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Oxidative stress is an early occurrence in the development of Alzheimer’s disease (AD)
and one of its proposed etiologic hypotheses. There is sufficient experimental evidence
supporting the theory that impaired antioxidant enzymatic activity and increased
formation of reactive oxygen species (ROS) take place in this disease. However, the
antioxidant treatments fail to stop its advancement. Its multifactorial condition and the
diverse toxicological cascades that can be initiated by ROS could possibly explain
this failure. Recently, it has been suggested that cerebral small vessel disease (CSVD)
contributes to the onset of AD. Oxidative stress is a central hallmark of CSVD and
is depicted as an early causative factor. Moreover, data from various epidemiological
and clinicopathological studies have indicated a relationship between CSVD and AD
where endothelial cells are a source of oxidative stress. These cells are also closely
related to oligodendrocytes, which are, in particular, sensitive to oxidation and lead
to myelination being compromised. The sleep/wake cycle is another important control
in the proliferation, migration, and differentiation of oligodendrocytes, and sleep loss
reduces myelin thickness. Moreover, sleep plays a crucial role in resistance against
CSVD, and poor sleep quality increases the silent markers of this vascular disease. Sleep
disruption is another early occurrence in AD and is related to an increase in oxidative
stress. In this study, the relationship between CSVD, oligodendrocyte dysfunction, and
sleep disorders is discussed while focusing on oxidative stress as a common occurrence
and its possible role in the onset of AD.

Keywords: demyelination, sleep dysfunction, blood-brain barrier permeability, ApoE4 and AD risk, vessel
dysfunction, oligodendrocyte precursor cell, reactive oxygen species, beta-amyloid
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INTRODUCTION

Alzheimer’s disease (AD) is a multifactorial neurodegeneration
with its etiology still remaining unknown. Its complexity and
multiple factors, which are constantly proven to influence its
development, hinder the discovery of a curative or preventive
treatment. Therefore, reviewing the events that take place,
especially at the onset of the disease, and raising new hypotheses
regarding their links is immensely relevant. The present review
is devoted to elucidating the possibility of a connection
between early events related to the onset of AD, including
oxidative stress, oligodendrocyte dysfunction, cerebrovascular
small disease (CVSD), and sleep disorders.

OXIDATIVE STRESS IS AN EARLY EVENT
IN AD PHYSIOPATHOLOGY

Although free radicals are traditionally considered damaging the
by-products of cellular metabolism, at present, it has become
known that the production of reactive oxygen species (ROS) and
reactive nitrogen species (RNS) are involved in the regulation
of processes that are central to most cell signaling. During
physiological and pathophysiological processes, ROS and RNS
act as secondary messengers which control the expression of
different genes and are involved in multiple cellular events
such as Ca2+ and redox homeostasis, chemotaxis, cell growth,
cell cycle, cell adhesion, and apoptosis, among others (Dröge,
2002; Poljsak and Milisav, 2012). Owing to these reasons, when
the production of free radicals exceeds the antioxidant cellular
capacity, oxidative stress occurs (Sies, 1986), thereby leading to
the possible deregulation of several cellular mechanisms.

Alzheimer’s disease is not an exception. Free radicals are
involved in many pathological cascades as both beta-amyloid
peptide (Aβ) and p-tau increase ROS levels. Oxidative stress is a
proven process in the early onset of AD (Nunomura et al., 2001).

However, antioxidant therapy fails to treat AD. There could
be several reasons for this: on the one hand, the vulnerability
of neurons to oxidative stress varies between areas, and on
the other hand, ROS generation is cell-specific (Bonizzi et al.,
2000) and the brain is formed by many different cell types with
diverse functions. In terms of the difference in vulnerability,
it has been shown that there are areas, such as hippocampal
CA1 and amygdala, which are specifically affected during the
early onset of AD, and these areas are vulnerable to oxidative
damage. The pyramidal neurons in the CA1 region undergo
massive cell death under oxidative stress conditions (Wilde et al.,
1997; Vornov et al., 1998; Sarnowska, 2002; Wang et al., 2005;
Bearden et al., 2009; Cruz-Sánchez et al., 2010; Chang et al., 2012;
Huang et al., 2012, 2013; Uysal et al., 2012). In addition, the
amygdala and prefrontal cortex are more vulnerable to oxidative
effects (Masood et al., 2008; Salim et al., 2010a,b, 2011a,b; Wang
and Michaelis, 2010; Patki et al., 2013a,b; Solanki et al., 2015)
than other cortical areas. In particular, oxidative stress triggers
amygdalar hyperactivity and dendritic shrinking (Wellman, 2001;
Vyas et al., 2002; Kreibich and Blendy, 2004; Brown et al.,
2005; Radley et al., 2006; Wood et al., 2010) and may further

