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ABSTRACT

Summary: It has been argued that the missing heritability in common
diseases may be in part due to rare variants and gene–gene effects.
Haplotype analyses provide more power for rare variants and joint
analyses across genes can address multi-gene effects. Currently,
methods are lacking to perform joint multi-locus association analyses
across more than one gene/region. Here, we present a haplotype-
mining gene–gene analysis method, which considers multi-locus
data for two genes/regions simultaneously. This approach extends
our single region haplotype-mining algorithm, hapConstructor, to two
genes/regions. It allows construction of multi-locus SNP sets at both
genes and tests joint gene–gene effects and interactions between
single variants or haplotype combinations. A Monte Carlo framework
is used to provide statistical significance assessment of the joint and
interaction statistics, thus the method can also be used with related
individuals. This tool provides a flexible data-mining approach to
identifying gene–gene effects that otherwise is currently unavailable.
Availability: http://bioinformatics.med.utah.edu/Genie/hapConstruc
tor.html
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1 INTRODUCTION
Haplotype and gene–gene analyses have been suggested as strategies
to identify disease loci that single nucleotide polymorphism (SNP)
approaches may have missed (Manolio et al., 2009). Haplotypes
have the potential for improved characterization of variation across
the locus set (Clark, 2004; Schaid, 2004). Yet, it is usually unclear
which haplotypes to test and how to model them. Numerous methods
consider all haplotypes spanning the entire locus set, with attempts to
reduce the degrees of freedom that this approach otherwise confers
(Liu et al., 2007; Tzeng and Zhang, 2007). Other techniques have
been designed to analyze contiguous and non-contiguous locus
subsets (Abo et al., 2008; Browning, 2006; Browning and Browning,
2007; Laramie et al., 2007; Lin, 2004).

It has been hypothesized (Moore, 2003), and in some cases shown
(Combarros et al., 2009), that genetic factors at one gene can
modify the effects of another gene on disease susceptibility. If such
biological interaction exists, the association may only be evident
by considering both genes simultaneously. Gene–gene studies are
complicated by issues surrounding what constitutes a gene–gene
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interaction. For example, some approaches for testing interactions
focus on association between two unlinked loci (Wu et al., 2008;
Zhao et al., 2006), which do not provide any measure of departure
from additivity as a statistical interaction is classically defined.

Most often haplotype analyses are performed for a single region
and gene–gene studies concentrate on single SNPs in each region.
Methods that consider multi-locus data at more than one gene would
be desirable to maximize the ability to detect association evidence.
One such method exists to test specific haplotype interactions at
unlinked regions (Becker et al., 2005). However, both haplotype
and gene–gene analyses can result in high-dimensionality, and how
to combine them is therefore a challenging problem.

To address these challenges, we have extended our single region
haplotype-mining approach (Abo et al., 2008) to consider multi-
locus data at two genes and test for association and interaction.
We concentrate on a broad set of tests that considers both joint
effects and interaction effects. In our gene–gene-mining process,
data considered at each gene can be single or multi-locus. We
anticipate that this gene–gene-mining approach will be most useful
for hypothesis generation. However, if required, haplotype testing
can also be performed using an empirical correction for multiple
testing. Case–control and case-only designs are available, in addition
to statistics to test joint and interaction effects. The method
is implemented in a Monte Carlo (MC) testing framework and
empirical construction-wide significance assessment is available for
hypothesis testing.

2 METHODS
For both genes/regions considered, maximum likelihood estimates (MLE)
for all individuals’ haplotype pairs and population haplotype frequencies are
determined. All SNPs in each region and all individuals with sufficient data
at both regions are considered (based on a user-defined genotype call rate
threshold). Full-length MLE haplotypes, or sub-haplotypes extracted from
them, are the genetic variables considered in the construction and testing
process.

Consider h and k loci in unlinked genes, G1 ={M1, ...,Mh} and
G2 ={Mh+1, ...,Mh+k}. The full locus set S =G1 ∪G2. First, all single locus
association tests are conducted. These single locus associations are assessed
against the first significance threshold, T1, which is user-defined. For any
locus i with P-value ≤ T1, all locus pairs {Mi, Mj |∀Mj ∈S; j �= i} are
considered at the second step. The locus pair {Mi, Mj} is the locus set,
L, being considered. When the two loci in L span both genes, gene–gene
tests between the loci are performed. When loci in L are all within the same
gene, the two loci are tested as a haplotype or composite genotype. Tests
at step n are assessed at significance threshold Tn (∈{T1, ...,Th+k}), which
are usually chosen to be increasing in stringency with n. A locus set can be
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written as L={g1 g2 |g1 ⊂G1 and g2 ⊂G2} where g1 denotes loci that reside
in G1 and g2 those that reside in G2. In steps n>2, if there are multiple SNPs
in both genes, gene–gene tests between haplotypes across g1 and haplotypes
across g2 will be performed. The steps continue until no further locus sets
pass the defined threshold values or the full locus sets have been tested.

To avoid a strict uphill climb algorithm, which is susceptible to identifying
local minimums, we have incorporated a backward step. At each backward
step, the algorithm considers subsets of size n−1 from the current locus
set that were not previously tested. Any subsets which pass the significance
threshold, Tn, will be retained and the process will continue forward again.

