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Abstract
Approaches to manipulating disease resistance in plants is expanding
exponentially due to advances in our understanding of plant defense
mechanisms and new tools for manipulating the plant genome. The
application of effective strategies is only limited now by adoption of rapid
classical genetic techniques and the acceptance of genetically engineered
traits for some problems. The use of genome editing and cis-genetics,
where possible, may facilitate applications that otherwise require
considerable time or genetic engineering, depending on settling legal
definitions of the products. Nonetheless, the variety of approaches to
developing disease resistance has never been greater.
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Genetic resistance represents the most economical approach to 
crop protection, and one goal of understanding plant/pathogen  
interactions at the molecular level is to facilitate disease resist-
ance in crop species. Disease resistance is often the most dynamic 
component of the crop breeding process, requiring continual  
updating owing to pathogen adaptation to plant genotypes. An  
ancillary goal is to engineer resistance that is broad (effec-
tive against most or all genotypes of the pathogen) and durable  
(lasting through many cropping seasons). Research continues to 
unveil details and mechanisms that function to enable pathogens 
to parasitize plants and how plants defend themselves against  
parasitism. Increasingly, the knowledge is being implemented 
in strategies to enhance resistance to pathogens in crop species 
and to expedite resistance breeding in the field. Creative  
transgenic approaches continue to be explored, and the more 
recent genome editing tools have expanded the approaches to  
engineering resistance. Nonetheless, advances are needed in 
understanding how basic endogenous defense components work  
together and in generating novel resistances with components of  
the defense system.

Heterologous expression of pattern recognition receptors  
(PRRs), which recognize conserved molecules in pathogens or 
the products of pathogen-mediated degradation of host molecules 
and trigger immune responses to a wide range of pathogens,  
continues to be applied to a widening range of species, particu-
larly those with recalcitrant disease issues1. Elongation Factor–Tu  
Receptor (EFR) is a PRR that was identified in Arabidopsis 
and recognizes EF-Tu, a highly conserved abundant protein in  
prokaryotes2. Many crop species apparently lack this specific 
or analogous receptor despite the conserved nature of EF-Tu.  
Transfer of AtEFR from Arabidopsis to tobacco and tomato, 
in particular, reduced disease severity in the field due to two 
bacterial pathogens with very different life styles, namely  
Ralstonia solanacearum and Xanthomonas perforans, the 
causal agents of bacterial southern wilt and bacterial spot,  
respectively3,4. Similar results have been reported for potato5. 
AtEFR also triggered immunity in wheat upon challenge 
with Pseudomonas syringae pv. oryzae6. However, transfer 
of AtEFR to rice did not make the lines more resistant to the  
most prevalent pathogen, Xanthomonas oryzae pv. oryzae (Xoo),  
unless the elicitor portion of EF-TU was applied prior to  
infection7,8. Transfer of another PRR, Flagellin Sensitive 2  
(FLS2) from Nicotiana, to sweet orange reduced susceptibility 
to citrus canker9. Use of the PRR gene Xa21 continues to 
be expanded. Xa21 of rice produces a receptor kinase that  
recognizes a small sulfonated peptide (RaxX) synthesized by  
Xoo and some related species and confers resistance to  
bacterial blight of rice10,11. The effectiveness of Xa21 is limited 
to diseases caused by Xanthomonas species that produce RaxX10. 
Fortunately, transfer of Xa21 to banana provides resistance to  
bacterial wilt, which is threatening banana and enset production 
in east Africa, because the pathogen, Xanthomonas vasicola pv. 
musacearum, also makes and processes RaxX12.

The application of heterologous transfer of PRRs among  
species will be interesting. EFR and FLS2 were originally  
identified by the response to the isolated elicitor and do not  
provide complete resistance to infection due to bacterial virulence 

factors, which are capable of suppressing defense signaling by 
receptors13. Perhaps it is not surprising that the introduction of 
heterologous PRR genes corresponding to highly conserved  
elicitors does not always provide protection to crop species, as 
their pathogens may have already adapted to defense responses  
elicited by infection. On the other hand, it is striking, as noted  
above, that some bacterial pathogens do not suppress host  
immunity in the presence of the PRRs. Crop species, including 
tomato, may have lost some PRRs in the domestication and  
breeding process.