potentiate synaptic disturbances by disrupting the hippocampus–
amygdala projections. Interestingly, this vulnerability of the
hippocampal CA1 and amygdala to oxidative stress could offer an
appealing explanation for the very early damage caused to these
areas due to AD.

OXIDATIVE STRESS AND CVSD IN AD

Cerebrovascular small disease is a disorder that attacks the small
cerebral arteries and microvessels. Its pathological presentation
includes white matter hyperintensities, cerebral microbleeds,
small subcortical infarct, enlarged perivascular space, brain
atrophy, and lacunes visible through magnetic resonance imaging
(Wardlaw et al., 2013). Vascular dysfunction is integral to the AD
etiology and pathophysiology, and it includes blood–brain barrier
(BBB) impairment and hemodynamic dysfunction (Klohs, 2020;
Parodi-Rullán et al., 2020). CSVD also has a predictive effect
on AD risk among the elderly people, and there are several
epidemiological, genetic, and clinical studies related to both
pathologies (Kim et al., 2020; Saridin et al., 2020). However,
whether CSVD is a cause or consequence of AD pathology still
remains a controversial issue. Recently, the evidence of imaging
techniques suggests that intra-brain vascular dysregulation is an
early pathological event during the disease development (Iturria-
Medina et al., 2016). White matter hyperintensities predict an
accelerated cognitive decline, increase in total cerebrospinal fluid
(CSF) tau, hippocampal atrophy, and increased risk for AD
(Kuller et al., 2003; Hertze et al., 2013; Bilello et al., 2015; Fiford
et al., 2017; Salvadó et al., 2019). Moreover, in preclinical AD,
white matter hyperintensity is observed before Aβ uptake and
predicts its increase (Grimmer et al., 2012; Kandel et al., 2016).
Furthermore, apolipoprotein E4 (ApoE4) carriers (that have a
noticeable genetic risk factor to develop AD) have increased
cerebrovascular amyloid angiopathy (Yu et al., 2015) that is
caused by Aβ deposition in the vessel walls.

At present, the etiology of CVSD is unclear despite oxidative
stress being the most widely supported theory which could
explain the vascular dysfunction related to AD. The source of
these ROS may increase the Aβ levels formed in the vessel walls
or cause the dysfunction of endothelial cells (ECs). Endothelium
cells contain a high quantity of mitochondria that produce
high ROS levels in CVSD. These show upregulated xanthine
oxidase, lipoxygenase, myeloperoxidase, and NADPH oxidases
(NOX) enzymes (Doughan et al., 2008; Nazarewicz et al., 2013;
Dikalov et al., 2014; Schulz et al., 2014; Sahoo et al., 2016),
which also increase ROS production (Cervantes Gracia et al.,
2017). The increase in ROS could culminate with an increased
vessel permeability, BBB disruption (Kuriakose et al., 2019; He
et al., 2020), and blood flow alteration (Freeman and Keller,
2012). Interestingly, these pathological processes have been
demonstrated in AD (Klohs, 2020; Parodi-Rullán et al., 2020).
This could indicate oxidative stress as the possible link between
the early onset of CVSD and AD.