For locus sets where g1 and/or g2 are multi-locus, haplotypes or composite
genotypes are considered. The algorithm considers each haplotype across
gi as a potential ‘risk haplotype’, and compares with all other haplotypes
grouped together. For any specific haplotype, this reduces the multi-locus
data to a biallelic system which can be used for standard allelic, dominant,
recessive and additive models for testing both within and across genes. For
composite genotype combinations, phase is unimportant, each locus in L is
modeled separately as dominant or recessive and the combinations of these
considered across loci. Hence, composite genotypes tests can be performed
within or across genes.

To reduce the tests performed, at step n+1 the algorithm only expands the
specific risk haplotypes that passed the significance threshold (i.e. the alleles
at loci from step n are fixed). A similar rule is applied to the composite
genotypes.

Single locus, haplotype and composite genotype models are tested using
odds ratios, chi-square and chi-square trend association statistics. For locus
sets containing loci in two genes, L={g1 g2 |g1 ⊂G1 and g2 ⊂G2}, an
interaction odds ratio test and a correlation-based statistic are offered to
identify gene–gene effects between the two loci sets, g1 and g2. As described
above, multi-locus sets within genes are considered using biallelic recoding.
We refer to specific haplotypes across g1 and g2 as h1 and h2.

The interaction odds ratio between h1 and h2 is calculated using the
method described by Thomas (2004), IORm,n, where m and n denote
dominant or recessive models imposed on h1 and h2, respectively, and 0
indicates the wildtype.

IORm,n =
(
ORm,nOR00

)
(
ORm,0OR0,n

)

Under the null hypothesis, H0: IORm,n =1, the odds of disease given h1 and
h2 is the product of the odds of disease for each hi.

We have also implemented interaction tests based on correlation (Wu
et al., 2008; Zhao et al., 2006). Correlation of specific haplotypes, h1 and
h2, from locus sets g1 and g2 are performed. Following Wang et al. (2007),
the correlation is determined as follows, where each individuali is assigned
a value xij for locus set gj based on its MLE haplotype pairs:

xi,j =
⎧⎨
⎩

−1 for 0 copies of hj
0 for 1 copy of hj
1 for 2 copies of hj

⎫⎬
⎭

The correlation between h1 and h2 is estimated by the correlation coefficient:

r = Sx.1x.2√
Sx.1 Sx.2

,

where Sx1,x2 =∑N
i=1

(
xi1 − x̄.1

)(
xi2 − x̄.2

)
and Sx.j =

∑N
i=1

(
xij − x̄.j

)
,

j= (1, 2), and N is the number of individuals.
This correlation coefficient is an estimate of the composite correlation

statistic (Zaykin et al., 2008) which is robust to Hardy–Weinberg
disequilibrium. For a case–control study design, the method tests
H0 : rcase −rcontrol =0. For a case-only H0 : rcase=0 and the first step in the
automated process considers the correlation between pairs of single SNPs.
We also note the availability of meta-statistics for analyzing multiple datasets.

Statistical significances are determined with a MC procedure. The validity
of the MC procedure is based on properly matching the null simulations with
the observed data with regard to pedigree structure, missing data structure

and phasing procedure (Curtis and Sham, 2006). Our MC procedure is based
on a two-region multi-locus gene-drop. In both regions, haplotype pairs are
assigned to founders and independent individuals based on the estimated
full-length haplotype frequencies. Full-length haplotypes for both regions are
then assigned to pedigree descendants using gene-dropping techniques based
on Mendelian inheritance (MacCluer et al., 1986). The missing data structure
is then imposed on the simulated multi-locus genotype data and the known
phase is ignored. These simulated data are then statistically phased, to match
the procedure performed with the observed data. The procedure generates
null genotype configurations from which null statistics are calculated and a
null empirical distribution created. It must be noted that this MC procedure
assumes a null of no linkage and no association. If strong linkage exists (but
no association), there is the potential for inflated type 1 errors; although in
simulations we find that for reasonable linkage models that the MC procedure
remains a good approximation for the null and type 1 errors remain valid.

Correction for the data-mining process is also available and, if selected,
will provide construction-wide significance and false discovery rates.
Correction for construction is implemented in the same way as for
hapConstructor (Abo et al., 2008), where the null distribution for a complete
construction run is generated by conducting the same search process starting
from 1000 null configurations.

3 IMPLEMENTATION
Our method is implemented as a Java-based program. It is an
extension of the hapConstructor module (Abo et al., 2008) in the
Genie software (Allen-Brady et al., 2006). The program can be run
on Windows, Unix or Linux machines with Java 1.6 and at least
2 GB of RAM. An example dataset consisting of 14 SNPs in one
gene and 11 SNPs in the second gene required 7 h and 11 min with
4 GB of memory to complete building to step 3. Parameter options
for this example included default critical thresholds, 10 000 null
simulations and no construction-wide assessment. It is important
to note that this example may not provide useful insight to other
implementations of the method because there are many factors that
will affect the running time of the program. These include: number
of SNPs, number of samples, number of null simulations selected
for significance assessment, critical thresholds selected for the
steps in the building process, use of the multiple-testing correction
procedure and whether or not there is an association signal. Program
details, including the example described above, are available at
http://bioinformatics.med.utah.edu/Genie/hapConstructor.html.
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