The largest family of resistance (R) genes encode the nucleotide 
binding site and leucine-rich repeat (NBS-LRR or NLR for 
short) proteins. Owing to their conservation and ease of identifi-
cation, NLRs are closest to what might be called industrial-scale  
application, and NLR mining could potentially replace R-gene 
introgression from related but poorer quality germplasm and 
crosses with related species (wide crosses). NLR members (and 
the associated components, which often provide the pathogen  
recognition function) generally provide resistance against a  
specific subset of pathogens, or races, that express specific  
effector proteins, and the NLR complex often acts in a gene-
for-gene manner. More problematic is that the genes tend to  
function only within closely related species, possibly because 
of the adaptation to other components of the specific NLR  
complex. An early example was the transfer of the Bs2 gene 
for resistance to bacterial spot disease in pepper to tomato, 
which suffers disease from related pathogens4,14. The NLR gene  
RGA2 for resistance to Fusarium was transferred from a  
resistant diploid banana species to Cavendish banana15. Another 
example is the transfer of an NLR from pigeon pea to soybean 
for resistance to soybean rust16. The success of transferring 
NLR genes between species has led to more extensive efforts of  
extracting NLR homologs (often referred to as R gene analogs 
or RGAs) from resistant species. R gene enrichment sequencing, 
or RenSeq, is a sequence capture technique for the enrichment 
of NLR sequences17. The underlying goal is to recover NLR  
family members from plants with known resistance and transfer 
candidates to the desired variety. Several variations of this  
method have been reported, including chemical mutagenesis of 
a line followed by sequence capture and association genetics of 
wild populations followed by sequence capture18,19. NLR capture  
from related species will facilitate the stacking of R genes  
against common core effectors of all extant pathogen genotypes 
and, consequentially, provide broad resistance. For example, 
the Bs2 gene, which targets the ubiquitous AvrBs2 effector of  
Xanthomonas, can be combined with Roq1, a new R gene from 
Nicotiana directed at the common effector XopQ, and other  
as-yet-unidentified NLRs directed toward other conserved  
effectors as identified in sequencing of large strain collections 
from infected plants20,21. Advances in NLR gene mining and gene  
transfer may have come none too soon and can be applied to  
wheat blast outbreaks22. Advancements in NLR applications will 
come from new methods to identify novel R genes in existing  
NLR libraries.

Research is also providing clues that promise to broaden the  
application of NLR resistance strategies and even the promise 
of generating NLR libraries with novel pathogen recognition 
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properties de novo. Single NLR-related R gene transfer between  
distantly related species often fails, and broader application of 
NLRs will come from a greater understanding of NLR function. 
NLR-like R genes are simply the variable genetic component of 
NLR signaling complexes, which occur in a variety of forms. 
The complex can include a guarded protein, alternatively called  
guardee or sensor, and the sensor may be an integrated domain 
of the NLR23. The guardee may be a defense signaling protein 
or other component that is targeted by pathogens to enhance  
susceptibility. In some cases, the guardee has no apparent  
function other than to recognize the effector or effector activity 
of the pathogen. In the latter case, the guardee is referred to as a  
decoy. In a variety of cases, the components consist of a pair 
of NLR or NLR-like genes24. The NLRs RPS4 and RRS1, for  
example, are R genes from Arabidopsis and provide resistance  
against the bacteria Pseudomonas syringae and Ralstonia 
solanacearum, respectively. The RPS4/RRS1 pair is a remarkable 
case where the variation between resistance and susceptibility 
toward each of the two pathogens was based on separate  
components. However, both genes are, in fact, required for 
the resistance to each pathogen25. Furthermore, tomato plants  
expressing both RPS4 and RRS1 were resistant to both bacteria, 
and similar results were obtained for transgenic cucumber  
expressing RPS4/RRS1 against anthracnose26. Manipulation of 
the complexes may also allow changing the complex to recognize  
other pathogens. In the Arabidopsis–P. syringae system, the R 
gene PBS1 product is perceived as a decoy working in concert  
with the NLR RPS5 and cleaved by the secreted bacterial  
protease effector AvrPphB. The cleavage of PSB1 is recognized 
by R-gene RPS5, resulting in the detection of bacteria and a  
resistance reaction27. A novel PBS1 gene was created by sub-
stituting the cleavage site with cleavage site sequences that are  
recognized by other viral and secreted bacterial proteases28. When 
expressed together, the modified PBS1 genes conferred RPS5-
mediated resistance to new pathogens. Changes in the integrated  
sensor domain of the Pik group of NLRs directed at the rice  
blast pathogen effectors indicate that manipulation of the  
domain could produce new recognition motifs29. In the potato–
Phytophthora infestans system, the resistance gene R3a is  
activated by the RXLR effector, AVR3aKI, but not by the allelic 
product AVR3aEM, and, through random mutagenesis, a mutant  
version of R3a was identified that recognized AVR3aEM30.  
Interestingly, mutation in the same position in the I2 gene, a 
homologue of the R3a gene in tomato, made the gene more 
responsive to AVR3a and conferred partial resistance to  
P. infestans and expanded the gene’s effectiveness to an  
additional fungal pathogen31. Recent studies of the structural  
changes that the NLR proteins themselves undergo upon  
elicitation may also provide insight for improved manipu-
lation of this effector class32,33. Further utility of the NLR 
class will come from improved structural models and asso-
ciated components and induced variation by gene targeting  
strategies23.