In recent years, it has been revealed that BBB disruption
is an early marker of cognitive impairment (Montagne et al.,
2015; Van De Haar et al., 2016a,b; Sweeney et al., 2018, 2019;

Frontiers in Physiology | www.frontiersin.org 2 August 2021 | Volume 12 | Article 708061

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-708061 August 19, 2021 Time: 16:37 # 3

Lloret et al. CSVD, Sleep, Oligodendrocyte Dysfunction and AD

Nation et al., 2019). The permeability of BBB increases during
the very early phases of AD, and it also displays a leakage
and breakdown. Besides, ApoE4 carriers show degeneration of
brain pericytes, essential cells for BBB integrity (Zipser et al.,
2007; Armulik et al., 2010; Bell et al., 2012; Halliday et al.,
2016; Nikolakopoulou et al., 2019), and an accelerated BBB
breakdown in both the hippocampus and medial temporal
lobe (Montagne et al., 2020). The BBB breakdown contributes
to cognitive decline in ApoE4 carriers in a manner that is
independent of Aβ and tau levels. Oxidative stress could be
a strong candidate for understanding early BBB disruption
through cyclophilin A–matrix metalloproteinase-9 (CypA–
MMP9) pathway activation (Jin et al., 2000; Gu et al., 2011). In
fact, CypA-MMP9 is activated in degenerating brain capillary
pericytes in ApoE4 carriers as revealed in brain tissue analysis
(Halliday et al., 2016).

OXIDATIVE STRESS AND
OLIGODENDROCYTES IN AD

Oligodendrocytes are the myelin-forming cells in the CNS;
myelin is the high lipid content sheath that surrounds and
electrically isolates axons. Oligodendrocytes are derived from
oligodendrocyte precursor cells (OPCs) that are produced in
development and throughout adult life (Dawson et al., 2003;
Richardson et al., 2011). Oligodendrocytes, especially OPCs, are
highly vulnerable to oxidative damage compared with other
brain cells as, after an oxidative insult, newly differentiated
oligodendrocytes are damaged earlier than their counterparts
(Giacci and Fitzgerald, 2018). This vulnerability could be due to a
poor protective mechanism against oxidative stress in these cells.
Oligodendrocytes present a lower level of antioxidant defense
(Thorburne and Juurlink, 1996) and a reduced DNA repair
capacity based on the non-homologous end-joining (NHEJ),
which is error-prone (Spaas et al., 2021). Moreover, oxidative
stress disrupts oligodendrocyte differentiation by persistent
histone acetylation (French et al., 2009) and by affecting
the expression of mitochondrial key genes, such as NRF2
and PPAR-γ (De Nuccio et al., 2020). Following this, under
oxidative damage conditions, myelin renewal is compromised
(Giacci and Fitzgerald, 2018) and may also contribute to the
demyelinating phenotype observed during early AD (Sachdev
et al., 2013). Demyelination due to oxidative damage has been
broadly demonstrated in neurodegenerative disorders such as
multiple sclerosis (Lassmann and van Horssen, 2016). However,
experiments with Aβ peptide in vitro are controversial. It has been
reported that Aβ causes demyelination (Horiuchi et al., 2012)
in primary cultures incubated with 1 mM Aβ, and other studies
report that Aβ causes remyelination with a similar concentration
(Quintela-López et al., 2019). Nevertheless, in these studies,
oxidative stress, which could be very important to enlighten these
concepts, has not been measured.

Oligodendrocytes are also very sensitive to excitotoxicity given
their high contents of AMPA and NMDA receptors which, by
altering mitochondrial Ca2+ levels, makes them more vulnerable
to oxidative stress than neurons (Ibarretxe et al., 2006). In the

early phases of AD, both excitotoxicity and oxidative stress have
been observed (Campbell and Tobler, 1984; Olney et al., 1997;
Cutler et al., 2004), and their additive effect could be deleterious
for oligodendrocytes.

