, compared to others (as shown in Figure 4a). Even
though there was 20 phr carbon black of formula for NBR (Table 1), the tensile strength and the
elongation at break of NBR/GO–PPD (3 phr) composites still increase 29% and 20%, compared to
NBR, respectively. In addition, compared with the mechanical properties of NBR/GO composites, the
mechanical properties of NBR/GO–PPD are improved to a higher extent at the same loading of the
fillers, due to the ridged structure of GO-PPD.

Furthermore, after the accelerative thermo-oxidative aging for 15 days, the retention ratios of
tensile strength of aged NBR/GO–PPD composites are higher than the aged NBR. When the content
of GO–PPD is 4 phr, a 95.3% in retention ratio of tensile strength is achieved (Figure 4c and Table 2).
Similarly, Dong et al. have reported that the retention ratio of tensile strength of NBR is about 80 %
after aging for 15 days at 80 ◦C [31]. Meanwhile, the elongation at break of rubber composites was
also improved. Both before and after aging, the elongation at break of NBR/GO–PPD composites is
better than that of NBR (Figure 4d and Table 3). Although the retention ratio of tensile strength of
NBR/GO is higher than that of NBR, the retention ratio of tensile strength of NBR/GO is lower than
that of NBR/GO–PPD. This indicates that GO–PPD has both physical anti-aging effect and chemical
anti-aging effect in the aging process, while GO only has physical anti-aging effect.
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Table 2. Tensile strength of NBR composites before and after aging.

Content of Filler GO-PPD GO-PPD GO-PPD GO-PPD GO-PPD GO

0 phr 1 phr 2 phr 3 phr 4 phr 3 phr
Before aging 11.27 12.2 12.3 14.5 13.16 12.5

After aging for 15 days 8.8 10.5 11.3 13 12.54 10.8
Retention ratio 78.1% 86.1% 91.9% 89.7% 95.3% 86.4%

Table 3. Elongation at break of NBR composites before and after aging.

Content of Filler GO-PPD GO-PPD GO-PPD GO-PPD GO-PPD GO

0 phr 1 phr 2 phr 3 phr 4 phr 3 phr
Before aging 504 524 531 600 575 540

After aging for 15 days 180 190 191 225 192 186

A primary conclusion made, herein, is that the GO–PPD could not only play the role of
reinforcing NBR, but also significantly improve the stability of rubber composites in the process
of thermo-oxidative aging.

According to the results of tensile tests of NBR composites, the sample that contained 3 phr
GO–PPD was chosen to be compared with NBR. The changes of the shore hardness of NBR in different
aging times were displayed in Figure 5a. After aging for 18 days, the shore hardness of NBR composite
and NBR were both increased, and the shore hardness of NBR/GO–PPD composite was always higher
than that of NBR. The decrease of tensile strength and elongation at break of NBR/GO–PPD composites
were lower than that of NBR in the process of aging (as shown in Figure 5b,c). During the aging
process of NBR/GO–PPD composite, the anti-aging free radical capture agent could prevent oxygen
free radical from attacking the main chain of rubber [24,25].
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3.3. Crosslink Densities of NBR Composites

The thermo-oxidative aging of nitrile rubber is believed to occur in two ways: chain crosslink
and chain scission. The variation of crosslink density could reflect the process of the thermo-oxidative
aging of NBR. The crosslink densities of NBR composites were shown in Figure 6. In the primary
period of aging, the crosslink densities of NBR/GO–PPD were higher than that of NBR. For NBR
samples, with the aging times increasing, the crosslink density quickly increased to a value about
2.21 × 10−4 mol/cm3, and then decreased rapidly. This behavior showed that in the first period of
aging, the chain crosslink is dominating, and then a period of destruction of the network is followed
because the chain scission played a major role in the thermo-oxidative aging process [32]. The crosslink
density of NBR/GO–PPD was increased more slowly. It indicates that GO–PPD could effectively
protect the network of rubber from attack by oxide free radicals.
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3.4. Microstructure Analyzes of before and after Aged NBR Composites

The changes in mechanical properties before and after aging were caused by the crosslink and
degradation of the rubber molecular chain. Variations in the surface morphology of before and after
aged rubber samples were illustrated by SEM. The surface morphology of the NBR before aging was
smoother than that of NBR after aging (as shown in Figure 7a,c). The surface of the neat rubber is
cracked, due to oxidative attack and crosslinks of rubber. Interestingly, the surface morphology of
NBR/GO–PPD before aging was cruder than that of NBR/GO–PPD after aging (Figure 7b,d), due
mainly to the exfoliation behavior of GO–PPD in the rubber.