Ectopic expression of defense-related, toxin, and other  
miscellaneous genes has always been a major part of the toolbox 
in engineering resistance. The approaches have been applied 
to recalcitrant disease problems and, in a variety of cases, have  
reached or completed confined field trial stage34. Secreted 

anti-microbial peptides (AMPs) are used in a variety of crop  
species35. Cecropin is an AMP naturally produced by a moth, 
Hyalophora cecropia, that confers a broad spectrum of  
protection against a wide range of pathogens. Rice seed express-
ing cecropin A from endosperm-specific promoter exhibited  
resistance to infection by Fusarium verticillioides and Dickeya 
dadantii36. A synthetic version of cecropin expressed in citrus 
was reported to be effective against the bacterium Candidatus  
Liberibacter asiaticus, the causal agent of huanglongbing  
(HLB)37. Expression of de novo designed AMP SP1-1 in 
tomato fused with secretion of the signal from radish defensin  
provided resistance to bacterial spot38. Using pathogen physiology 
against itself has also provided promising results. Diffusible 
signal factor (DSF) is a mobile extracellular signal molecule  
produced by bacterial pathogens which controls cell density-
dependent patterns of gene expression. In Xylella fastidiosa,  
DSF production is conferred by the gene rpfF. Ectopic produc-
tion of DSF results in hypervirulence but decreases transmis-
sibility by vectors owing to interference with bacterial gene 
regulation39. Susceptible scion grafted to transgenic rootstock 
also displayed resistance to the pathogen in field trials. Similar  
reductions in disease severity were also observed by ectopic  
expression of rpfF in citrus and tobacco40.

Strides in genome editing, particularly the CRISPR–Cas9 
system, have increased interest towards the development of  
disease resistance through the modification of susceptible (S) 
genes of the plant41. The classic example is mlo, a recessive  
R gene of barley with resistance toward powdery mildew42. 
The null allele provides broad, durable resistance against the  
pathogen Blumeria graminis f. sp. hordei. Simultaneous edit-
ing of all three homoeoalleles of MLO locus in hexaploid wheat  
conferred recessive resistance against powdery mildew in one  
generation43. Disruption of downy mildew resistance-6 (DMR6) 
was originally identified in Arabidopsis and suppresses free  
salicylic acid (SA) levels44. Enhanced SA levels are associated 
with reduced susceptibility to a variety of pathogens, particu-
larly bacterial pathogens. Mutations created by CRISPR–Cas9 
in DMR6 orthologs in tomato were reported to confer  
resistance to a number of pathogens, including P. syringae pv. 
tomato, Phytophthora capsica, X. perforans, and Xanthomonas  
gardneri45. Modifications of the SA pathway adds to the  
widespread experimental utilization of ectopic expression of 
the SA receptor nonexpressor of pathogenesis related genes 1  
(NPR1), which has been reviewed extensively46,47.

Diseases that involve transcription activator-like effectors 
(TALes) are excellent candidates for genome editing. TALes, 
which are deployed by many members of the bacterial genus  
Xanthomonas, function by binding to specific DNA sequences, 
known as effector binding elements (EBEs), in the promoters 
of S genes and promote heroic levels of S gene expression 
and, consequently through S gene product function, enhance  
disease susceptibility. Polymorphisms in EBEs by preventing  
TALe binding can provide recessive resistance in cases where 
TALes play a critical role in disease development. The citrus  
gene CsLOB1 is a susceptibility factor for citrus canker induced 
by the TALe PthA4 of Xanthomonas citri. CRISPR–Cas9-
mediated modification in the EBE in the promoter region of  
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CsLOB1 improved canker resistance and reduced canker  
development in sweet orange and grapefruit48–50. Bacterial blight 
of rice is highly dependent on TALe-mediated expression of  
sucrose transporters known as SWEET genes. Three SWEET 
genes are known to be targeted by strains of Xoo, and natural  
polymorphisms occur in the SWEET gene promoters that  
provide recessive resistance to some strains of the pathogen 
Xoo. OsSWEET14 is an S gene in rice for infections by Xoo.  
Mutations in the promoter EBE region for the TALe effectors 
AvrXa7 and PthXo3 using TALe nucleases (TALENs) led to loss 
of expression of S gene and resistance to strains depending on 
those two TALes for virulence51–53. The S gene OsSWEET13 is  
upregulated by TALes, leading to bacterial blight54. Modification 
of the promotor of OsSWEET13 rice by CRISPR–Cas9 treatment 
resulted in resistance against strains that require OsSWEET13 
expression54. Modification of all three genes simultaneously 
has been accomplished with CRISPR–Cas9 and provides broad  
resistance against extant strains55.