OXIDATIVE STRESS AND SLEEP
DISRUPTION IN AD

Right from invertebrates to superior vertebrates, all animals
sleep. This indicates that it is a conserved process in evolution
(Cirelli and Tononi, 2008; Joiner, 2016). Humans sleep nearly
one-third of their lives and, in this process, several special
circumstances occur for both vessels and oligodendrocytes as
well as for the expression of antioxidant enzymes (discussed
later). Proper sleep is essential for crucial brain functions such
as memory consolidation and detoxification of waste products
(Lloret et al., 2020). Therefore, it is not surprising that lack of
sleep can have detrimental effects on brain homeostasis. One
of the consequences of sleep deprivation is an increase in brain
oxidative stress, either through the increase in the generation
of free radicals or through the decrease in antioxidant levels
(Everson et al., 2005; Villafuerte et al., 2015), especially in the
hippocampus. However, some studies do not show any increase
in oxidative stress following sleep deprivation in animal models;
however, they all undergo acute sleep deprivation (D’Almeida
et al., 1997; Cirelli et al., 1999; Gopalakrishnan et al., 2004).
Nevertheless, studies in chronic sleep restriction with Drosophila
mutants suggest that one function of sleep is to increase the
resistance of organism to oxidative stress (Hill et al., 2018). Other
studies, also on Drosophila, have revealed that an increase in
oxidative damage causes breakdown of sleep, which implies that
both phenomena are linked in a bidirectional manner: oxidative
stress causes fragmented sleep and fragmented sleep increases
oxidative stress (Koh et al., 2006).

Oxidative stress and sleep disorders have also been related
in humans. Obstructive sleep apnea syndrome causes oxidative
stress coinciding with each episode of apnea, measured with
continuous monitoring during sleep (Lloret et al., 2007).
In postmenopausal women complaining of insomnia, lipid
peroxidation is increased (Hachul De Campos et al., 2006).
Moreover, it has been recently reported that night workers have
higher levels of oxidative stress damage and lower levels of
antioxidant defenses than the day workers (Teixeira et al., 2019).

Patients with Alzheimer’s disease show a high prevalence
and severity of sleep disturbances that seem to appear several
years prior to the onset of cognitive decline (Lloret et al., 2020).
Furthermore, ApoE4 carriers undergo a 2-fold increase in the
odds of sleep-disordered breathing (Kadotani et al., 2001). These
also cause poor sleep quality (Drogos et al., 2016). In contrast,
better sleep consolidation seems to attenuate incidence of AD
linked to APOE ε4 impact, and there is no association with
age compared with APOE ε4 non-carriers (Lim et al., 2013b;
Pan et al., 2021). A multicenter study showed that midlife and
late-life insomnia are associated with a higher risk of late-life
dementia (Sindi et al., 2018). However, the detrimental effect of
sleep deprivation could also be taking place over a short term as
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healthy people suffering from poor sleep quality present cognitive
impairment only after 1 year (Potvin et al., 2012). Moreover,
high sleep fragmentation increases the risk of developing AD by
1.5 times after 6 years (Lim et al., 2013a). Following this line,
a 40-year follow-up study including 1,574 men reported that
sleep disturbance increases the risk of developing AD by 51%
(Benedict et al., 2015). Furthermore, it has been suggested that
the treatment of obstructive sleep apnea is capable of reducing
the risk of dementia (Dunietz et al., 2021). This idea is supported
by a recent meta-analysis reported by Bubu et al. (2017). For the
explanation provided here, we can conclude that early oxidative
stress in AD could provoke sleep disturbance, as well as sleep
disorders, which could consequently lead to an increment in
oxidative damage.

SLEEP AND OLIGODENDROCYTES

Sleep is crucial in the synthesis and maintenance of the myelin
due to an expression cycle of genes during the sleep/wake period
(Cirelli et al., 2004; Thompson et al., 2010). Oligodendrocytes
and their precursors show a different pattern of sleep-related
expression of genes (Bellesi et al., 2013). Indeed, genes
involved in phospholipid synthesis and myelination promoting
OPC proliferation are preferentially transcribed during sleep,
whereas genes implicated in apoptosis, cellular stress response
(including many antioxidant enzymes), and OPC differentiation
are enriched during wakefulness. Specifically, OPC proliferation
doubles during sleep, correlating with the REM phase, whereas
an OPC differentiation is higher during the waking state (Bellesi
et al., 2013). Moreover, there is a reduction in myelin thickness
following sleep loss with no changes in the internodal length
(Bellesi et al., 2018). In conclusion, oligodendrocytes may express
a particular vulnerability to sleep loss owing to their high
susceptibility to incur oxidative stress. AD patients present
high levels of sleep disruption very early, it is expected that
oligodendrocytes are affected for this reason.