XRD was used to study the exfoliation behavior of GO-PPD in the rubber (as shown in Figure 8).
For before aged NBR/GO–PPD sample, the diffraction peak at 8.1◦, which belongs to GO–PPD, was
also present. However, for after aged NBR/GO–PPD sample, the diffraction peak of GO–PPD at 8.1◦

disappeared. This can be explained by that the GO–PPD exfoliation phenomenon appeared in the
aging processing of rubber [4].
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3.5. The Dynamic Mechanical of Different Contents of Composites

The storage modulus (G’) and loss tangent (tan δ) curves of the samples with different filler
contents were shown in Figure 9, and the values details of G′ and the area of tan δ peak were listed in
Table 4. With the increase of contents of GO–PPD, the value of G′ of NBR/GO–PPD composites were
close to the value of 10 MPa when temperature was 10 ◦C and the G’ of NBR/GO–PPD composites
exceeded that of NBR. In addition, the area of tan δ peak showed that the area of NBR/GO–PPD was
decreased compared to that of NBR (Figure 9b). Based on the above result, we could make a conclusion
that GO–PPD hybrid particles have a positive interaction with the rubber matrix [33–40].
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Table 4. G′(MPa) of 10 ◦C and the area of tan δ peak of NBR/GO–PPD composites.

The Contents of Filler 0 phr 1 phr 2 phr 3 phr 4 phr

G′(MPa) of 10 ◦C 7.18 16.54 9.3 14.02 10.11
Area (tan δ) 15.4 13.5 14.6 13.1 14.3

3.6. Degradation Kinetics

The TG and DTG curves of NBR and 3 phr NBR/GO–PPD composites at different heating rates
were shown in Figure 10. Although there are diverse heating rates, the curves of two composites are
similar, which implies similar thermo-oxidative degradation mechanism. The DTG curves exhibit two
peaks, so the thermo-oxidative degradation process can be divided into two stages. The first stage is at
about 380–490 ◦C, corresponding to the thermo-oxidative degradation of NBR chains. And the second
stage is further decomposition of thermo-oxidative products [41]. In addition, the peaks of DTG shift
toward a higher temperature with the increase of heating rate.
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Figure 10. TG–DTG curves in different heating rate of two NBR composites (a) NBR and (b)
NBR/GO–PPD.

The TG/DTG curves were proposed to determine the kinetic parameters of thermo-oxidative
degradation by the non-isothermal Flynn–Wall–Ozawa (FWO) method [42] which is based on the
Doyle approximation for heterogeneous chemical reactions, as shown in Equation (3).

logβ = log(
A∆Ea
R·g(α) )− 2.315− 0.4567

∆Ea
RT

(3)

where A is a pre-exponential factor, ∆Ea is the activation energy, R is the gas constant, α is the fractional
mass loss, and g(α) is the conversional function. The reason for choosing FWO is that the reaction rate
at a given fraction mass loss (α) is only a function of the temperature. As a result, for the constant
fractional mass loss (α) at different heating rate, Ea could be evaluated through the slope of the straight
line by plotting logβ vs. T−1.

The FWO fitted lines corresponding to the fraction mass losses (α) was shown in Figure 11.
The relative experimental data basically fit the model, with linear correlation coefficients in the range
0.81–0.98. By the FWO equation, the slopes of fitted lines giving Ea at different degrees of degradation.
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Figure 11. Flynn–Wall–Ozawa (FWO) analysis at specified fractional mass losses (α) of two NBR
composites: (a) NBR; (b) NBR/GO–PPD.

Figure 12 shows plots of Ea versus the fraction mass loss according to the FWO equation
(Equation (1)). The curves could be divided into two stages. The first stage of curve, Ea increases
with α until α reaches 10%, corresponding to the initiation of the chain [43]. For NBR, the Ea keeps a
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constant about 130–145 KJ/mol. With GO–PPD, the Ea is firstly at 120 KJ/mol, which is lower than the
Ea of NBR at mass loss of 5%. After the mass loss exceeded 10%, the second stage is associated with
the oxidation and degradation process of NBR composites [32]. The activation energies required for
thermo-degradation of NBR/GO–PPD composites were higher than that of NBR (as shown in Table 5).
It indicated that the thermo-oxidative stability of NBR/GO–PPD was superior to that of NBR.
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Table 5. The Ea value of NBR composites corresponding to the mass loss of thermo-oxidative degradation.

The Mass Loss (%) 5 10 15 20 25

The Ea value of NBR (KJ/mol) 138 145 143 135 131
The Ea value of NBR/GO–PPD (KJ/mol) 120 163 153 144 136

4. Conclusions

This paper has demonstrated that graphene oxide has a ridged and corrugated structure after
surface modification by p-phenylenediamine. GO–PPD has positive interactions with NBR, so that
the mechanical properties of NBR are further improved. GO–PPD appeared exfoliated after rubber
composite aging, due to the interaction between nanoparticles with rubber chains. Tensile strength
and elongation at break of NBR/GO–PPD composites were increased compared to that of NBR.
Even after aging for 15 days, the tensile strength of NBR/GO–PPD still superior to that of NBR.
Especially, the retention rate of tensile strength of former could reach at least 90% when compared
to 78% of the latter. The degradation kinetics study showed that GO–PPD was helpful to increase
the thermo-oxidative degradation temperature and activation energies of NBR. This research gives
more guidance to improving the integrated properties (mechanical properties and thermo-oxidative
stability) of nitrile rubber by introducing a functional filler.
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