Disruption of S genes, by either editing or silencing, potentially 
comes with its own set of problems. First, these resistances are 
recessive, requiring homozygous mutant plants to screen for  
resistance. Second, these genes often have functional roles in the 
plant, and deletion or modification of expression may result in 
growth defects and/or loss of yield56. For example, a CRISPR– 
Cas9-mediated complete disruption of the OsSEC3A gene in 
rice caused enhanced defense response against blast caused 
by Magnaporthe oryzae. However, the resistant plant showed 
dwarf stature and lesion-mimic phenotype57,58. Similarly, the 
mutations in wheat MLO conferred resistance against powdery 
mildew, but some mutants have been reported to have a leaf 
chlorosis phenotype similar to what is sometimes observed in  
barley43,59.

The affinity of TALes to bind to specific EBE sequences can 
be hijacked for activation of resistance by TALes. R gene  
promoters have been modified to include a concatemer of EBE  
sites for TALes from multiple strains of a pathogen60,61. TAL 
EBEs can also be added to promoters to recruit TALe-mediated  
expression of autonomous R genes or avirulence proteins leading  
to resistance reactions62,63.

Because of their dependence on host functions, viruses are  
vulnerable to manipulations of host genes. Eukaryotic translation  
initiation factors (eIF4E) are essential for infection by single-
stranded positive-sense RNA viruses64. They are also vital for 
normal initiation of translation in host cells. Due to the presence  
of two isoforms, null mutants of any one isoform can result in  
resistance to a number of viruses65,66. However, simultaneous 
knockout of both isoforms can lead to lethality or impaired  
growth67. Genome editing can be used to create novel functional 
alleles by mimicking natural variation of eIF4E in resistant plant 
species68. These synthetic genes for elF4E confer resistance to 
viruses without affecting plant physiology.

Site-specific nucleases have also been deployed as functional  
components in plants for resistance against viruses. This approach 
imitates the viral immunity in prokaryotes in which the CRISPR 

system recognizes and cleaves the viral genome in vivo69. The 
CRISPR–Cas9 system expressed transiently in Nicotiana along 
with sgRNA that recognize the viral genome significantly  
reduced geminivirus accumulation not just in inoculated areas 
but also systemically70,71. The ability of viruses to overcome  
immunity is much lower when targeting intergenic regions 
compared to coding regions57. A powerful system to control  
multiple viruses in cotton leaf curl disease related to begomo-
virus complex can be achieved by multiplex CRISPR system,  
imitating CRISPR function in bacteria72.

The analyses of naturally occurring resistances, particularly  
cases of single gene broad R genes, has provided a remarkable 
variety of genes beyond the now-classic PRRs and NLRs. Wheat  
breeding and characterization of many wheat relatives has  
provided many broad, durable R gene candidates, and the  
characterization of a number of rust R genes of wheat warns us 
that knowledge of broad, durable resistance will likely come 
with considerable advances in our understanding of plant  
physiology. The broad R genes, Lr34 and Lr67, provide broad 
partial resistance to wheat leaf rust (Puccinia triticina) and  
to other pathogens, for example, yellow rust (Puccinia striiformis  
f. sp. tritici). The two genes were discovered to encode  
ABC-type and hexose transporters, respectively73,74. Despite the 
novel properties of the gene products, transfer of the genes, at least  
within the cereal family, indicates that the genes can function  
similarly in related species75–79. Lr67 appears to be impaired in 
sugar transport, while Lr34 product was shown recently to be  
capable of transporting abscisic acid (ABA)80. Whether 
these attributes are relevant to the broad and multi-pathogen  
resistance is unknown. At the same time, the functionality in  
related species indicates a conserved function.

Success of many of the advances in engineering disease  
resistance in crop species, of course, depends on societal  
acceptance of various approaches to plant genome modification. 
Ectopic expression of heterologous transgenes or silencing of  
genes generally comes under the guise of foreign DNA transfer 
and still faces considerable headwinds owing to acceptance and 
regulatory protocols. Modification of transgenic classifications, 
for example, the concept of cisgenics (allowing the addition of  
genes from a crossable species) as opposed to transgenics  
(the addition of a gene or genes from a non-crossable species), may  
increase the workable space in crop modification81. Genome 
modification using site-specific nucleases and removal of vector  
sequences by crossing, or use of vector-free approaches, has 
been accepted in some agencies not requiring regulation as a  
transgenic event. However, acceptance has not been universally 
accepted. Regardless of regulatory issues, our understanding of 
plant resistance mechanisms has increased considerably in the  
last five years, and new insights into defenses against resist-
ance that incorporate abiotic and other physiological path-
ways of plants will undoubtedly be forthcoming. The  
discoveries will inform mutational and traditional breeding  
strategies in the absence of adoption of gene transfer or gene  
editing technologies and help meet the future needs for food  
output for a growing world population and climate-challenged  
food production system.
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