OLIGODENDROCYTES AND CSVD

The function of oligodendrocytes depends on proper blood
perfusion, as hypoperfusion interferes with white matter repair
by disrupting OPC renewal mechanisms (Miyamoto et al., 2013).
Accordingly, in mice expressing human ApoE4, a decrease in
the white matter levels is accompanied by microvasculature
injury (Koizumi et al., 2018). ECs physiologically secrete factors
that promote OPC proliferation. Furthermore, in low-oxygen
environments, ECs release various factors into extracellular
vesicles to increase OPC survival (Kurachi et al., 2016). Other
studies have identified that this relationship is bidirectional as
OPC also supports ECs, releasing signaling factors involved in
BBB maintenance from OPCs to ECs (Seo et al., 2014). In order
to migrate, OPCs use vessels as scaffolding (Snapyan et al., 2009),
interacting specifically with pericytes (Maki et al., 2015). In this
context, a decrease in the number of pericytes in the brains of
patients with AD has been demonstrated (Schultz et al., 2018).

Therefore, both cells, endothelial and oligodendrocytes, are very
sensitive to oxidative damage and are equally related to a
crossing-pathway dysfunction in AD. Hence, oxidative stress is
the chief participant in the relationship between oligodendrocyte
dysfunction, subsequent demyelination, and CVSD due to its
early occurrence in AD.

SLEEP AND CVSD

Sleep and brain vascular functionality, specifically BBB function,
are closely related. In fact, night sleep regulates substance
transport all across and along the BBB. Sleep loss increases the
BBB permeability, and sleep disruption can also lead to BBB
breakdown (Hurtado-Alvarado et al., 2017).

It has been demonstrated that CSVD is associated with
sleep disorders. Fifty-four percent of patients with CSVD suffer
from chronic insomnia (Wang et al., 2019). Moderate-to-severe
obstructive sleep apnea is also associated with CSVD (Song et al.,
2017), and non-breathing-related sleep fragmentation is also
common and related to the pathological markers in patients with
CSVD (Wang J. et al., 2020).

One of the primary functions of sleep is to eliminate waste
products from the brain. The term “glymphatic system” refers to
the manner in which waste products coming from the interstitial
fluid enter the brain parenchyma along with arterial perivascular
spaces and exit through venous perivascular spaces (Iliff et al.,
2012; Xie et al., 2013). Recent studies in mice have revealed that
Aβ concentration in interstitial fluid fluctuates during the day
and night (Kress et al., 2018). Its concentration peaks during the
night and the loss of components of the molecular clock increases
amyloid plaques formation. Hence, it is not surprising that sleep
disturbance and CSVD could be important comorbidities for AD.
In AD, both sleep disturbance and BBB dysfunction have been
described, and both occur early on (Semyachkina-Glushkovskaya
et al., 2020). Even healthy people carrying the ApoE4 allele show
alterations in both processes. Therefore, sleep disruption and
dysfunction with respect to the vascular functionality of the brain
are two phenomena that are closely related and implicated in the
onset of AD (see Figure 1 for a schematic summary).

IS OXIDATIVE STRESS THE LINK
BETWEEN SLEEP, CVSD, AND
OLIGODENDROCYTES DYSFUNCTION
IN AD?

In this study, we hypothesized that oxidative stress could be
the molecular link between oligodendrocyte and endothelium
dysfunction and sleep disruption. The primary source of ROS
in cells is mitochondria, and specifically, the electronic transport
chain. In AD, several evidences of mitochondrial dysfunction
and oxidative stress caused by Aβ peptides have been found:
energy failure prior to the development of plaque pathology,
ATP formation reduction, complexes I and IV inhibition that
increases ROS production, and high levels of oxidized mtDNA
(Cenini et al., 2019).
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FIGURE 1 | Schematic representation summarizing how oxidative stress could link vessel damage, sleep disruption, and oligodendrocyte dysfunction in early AD.
The top panels represent brain perfusion with the glymphatic system detailed. The waste products including beta-amyloid are not properly cleared by the
glymphatic system during sleep due to the disruption of latter caused by AD-related oxidative stress. Oxidative stress also increases CSVD-related alterations and
oligodendrocyte/OPC unsuccessful differentiation (bottom panel).

Reactive oxygen species are important physiological cell-
signaling molecules in the vascular endothelium. Therefore, they
are normally formed in these cells. However, this fact precisely
makes them more vulnerable when they are formed in excess.
Cerebral ECs also have a high concentration of mitochondria,
which provides an increased opportunity for generating oxidative
stress. It has been shown that BBB disruption could be caused
by ROS-induced metalloproteinase (MMP) activity, which
stimulates the degradation of tight junctions (Dawson et al.,
2003). On the contrary, it has also been mentioned that increased
NOXs activity may be involved in this process. NOXs transfer
electrons from NADPH to oxygen, thereby generating superoxide
radical. Moreover, it is involved in BBB breakdown in CVSD and
AD (Freeman and Keller, 2012).

Oligodendrocytes and endothelium closely interact with
each other. This oligovascular niche is important to sustain
angiogenesis and oligodendrogenesis (Arai and Lo, 2009a,b).
Oligodendrocytes are highly susceptible to oxidative stress,
as they are the predominant iron-containing cells of the
brain (Connor and Menzies, 1995) and have reduced levels
of glutathione, glutathione peroxidase, and mitochondrial
manganese superoxide dismutase (Thorburne and Juurlink,
1996). In ECs, ROS-activated MMPs induce oligodendrocyte

dysfunction by degrading the extracellular protein matrix,
consequently impairing their differentiation (Gorter and Baron,
2020). NOX enzymes also increase in oligodendrocytes through
Aβ-induced NMDA receptors/PKC pathway (Cavaliere et al.,
2013; Liu et al., 2019).

Finally, as mentioned previously, ROS are generated in
obstructive sleep apnea due to intermittent hypoxic episodes
resulting in sleep fragmentation (Nair et al., 2011a,b).
Subsequently, ROS can directly activate MMPs and also via
nuclear factor kappa B (NF-κB) pathway activation (Htoo et al.,
2006). In fact, plasma MMP9 levels are elevated in patients with
obstructive sleep apnea (Franczak et al., 2019a; Mashaqi et al.,
2021), and urinary MMP2 activity has been shown to increase in
accordance with obstructive sleep apnea severity (Franczak et al.,
2019b). On the contrary, it has also been described that ROS
induces the synthesis and stability of hypoxia-inducible factor 1α

(HIF-1α) during hypoxic periods. In turn, HIF-1α increases the
activity of NOXs, which are an important prooxidant, producing
superoxide and H2O2 (Takac et al., 2011; Kaur et al., 2014;
Wang N. et al., 2020). These changes promote a prooxidant
state, disrupt hippocampal synaptic plasticity, and impair spatial
memory in patients with obstructive sleep apnea (Arias-Cavieres
et al., 2020). Considering the aforementioned changes, we
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apnea. Oxidative stress could increase the activity of metalloproteinases (MMPs) and NADPH oxidases (NOXs). The extracellular protein matrix and tight junctions are
degraded by MMPs, which contributes to endothelial and oligodendrocyte dysfunction. The NOX activity provokes increased ROS levels in a positive feedback loop.

concluded that oxidative stress could increase MMP and NOX
activities that are involved in oligodendrocyte and endothelium
dysfunction and sleep disruption. Figure 2 summarizes these
common molecular pathways.

CONCLUDING REMARKS

Considering the arguments so far, it is apparent that
oligodendrocyte dysfunction, sleep, and CSVD are closely
related to each other, and all constitute oxidative stress as a very
early indicator. It is noteworthy that the major lesions in AD
are Aβ and tau; thus, the onset of the disease should be related
to the formation of these molecules in an exacerbated form. All
the present models point out that the first positive biomarker in
AD is soluble Aβ that probably begins its silent cell deregulation

decades before any observable cognitive impairment (Lloret
et al., 2019). Here, we proposed that Aβ could generate oxidative
stress early on in AD, but only selectively affecting cells,
especially vulnerable ones such as oligodendrocytes and ECs.
Moreover, this oxidative stress would affect myelin formation
and renewal, sleep, and vessel function (including BBB function).
All these processes will interact with each other and show
positive feedback.
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